metal-organic compounds
Diaquabis[3-(hydroxyimino)butanoato]nickel(II): a triclinic polymorph
aDepartment of General Chemistry, O.O. Bohomolets National Medical University, Shevchenko Blvd 13, 01601 Kiev, Ukraine, bDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kiev, Ukraine, cDepartment of Chemistry, Karakalpakian University, Universitet Keshesi 1, 742012 Nukus, Uzbekistan, and dFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-383 Wrocław, Poland
*Correspondence e-mail: turgiskend@freemail.ru
The title centrosymmetric mononuclear complex, [Ni(C4H6NO3)2(H2O)2], is a polymorph of the previously reported complex [Dudarenko et al. (2010). Acta Cryst. E66, m277–m278]. The NiII atom, lying on an inversion center, is six-coordinated by two carboxylate O atoms and two oxime N atoms from two trans-disposed chelating 3-hydroxyiminobutanoate ligands and two axial water molecules in a distorted octahedral geometry. The hydroxy group forms an intramolecular hydrogen bond with the coordinated carboxylate O atom. The complex molecules are linked in stacks along [010] by a hydrogen bond between the water O atom and the carboxylate O atom of a neighboring molecule. The stacks are further linked by O—H⋯O hydrogen bonds into a layer parallel to (001).
Related literature
For the monoclinic polymorph of the title compound, see: Dudarenko et al. (2010). For the coordination chemistry of hydroxyiminocarboxylic acids and their derivatives, see: Duda et al. (1997); Mokhir et al. (2002); Moroz et al. (2008); Onindo et al. (1995). For 2-hydroxyiminocarboxylic acids as efficient metal chelators, see: Gumienna-Kontecka et al. (2000); Sliva et al. (1997a,b). For the use of 2-hydroxyiminocarboxylic acid derivatives as efficient ligands for stabilization of high oxidation states of transitional metals, see: Fritsky et al. (2006); Kanderal et al. (2005). For structures with monodentately coordinated carboxylate groups, see: Wörl et al. (2005a,b). For the ligand synthesis, see: Khromov (1950).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810006306/hy2284sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810006306/hy2284Isup2.hkl
The title compound was synthesized by adding the solution of nickel(II) sulfate hexahydrate (0.1 mmol, 0.026 g) in water (5 ml) to a solution of 3-hydroxyiminobutanoic acid (0.2 mmol, 0.023 g) in water (5 ml). The resultant mixture was filtered and the dark pink filtrate was left to stand at room temperature. Slow evaporation of the solvent yielded lilac crystals of the title compound (yield 73%). 3-Hydroxyiminobutanoic acid was prepared according to the reported procedure (Khromov, 1950).
O-bound H atoms were located from a difference Fourier map and refined isotropically. H atoms of methyl and methylene groups were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.97 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).
Data collection: COLLECT (Nonius, 1998); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(C4H6NO3)2(H2O)2] | Z = 1 |
Mr = 326.92 | F(000) = 170 |
Triclinic, P1 | Dx = 1.733 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5621 (14) Å | Cell parameters from 1225 reflections |
b = 7.340 (2) Å | θ = 3.9–36.0° |
c = 8.2979 (15) Å | µ = 1.59 mm−1 |
α = 90.71 (2)° | T = 120 K |
β = 92.290 (18)° | Block, dark pink |
γ = 112.18 (2)° | 0.22 × 0.14 × 0.10 mm |
V = 313.31 (14) Å3 |
Nonius KappaCCD diffractometer | 1223 independent reflections |
Radiation source: fine-focus sealed tube | 1054 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.063 |
Detector resolution: 9 pixels mm-1 | θmax = 26.0°, θmin = 3.8° |
ϕ and ω scans with κ offset | h = −6→6 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −9→9 |
Tmin = 0.764, Tmax = 0.856 | l = −10→10 |
2755 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0431P)2] where P = (Fo2 + 2Fc2)/3 |
1223 reflections | (Δ/σ)max < 0.001 |
101 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
[Ni(C4H6NO3)2(H2O)2] | γ = 112.18 (2)° |
Mr = 326.92 | V = 313.31 (14) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.5621 (14) Å | Mo Kα radiation |
b = 7.340 (2) Å | µ = 1.59 mm−1 |
c = 8.2979 (15) Å | T = 120 K |
α = 90.71 (2)° | 0.22 × 0.14 × 0.10 mm |
β = 92.290 (18)° |
Nonius KappaCCD diffractometer | 1223 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1054 reflections with I > 2σ(I) |
Tmin = 0.764, Tmax = 0.856 | Rint = 0.063 |
2755 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 0.37 e Å−3 |
1223 reflections | Δρmin = −0.35 e Å−3 |
101 parameters |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.0000 | 0.0000 | 0.0293 (2) | |
O1 | −0.1803 (4) | 0.1846 (3) | 0.0358 (2) | 0.0363 (5) | |
O2 | −0.2828 (4) | 0.4116 (3) | 0.1563 (3) | 0.0418 (5) | |
O3 | 0.3067 (5) | −0.0513 (4) | 0.2814 (3) | 0.0521 (7) | |
O4 | 0.3222 (4) | 0.2337 (3) | −0.0904 (3) | 0.0349 (5) | |
N1 | 0.1703 (4) | 0.0643 (3) | 0.2262 (3) | 0.0309 (5) | |
C1 | −0.1519 (5) | 0.3071 (4) | 0.1501 (3) | 0.0298 (6) | |
C2 | 0.0492 (7) | 0.3370 (6) | 0.2868 (4) | 0.0537 (9) | |
H2A | 0.1902 | 0.4608 | 0.2678 | 0.064* | |
H2B | −0.0298 | 0.3578 | 0.3840 | 0.064* | |
C3 | 0.1734 (5) | 0.1944 (4) | 0.3286 (3) | 0.0304 (6) | |
C4 | 0.3120 (7) | 0.2237 (5) | 0.4912 (3) | 0.0452 (8) | |
H4A | 0.2952 | 0.0982 | 0.5328 | 0.068* | |
H4B | 0.2369 | 0.2883 | 0.5635 | 0.068* | |
H4C | 0.4926 | 0.3033 | 0.4816 | 0.068* | |
H1O | 0.315 (8) | −0.112 (6) | 0.210 (5) | 0.065 (14)* | |
H4O1 | 0.428 (9) | 0.268 (7) | −0.018 (6) | 0.081 (16)* | |
H4O2 | 0.284 (8) | 0.322 (7) | −0.111 (5) | 0.063 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0312 (3) | 0.0324 (3) | 0.0284 (3) | 0.0174 (2) | −0.00632 (19) | −0.00037 (19) |
O1 | 0.0400 (12) | 0.0406 (12) | 0.0364 (10) | 0.0259 (10) | −0.0105 (8) | −0.0039 (9) |
O2 | 0.0405 (12) | 0.0347 (11) | 0.0583 (12) | 0.0242 (10) | −0.0057 (10) | −0.0012 (10) |
O3 | 0.0778 (18) | 0.0612 (17) | 0.0394 (12) | 0.0541 (15) | −0.0208 (11) | −0.0069 (11) |
O4 | 0.0372 (13) | 0.0324 (12) | 0.0378 (11) | 0.0169 (10) | −0.0043 (9) | 0.0020 (9) |
N1 | 0.0321 (13) | 0.0348 (13) | 0.0310 (11) | 0.0189 (11) | −0.0046 (9) | 0.0061 (10) |
C1 | 0.0267 (14) | 0.0253 (14) | 0.0384 (14) | 0.0112 (12) | −0.0005 (11) | 0.0044 (11) |
C2 | 0.060 (2) | 0.053 (2) | 0.058 (2) | 0.0357 (18) | −0.0244 (16) | −0.0216 (16) |
C3 | 0.0286 (14) | 0.0334 (15) | 0.0288 (13) | 0.0116 (12) | −0.0020 (11) | 0.0017 (11) |
C4 | 0.055 (2) | 0.0475 (19) | 0.0314 (15) | 0.0186 (16) | −0.0112 (13) | −0.0036 (13) |
Ni1—O1 | 1.992 (2) | N1—C3 | 1.265 (4) |
Ni1—N1 | 2.035 (2) | C1—C2 | 1.514 (4) |
Ni1—O4 | 2.130 (2) | C2—C3 | 1.493 (4) |
O1—C1 | 1.262 (4) | C2—H2A | 0.9700 |
O2—C1 | 1.243 (4) | C2—H2B | 0.9700 |
O3—N1 | 1.405 (3) | C3—C4 | 1.499 (4) |
O3—H1O | 0.75 (4) | C4—H4A | 0.9600 |
O4—H4O1 | 0.79 (5) | C4—H4B | 0.9600 |
O4—H4O2 | 0.77 (5) | C4—H4C | 0.9600 |
O1i—Ni1—O1 | 180.00 (13) | C3—N1—Ni1 | 130.1 (2) |
O1i—Ni1—N1 | 89.62 (9) | O3—N1—Ni1 | 116.79 (18) |
O1—Ni1—N1 | 90.38 (9) | O2—C1—O1 | 122.5 (3) |
O1i—Ni1—N1i | 90.38 (9) | O2—C1—C2 | 116.2 (3) |
O1—Ni1—N1i | 89.62 (9) | O1—C1—C2 | 121.3 (3) |
N1—Ni1—N1i | 180.00 (15) | C3—C2—C1 | 124.7 (3) |
O1i—Ni1—O4i | 90.13 (9) | C3—C2—H2A | 106.1 |
O1—Ni1—O4i | 89.87 (9) | C1—C2—H2A | 106.1 |
N1—Ni1—O4i | 90.34 (9) | C3—C2—H2B | 106.1 |
N1i—Ni1—O4i | 89.66 (9) | C1—C2—H2B | 106.1 |
O1i—Ni1—O4 | 89.87 (9) | H2A—C2—H2B | 106.3 |
O1—Ni1—O4 | 90.13 (9) | N1—C3—C2 | 120.3 (2) |
N1—Ni1—O4 | 89.66 (9) | N1—C3—C4 | 123.3 (3) |
N1i—Ni1—O4 | 90.34 (9) | C2—C3—C4 | 116.3 (3) |
O4i—Ni1—O4 | 180.00 (15) | C3—C4—H4A | 109.5 |
C1—O1—Ni1 | 130.05 (18) | C3—C4—H4B | 109.5 |
N1—O3—H1O | 106 (3) | H4A—C4—H4B | 109.5 |
Ni1—O4—H4O1 | 106 (3) | C3—C4—H4C | 109.5 |
Ni1—O4—H4O2 | 111 (3) | H4A—C4—H4C | 109.5 |
H4O1—O4—H4O2 | 107 (4) | H4B—C4—H4C | 109.5 |
C3—N1—O3 | 113.1 (2) | ||
Ni1—O1—C1—O2 | −179.15 (18) | Ni1—N1—C3—C2 | −3.3 (4) |
Ni1—O1—C1—C2 | 1.9 (4) | O3—N1—C3—C4 | 0.8 (4) |
O2—C1—C2—C3 | 162.2 (3) | Ni1—N1—C3—C4 | −179.4 (2) |
O1—C1—C2—C3 | −18.8 (5) | C1—C2—C3—N1 | 19.2 (5) |
O3—N1—C3—C2 | 176.9 (3) | C1—C2—C3—C4 | −164.4 (3) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O···O1i | 0.75 (4) | 2.14 (4) | 2.766 (3) | 142 (4) |
O4—H4O1···O2ii | 0.79 (5) | 2.07 (5) | 2.851 (3) | 169 (5) |
O4—H4O1···O1ii | 0.79 (5) | 2.50 (5) | 3.068 (3) | 130 (4) |
O4—H4O2···O2iii | 0.77 (5) | 2.00 (5) | 2.754 (3) | 166 (4) |
Symmetry codes: (i) −x, −y, −z; (ii) x+1, y, z; (iii) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C4H6NO3)2(H2O)2] |
Mr | 326.92 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 5.5621 (14), 7.340 (2), 8.2979 (15) |
α, β, γ (°) | 90.71 (2), 92.290 (18), 112.18 (2) |
V (Å3) | 313.31 (14) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.59 |
Crystal size (mm) | 0.22 × 0.14 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.764, 0.856 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2755, 1223, 1054 |
Rint | 0.063 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.083, 0.98 |
No. of reflections | 1223 |
No. of parameters | 101 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.37, −0.35 |
Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O···O1i | 0.75 (4) | 2.14 (4) | 2.766 (3) | 142 (4) |
O4—H4O1···O2ii | 0.79 (5) | 2.07 (5) | 2.851 (3) | 169 (5) |
O4—H4O1···O1ii | 0.79 (5) | 2.50 (5) | 3.068 (3) | 130 (4) |
O4—H4O2···O2iii | 0.77 (5) | 2.00 (5) | 2.754 (3) | 166 (4) |
Symmetry codes: (i) −x, −y, −z; (ii) x+1, y, z; (iii) −x, −y+1, −z. |
Acknowledgements
The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263–2008).
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859. CSD CrossRef Web of Science Google Scholar
Dudarenko, N. M., Kalibabchuk, V. A., Malysheva, M. L., Iskenderov, T. S. & Gumienna-Kontecka, E. (2010). Acta Cryst. E66, m277–m278. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Gumienna-Kontecka, E., Berthon, G., Fritsky, I. O., Wieczorek, R., Latajka, Z. & Kozłowski, H. (2000). J. Chem. Soc. Dalton Trans. pp. 4201–4208. Web of Science CrossRef Google Scholar
Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. Web of Science CrossRef PubMed Google Scholar
Khromov, N. V. (1950). Zh. Obshch. Khim. 20, 1858–1867. CAS Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915. CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276. CSD CrossRef Web of Science Google Scholar
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287–294. CSD CrossRef CAS Web of Science Google Scholar
Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem. pp. 759–765. Google Scholar
Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans. pp. 27–29. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-Hydroxyiminocarboxylates of various metal ions are an interesting group of chelate complexes intensively studied during the past 15 years (Duda et al., 1997; Onindo et al., 1995). It was shown that 2-hydroxyiminopropanoic acid and other 2-hydroxyiminocarboxylic acids act as efficient chelators with respect to copper(II), nickel(II) and aluminium(III) (Gumienna-Kontecka et al., 2000; Onindo et al., 1995; Sliva et al., 1997a,b). The amide derivatives of 2-hydroxyiminopropanoic acid have been successfully used for the synthesis of metal complexes with efficient stabilization of trivalent oxidation state of Ni and Cu (Fritsky et al., 2006; Kanderal et al., 2005). Recently we reported the first crystal structure of a metal compound of the nearest homologue of 2-hydroxyiminopropanoic acid, 3-hydroxyiminobutanoic acid, a mononuclear complex with Ni (Dudarenko et al., 2010). In the course of our synthetic study we found that a slight change of experimental conditions, namely use of nickel(II) sulfate instead of nickel(II) nitrate and conduction of synthesis at room temperature resulted in crystallization of a polymorph modification of the title compound.
A distorted octahedral coordination geometry is found in the title complex with the NiII atom lying on an inversion center (Fig. 1). Two O atoms and two N atoms from two chelating ligands define the equatorial plane, each ligand defining a six-membered ring with a nearly planar conformation, and the two trans-coordinated water molecules complete the octahedral coordination geometry. The Ni—O bond lengths [1.992 (2) Å] in the equatorial plane are somewhat shorter than the Ni—N bond lengths [2.025 (2) Å]. The O atoms of the protonated oxime group form intramolecular hydrogen bonds with the coordinated carboxylate O atoms, forming five-membered rings and thus fusing two six-membered chelate rings in a pseudomacrocyclic structure. The difference in C—O bond lengths for the coordinated and noncoordinated O atoms [1.271 (2) and 1.250 (2) Å] is typical for monodentately coordinated carboxylate groups (Wörl et al., 2005a,b). The C═N, C═O and N—O bond lengths are typical for 2-hydroxyiminopropanoic acid and its derivatives (Mokhir et al., 2002; Moroz et al., 2008; Onindo et al., 1995; Sliva et al., 1997a,b). In general, the geometrical parameters of the molecule are very close to those observed in the structure of the monoclinic modification of the title complex (Dudarenko et al., 2010).
The octahedral complex molecules are organized in the piles disposed along the b axis due to a hydrogen bond formed between the axial water molecule and noncoordinated carboxylate O atom of a neighboring molecule (Table 1). The Ni···Ni separation in the piles is equal to the unit cell parameter b. The piles are united in walls with the help of a hydrogen bond of different type (a bifurcate hydrogen bond formed between the water molecule and both coordinated and noncoordinated carboxylate O atoms belonging to a translational molecule). The walls disposed parallel to (0 0 1) are united in a three-dimensional structure only with the help of van der Waals contacts (Fig. 2).