metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m296-m297

Bis[μ-N,N′-bis­(2,6-diiso­propylphenyl)ethene-1,2-di­amido]-1,4(η2);1:2κ4N:N;3:4κ4N:N-bis­(di­ethyl ether)-1κO,4κO-di-μ-hydrido-2:3κ4H:H-2,3-dichromium(II)-1,4-dilithium(I) pentane hemisolvate

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: stephan.peitz@catalysis.de

(Received 26 January 2010; accepted 10 February 2010; online 13 February 2010)

The title compound, [Cr2Li2(C26H36N2)2(μ-H)2(C4H10O)2]·0.5C5H12, is a binuclear chromium complex bridged by two hydrogen atoms. Each chromium atom is coordinated in a distorted square-planar geometry by one chelating bis­(2,6-diisopropyl­phen­yl)ethene-1,2-diamido ligand via its two N atoms. Additionally, two diametrically opposed lithium ether adducts coordinate in an η4 mode on the backbone of the ligands. There is a crystallographic inversion center in the middle of the Cr2H2 ring. One of the isopropyl groups is disordered over two positions in a 0.567 (7):0.433 (7) ratio. Disorder is also observed in the pentane hemisolvate molecule.

Related literature

For other binuclear dihydrido-bridged chromium complexes, see: Fryzuk et al. (1994[Fryzuk, M. D., Leznoff, D. B., Rettig, S. J. & Thompson, R. C. (1994). Inorg. Chem. 33, 5528-5534.]), MacAdams et al. (2003[MacAdams, L. A., Buffone, G. P., Incarvito, C. D., Golen, J. A., Rheingold, A. L. & Theopold, K. H. (2003). Chem. Commun. pp. 1164-1165.]), Albahily et al. (2008[Albahily, K., Al-Baldawi, D., Gambarotta, S., Koc, E. & Duchateau, R. (2008). Organometallics, 27, 5943-5947.]); Rozenel et al. (2009[Rozenel, S. S., Chomitz, W. A. & Arnold, J. (2009). Organometallics, 28, 6243-6253.]). For the role of binuclear dihydrido-bridged chromium complexes in selective oligomer­ization of ethyl­ene, see: Overett et al. (2005[Overett, M. J., Blann, K., Bollmann, A., Dixon, J. T., Haasbroek, D., Killian, E., Maumela, H., McGuinness, D. S. & Morgan, D. H. J. (2005). J. Am. Chem. Soc. 127, 10723-10730.]). For similar coordination of alkali metals in a metal–diimine complex, see: Baker et al. (2005[Baker, R. J., Jones, C. & Kloth, M. (2005). Dalton Trans. pp. 2106-2110.]). For the binuclear starting compound of this synthesis, see: Peitz et al. (2009[Peitz, S., Peulecke, N., Müller, B. H., Spannenberg, A. & Rosenthal, U. (2009). Acta Cryst. E65, m1574.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr2Li2(C26H36N2)2H2(C4H10O)2]·0.5C5H12

  • Mr = 1057.34

  • Triclinic, [P \overline 1]

  • a = 12.2577 (5) Å

  • b = 12.3525 (6) Å

  • c = 12.9708 (6) Å

  • α = 67.827 (4)°

  • β = 75.039 (3)°

  • γ = 66.773 (3)°

  • V = 1657.46 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 200 K

  • 0.50 × 0.40 × 0.35 mm

Data collection
  • STOE IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.809, Tmax = 0.905

  • 23828 measured reflections

  • 6500 independent reflections

  • 4770 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.151

  • S = 0.99

  • 6500 reflections

  • 337 parameters

  • 53 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Structurally characterized binuclear chromium complexes that are bridged by two hydrogen atoms were reported only four times before (Fryzuk et al., 1994; MacAdams et al., 2003; Albahily et al., 2008; Rozenel et al., 2009). This is the first time such kind of complex is reported with ethene-1,2-diamido ligands. A similar coordination of alkali metals on binuclear metal-1,2-diiminoethane complexes was observed before (Baker et al., 2005).

We became interested in chromium hydride derivatives because they are postulated as intermediates formed in selective oligomerization of ethylene following β-hydride elimination of the hepta- or nonametallacycle, prior to elimination of 1-hexene or 1-octene. Cr dihydride species are suggested to be formed in side-chain reactions during the ethylene tetramerization process (Overett et al., 2005). In order to explore the chemistry of these kinds of complexes, we reacted a binuclear chromium diimine complex (Peitz et al., 2009) with 1,4-dilithiobutane to build up chromacyclopentanes which decompose at room temperature and form a binuclear dihydrido-bridged chromium complex.

The molecular structure of the title compound shows that two chromium(II) centers are bridged by two hydrogen atoms to form a binuclear complex. Each metal center is coordinated by one chelating diimine igand, (i-Pr)2C6H3—NC(H)—C(H)N—C6H3(i-Pr)2, via both N atoms of each ligand. Due to its redox properties this ligand acts as electron acceptor which leads to the shortened C—C and elongated C—N bond lengths in the ligand backbone in comparison to the free diimine ligand, thus forming an ethene-1,2-diamido unit. Additionally, diametrically opposed to each other, two lithium ether adducts coordinate in a η4 mode on the backbone of the ligands which are twisted in an angle of 62.1 (1) ° against each other. The coordination geometry on each chromium center can be best described as distorted square planar (mean deviation from the best plane defined by Cr1—N1—C1—C2—N2 0.046 Å). The Cr1—Cr1' distance of 2.5779 (5) Å is around 0.14 Å shorter than those found in all the other structurally characterized dihydride-bridged chromium dimers and can be interpreted in terms of metal-metal interactions. The Cr—H distances found (both 1.71 (3) Å) are comparable to those of Fryzuk et al. (1.78 (3) and 1.76 (3) Å), MacAdams et al. (1.77 (3) and 1.77 (3) Å), Rozenel et al. (1.84 (2) and 1.85 (2) Å) and Albahily et al. (1.69 and 1.68 Å). The asymmetric unit contains one half of the complex unit and a quarter solvent molecule n-pentane. The other half of the complex unit and a further quarter solvent molecule are generated by the crystallographic inversion center located in the middle of the Cr2H2 ring.

Related literature top

For other binuclear dihydrido-bridged chromium complexes, see: Fryzuk et al. (1994), MacAdams et al. (2003), Albahily et al. (2008); Rozenel et al. (2009). For the role of binuclear dihydrido-bridged chromium complexes in selective oligomerization of ethylene, see: Overett et al. (2005). For similar coordination of alkali metals in a metal–diimine complex, see: Baker et al. (2005). For the binuclear starting compound of this synthesis, see: Peitz et al. (2009).

Experimental top

1.55 ml of a 0.24 M solution of 1,4-dilithiobutane in diethyl ether were added dropwise to a solution of [(C26H36N2)CrCl(µ-Cl)3Cr(THF)(C26H36N2)].CH2Cl2 (0.40 g, 0.37 mmol) in 2 ml diethyl ether at -78 °C. After stirring over night the solution was filtered and all volatiles were removed in vacuum. Extraction with n-pentane gave a green solution. Crystallization at -30 °C yielded 0.082 g (22%) of red-brown single crystals suitable for X-ray analysis.

Refinement top

H1 was located via the difference Fourier map and refined isotropically. All other H atoms were placed in idealized positions with d(C—H) = 0.99 (CH2), 0.98 (CH3) and 0.95-1.00 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for CH2 and CH.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms, solvent and the disorder of the coordinated diethyl ether are not shown for clarity.
Bis[µ-N,N'-bis(2,6-diisopropylphenyl)ethene-1,2-diamido]- 1,4(η2);1:2κ4N:N;3:4κ4N:N-bis(diethyl ether)-1κO,4κO-di-µ-hydrido-2:3κ4H:H- 2,3-dichromium(II)-1,4-dilithium(I) pentane hemisolvate top
Crystal data top
[Cr2Li2(C26H36N2)2H2(C4H10O)2]·0.5C5H12Z = 1
Mr = 1057.34F(000) = 573
Triclinic, P1Dx = 1.059 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.2577 (5) ÅCell parameters from 19482 reflections
b = 12.3525 (6) Åθ = 1.8–29.1°
c = 12.9708 (6) ŵ = 0.37 mm1
α = 67.827 (4)°T = 200 K
β = 75.039 (3)°Prism, red-brown
γ = 66.773 (3)°0.50 × 0.40 × 0.35 mm
V = 1657.46 (14) Å3
Data collection top
STOE IPDS II
diffractometer
6500 independent reflections
Radiation source: fine-focus sealed tube4770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 1514
Tmin = 0.809, Tmax = 0.905k = 1515
23828 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.1013P)2]
where P = (Fo2 + 2Fc2)/3
6500 reflections(Δ/σ)max = 0.001
337 parametersΔρmax = 0.69 e Å3
53 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cr2Li2(C26H36N2)2H2(C4H10O)2]·0.5C5H12γ = 66.773 (3)°
Mr = 1057.34V = 1657.46 (14) Å3
Triclinic, P1Z = 1
a = 12.2577 (5) ÅMo Kα radiation
b = 12.3525 (6) ŵ = 0.37 mm1
c = 12.9708 (6) ÅT = 200 K
α = 67.827 (4)°0.50 × 0.40 × 0.35 mm
β = 75.039 (3)°
Data collection top
STOE IPDS II
diffractometer
6500 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
4770 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.905Rint = 0.029
23828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05253 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.69 e Å3
6500 reflectionsΔρmin = 0.59 e Å3
337 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0138 (2)0.3858 (2)0.8461 (2)0.0448 (6)
H1A0.04630.38630.92500.054*
C20.0861 (2)0.2969 (2)0.8219 (2)0.0455 (6)
H2A0.13210.22790.88220.055*
C30.1878 (2)0.5549 (2)0.7761 (2)0.0413 (6)
C40.2201 (2)0.6843 (3)0.7494 (2)0.0486 (6)
C50.3402 (3)0.7530 (3)0.7716 (3)0.0574 (7)
H5A0.36280.84040.75270.069*
C60.4265 (3)0.6977 (3)0.8201 (3)0.0580 (7)
H6A0.50720.74590.83670.070*
C70.3951 (2)0.5724 (3)0.8441 (2)0.0529 (7)
H7A0.45520.53450.87690.063*
C80.2766 (2)0.4982 (2)0.8218 (2)0.0437 (6)
C90.2502 (2)0.3615 (3)0.8423 (2)0.0516 (7)
H9A0.16230.32460.82080.062*
C100.2791 (5)0.2931 (4)0.9650 (4)0.1036 (15)
H10A0.23660.30681.01090.155*
H10B0.25380.20430.97550.155*
H10C0.36550.32420.98790.155*
C110.3145 (4)0.3402 (4)0.7697 (4)0.0919 (13)
H11A0.29490.25100.78540.138*
H11B0.28900.37760.69030.138*
H11C0.40120.37830.78650.138*
C120.1263 (3)0.7472 (3)0.7032 (3)0.0647 (8)
H12A0.06190.69950.65610.078*
C130.0695 (4)0.7370 (5)0.7996 (4)0.0964 (14)
H13A0.04030.64990.84520.145*
H13B0.12930.78530.84630.145*
H13C0.00250.76910.76920.145*
C140.1712 (4)0.8802 (4)0.6282 (4)0.1036 (16)
H14A0.20600.88290.56680.155*
H14B0.10430.91250.59710.155*
H14C0.23230.93100.67220.155*
C150.2134 (2)0.2000 (2)0.6846 (2)0.0457 (6)
C160.1805 (3)0.0945 (3)0.7132 (3)0.0584 (7)
C170.2667 (3)0.0132 (3)0.6939 (3)0.0726 (9)
H17A0.24570.08560.71470.087*
C180.3814 (3)0.0162 (3)0.6454 (3)0.0731 (10)
H18A0.43950.09060.63440.088*
C190.4114 (3)0.0889 (3)0.6129 (3)0.0644 (8)
H19A0.48970.08730.57670.077*
C200.3290 (2)0.1984 (3)0.6318 (2)0.0507 (7)
C210.3675 (3)0.3106 (3)0.5935 (3)0.0591 (7)
H21A0.29710.37930.61290.071*
C220.4690 (4)0.2911 (5)0.6533 (4)0.0964 (13)
H22A0.44580.26420.73470.145*
H22B0.48510.36910.63100.145*
H22C0.54120.22750.63270.145*
C230.4011 (4)0.3531 (4)0.4659 (3)0.0795 (10)
H23A0.33390.36780.42900.119*
H23B0.47150.28870.44390.119*
H23C0.41950.42990.44320.119*
C240.0521 (3)0.0961 (3)0.7572 (3)0.0713 (9)
H24A0.00830.17060.78320.086*
C250.0419 (5)0.0170 (5)0.8554 (4)0.1118 (16)
H25A0.08050.02490.91650.168*
H25B0.08150.09130.83140.168*
H25C0.04270.00800.88170.168*
C260.0091 (4)0.1096 (5)0.6632 (4)0.1061 (15)
H26A0.00440.18400.60080.159*
H26B0.09330.11700.69080.159*
H26C0.03080.03660.63740.159*
Cr10.00936 (3)0.44741 (4)0.60558 (3)0.03797 (15)
H10.085 (3)0.427 (3)0.480 (3)0.061 (8)*
N10.06604 (17)0.48141 (19)0.75400 (17)0.0401 (5)
N20.12678 (17)0.30968 (19)0.70837 (17)0.0420 (5)
Li10.1189 (4)0.4715 (5)0.7480 (4)0.0572 (12)
O10.2231 (2)0.5599 (2)0.7256 (2)0.0769 (7)
C27A0.2516 (7)0.4269 (7)0.9263 (7)0.082 (2)*0.567 (7)
H27A0.29180.41530.98780.123*0.567 (7)
H27B0.28100.34980.90710.123*0.567 (7)
H27C0.16500.44910.94980.123*0.567 (7)
C28A0.2781 (8)0.5312 (8)0.8233 (6)0.089 (2)*0.567 (7)
H28A0.25120.60720.84520.107*0.567 (7)
H28B0.36590.50810.80190.107*0.567 (7)
C29A0.2652 (9)0.6611 (7)0.6526 (7)0.120 (3)*0.567 (7)
H29A0.35360.63730.63990.144*0.567 (7)
H29B0.22900.73580.67740.144*0.567 (7)
C30A0.2125 (7)0.6730 (7)0.5527 (6)0.081 (2)*0.567 (7)
H30A0.23400.73650.48640.122*0.567 (7)
H30B0.12510.69690.56990.122*0.567 (7)
H30C0.24450.59340.53770.122*0.567 (7)
C27B0.2760 (7)0.4731 (9)0.8854 (8)0.061 (2)*0.433 (7)
H27D0.32280.45770.94340.091*0.433 (7)
H27E0.29720.39660.86700.091*0.433 (7)
H27F0.19050.50030.91320.091*0.433 (7)
C28B0.3035 (11)0.5739 (11)0.7802 (10)0.117 (4)*0.433 (7)
H28C0.27670.65620.79070.140*0.433 (7)
H28D0.38790.55080.74530.140*0.433 (7)
C29B0.2524 (10)0.6262 (7)0.6090 (5)0.087 (3)*0.433 (7)
H29C0.21640.60340.56340.104*0.433 (7)
H29D0.34030.59250.59040.104*0.433 (7)
C30B0.2175 (9)0.7676 (7)0.5671 (8)0.088 (3)*0.433 (7)
H30D0.23860.79560.48550.132*0.433 (7)
H30E0.26040.79320.60290.132*0.433 (7)
H30F0.13100.80450.58620.132*0.433 (7)
C310.6860 (16)0.9785 (17)0.0580 (15)0.087 (5)*0.25
H31A0.77000.96940.06210.131*0.25
H31B0.64811.05500.11510.131*0.25
H31C0.68180.90740.07140.131*0.25
C320.6249 (15)0.9841 (18)0.0511 (14)0.091 (5)*0.25
H32A0.63151.05440.06540.110*0.25
H32B0.66370.90700.10870.110*0.25
C330.4968 (17)1.000 (2)0.061 (2)0.124 (7)*0.25
H33A0.45431.08990.04410.149*0.25
H33B0.47320.96270.14220.149*0.25
C340.4396 (16)0.957 (2)0.002 (2)0.118 (7)*0.25
H34A0.47550.97250.07770.141*0.25
H34B0.45580.86640.03640.141*0.25
C350.3119 (14)1.0198 (16)0.0078 (17)0.077 (4)*0.25
H35A0.27740.98960.03170.116*0.25
H35B0.29561.10920.02740.116*0.25
H35C0.27601.00330.08660.116*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0394 (13)0.0572 (15)0.0428 (14)0.0133 (12)0.0062 (11)0.0232 (12)
C20.0393 (14)0.0529 (15)0.0470 (14)0.0097 (11)0.0116 (11)0.0202 (12)
C30.0317 (12)0.0545 (15)0.0403 (13)0.0096 (11)0.0024 (10)0.0238 (11)
C40.0412 (14)0.0521 (15)0.0544 (16)0.0116 (12)0.0001 (12)0.0265 (13)
C50.0483 (16)0.0519 (16)0.0649 (18)0.0064 (13)0.0013 (14)0.0255 (14)
C60.0354 (14)0.0658 (19)0.0613 (18)0.0027 (13)0.0018 (12)0.0253 (15)
C70.0344 (14)0.0680 (18)0.0529 (16)0.0144 (13)0.0002 (11)0.0215 (14)
C80.0357 (13)0.0540 (15)0.0436 (13)0.0126 (11)0.0043 (10)0.0205 (12)
C90.0422 (15)0.0575 (16)0.0609 (17)0.0195 (12)0.0041 (12)0.0231 (14)
C100.150 (4)0.064 (2)0.076 (3)0.037 (3)0.009 (3)0.013 (2)
C110.097 (3)0.079 (2)0.126 (4)0.028 (2)0.044 (3)0.040 (2)
C120.0529 (18)0.0580 (18)0.089 (2)0.0206 (14)0.0121 (16)0.0402 (17)
C130.074 (3)0.121 (3)0.135 (4)0.048 (2)0.006 (2)0.080 (3)
C140.090 (3)0.062 (2)0.136 (4)0.031 (2)0.024 (3)0.027 (2)
C150.0384 (14)0.0458 (14)0.0509 (15)0.0014 (11)0.0114 (11)0.0223 (12)
C160.0541 (17)0.0524 (16)0.0704 (19)0.0100 (13)0.0069 (14)0.0296 (15)
C170.078 (2)0.0478 (17)0.085 (2)0.0088 (16)0.0058 (19)0.0300 (17)
C180.066 (2)0.0559 (19)0.081 (2)0.0078 (16)0.0080 (17)0.0345 (17)
C190.0470 (17)0.0647 (19)0.069 (2)0.0045 (14)0.0061 (14)0.0319 (16)
C200.0390 (14)0.0561 (16)0.0529 (16)0.0032 (12)0.0096 (12)0.0234 (13)
C210.0391 (15)0.0716 (19)0.070 (2)0.0142 (13)0.0008 (13)0.0355 (16)
C220.091 (3)0.130 (4)0.094 (3)0.050 (3)0.025 (2)0.040 (3)
C230.079 (3)0.089 (3)0.076 (2)0.038 (2)0.0112 (19)0.022 (2)
C240.064 (2)0.0645 (19)0.101 (3)0.0257 (16)0.0001 (18)0.044 (2)
C250.104 (4)0.141 (4)0.094 (3)0.062 (3)0.005 (3)0.029 (3)
C260.076 (3)0.126 (4)0.122 (4)0.041 (3)0.022 (3)0.031 (3)
Cr10.0292 (2)0.0452 (2)0.0423 (2)0.00587 (15)0.00548 (15)0.02277 (17)
N10.0296 (10)0.0497 (12)0.0450 (12)0.0095 (9)0.0030 (8)0.0239 (10)
N20.0338 (11)0.0467 (11)0.0477 (12)0.0059 (9)0.0073 (9)0.0235 (10)
Li10.049 (3)0.074 (3)0.063 (3)0.024 (2)0.010 (2)0.031 (3)
O10.0555 (13)0.0807 (15)0.1092 (19)0.0318 (12)0.0033 (12)0.0445 (14)
Geometric parameters (Å, º) top
C1—C21.344 (4)C24—H24A1.0000
C1—N11.402 (3)C25—H25A0.9800
C1—Li12.159 (6)C25—H25B0.9800
C1—H1A1.0000C25—H25C0.9800
C2—N21.396 (3)C26—H26A0.9800
C2—Li12.159 (6)C26—H26B0.9800
C2—H2A1.0000C26—H26C0.9800
C3—C81.407 (4)Cr1—N22.023 (2)
C3—C41.410 (4)Cr1—N12.030 (2)
C3—N11.429 (3)Cr1—Cr1i2.5780 (8)
C4—C51.397 (4)Cr1—Li12.704 (4)
C4—C121.510 (4)Cr1—H11.72 (3)
C5—C61.373 (4)N1—Li12.204 (5)
C5—H5A0.9500N2—Li12.206 (5)
C6—C71.367 (4)Li1—O11.891 (5)
C6—H6A0.9500O1—C28B1.445 (5)
C7—C81.402 (4)O1—C29A1.445 (5)
C7—H7A0.9500O1—C28A1.449 (5)
C8—C91.517 (4)O1—C29B1.450 (5)
C9—C101.517 (5)C27A—C28A1.535 (6)
C9—C111.520 (4)C27A—H27A0.9800
C9—H9A1.0000C27A—H27B0.9800
C10—H10A0.9800C27A—H27C0.9800
C10—H10B0.9800C28A—H28A0.9900
C10—H10C0.9800C28A—H28B0.9900
C11—H11A0.9800C29A—C30A1.527 (6)
C11—H11B0.9800C29A—H29A0.9900
C11—H11C0.9800C29A—H29B0.9900
C12—C141.518 (5)C30A—H30A0.9800
C12—C131.525 (5)C30A—H30B0.9800
C12—H12A1.0000C30A—H30C0.9800
C13—H13A0.9800C27B—C28B1.528 (7)
C13—H13B0.9800C27B—H27D0.9800
C13—H13C0.9800C27B—H27E0.9800
C14—H14A0.9800C27B—H27F0.9800
C14—H14B0.9800C28B—H28C0.9900
C14—H14C0.9800C28B—H28D0.9900
C15—C201.402 (4)C29B—C30B1.531 (6)
C15—C161.405 (4)C29B—H29C0.9900
C15—N21.438 (3)C29B—H29D0.9900
C16—C171.398 (4)C30B—H30D0.9800
C16—C241.524 (5)C30B—H30E0.9800
C17—C181.376 (3)C30B—H30F0.9800
C17—H17A0.9500C31—C321.433 (16)
C18—C191.372 (3)C31—H31A0.9800
C18—H18A0.9500C31—H31B0.9800
C19—C201.398 (4)C31—H31C0.9800
C19—H19A0.9500C32—C331.482 (17)
C20—C211.505 (4)C32—H32A0.9900
C21—C221.526 (5)C32—H32B0.9900
C21—C231.531 (5)C33—C341.496 (17)
C21—H21A1.0000C33—H33A0.9900
C22—H22A0.9800C33—H33B0.9900
C22—H22B0.9800C34—C351.444 (16)
C22—H22C0.9800C34—H34A0.9900
C23—H23A0.9800C34—H34B0.9900
C23—H23B0.9800C35—H35A0.9800
C23—H23C0.9800C35—H35B0.9800
C24—C261.515 (6)C35—H35C0.9800
C24—C251.517 (6)
C2—C1—N1116.1 (2)N1—Cr1—Cr1i139.45 (6)
C2—C1—Li171.9 (2)N2—Cr1—Li153.31 (13)
N1—C1—Li173.0 (2)N1—Cr1—Li153.20 (12)
C2—C1—H1A121.9Cr1i—Cr1—Li1133.28 (12)
N1—C1—H1A121.9N2—Cr1—H199.1 (10)
Li1—C1—H1A121.9N1—Cr1—H1173.4 (10)
C1—C2—N2116.8 (2)Cr1i—Cr1—H141.0 (10)
C1—C2—Li171.9 (2)Li1—Cr1—H1120.8 (10)
N2—C2—Li173.20 (19)C1—N1—C3116.5 (2)
C1—C2—H2A121.6C1—N1—Cr1113.00 (15)
N2—C2—H2A121.6C3—N1—Cr1124.17 (15)
Li1—C2—H2A121.6C1—N1—Li169.5 (2)
C8—C3—C4119.8 (2)C3—N1—Li1141.9 (2)
C8—C3—N1119.9 (2)Cr1—N1—Li179.28 (14)
C4—C3—N1120.3 (2)C2—N2—C15115.3 (2)
C5—C4—C3118.6 (3)C2—N2—Cr1113.15 (15)
C5—C4—C12120.4 (3)C15—N2—Cr1125.94 (16)
C3—C4—C12120.9 (2)C2—N2—Li169.51 (19)
C6—C5—C4121.8 (3)C15—N2—Li1139.9 (2)
C6—C5—H5A119.1Cr1—N2—Li179.38 (15)
C4—C5—H5A119.1O1—Li1—C2147.1 (3)
C7—C6—C5119.3 (3)O1—Li1—C1153.6 (3)
C7—C6—H6A120.3C2—Li1—C136.26 (13)
C5—C6—H6A120.3O1—Li1—N1146.7 (3)
C6—C7—C8121.8 (3)C2—Li1—N164.56 (16)
C6—C7—H7A119.1C1—Li1—N137.46 (12)
C8—C7—H7A119.1O1—Li1—N2136.9 (3)
C7—C8—C3118.6 (2)C2—Li1—N237.29 (12)
C7—C8—C9118.8 (2)C1—Li1—N264.60 (16)
C3—C8—C9122.6 (2)N1—Li1—N271.92 (16)
C10—C9—C8112.3 (3)O1—Li1—Cr1132.7 (3)
C10—C9—C11110.1 (3)C2—Li1—Cr171.45 (14)
C8—C9—C11112.2 (3)C1—Li1—Cr171.71 (14)
C10—C9—H9A107.3N1—Li1—Cr147.53 (10)
C8—C9—H9A107.3N2—Li1—Cr147.31 (10)
C11—C9—H9A107.3C28B—O1—C29A70.4 (6)
C9—C10—H10A109.5C29A—O1—C28A98.4 (5)
C9—C10—H10B109.5C28B—O1—C29B101.9 (7)
H10A—C10—H10B109.5C28A—O1—C29B130.0 (6)
C9—C10—H10C109.5C28B—O1—Li1143.1 (5)
H10A—C10—H10C109.5C29A—O1—Li1146.2 (4)
H10B—C10—H10C109.5C28A—O1—Li1114.7 (4)
C9—C11—H11A109.5C29B—O1—Li1114.1 (5)
C9—C11—H11B109.5C28A—C27A—H27A109.5
H11A—C11—H11B109.5C28A—C27A—H27B109.5
C9—C11—H11C109.5H27A—C27A—H27B109.5
H11A—C11—H11C109.5C28A—C27A—H27C109.5
H11B—C11—H11C109.5H27A—C27A—H27C109.5
C4—C12—C14114.3 (3)H27B—C27A—H27C109.5
C4—C12—C13109.5 (3)O1—C28A—C27A115.7 (6)
C14—C12—C13111.8 (3)O1—C28A—H28A108.4
C4—C12—H12A107.0C27A—C28A—H28A108.4
C14—C12—H12A107.0O1—C28A—H28B108.4
C13—C12—H12A107.0C27A—C28A—H28B108.4
C12—C13—H13A109.5H28A—C28A—H28B107.4
C12—C13—H13B109.5O1—C29A—C30A92.9 (5)
H13A—C13—H13B109.5O1—C29A—H29A113.1
C12—C13—H13C109.5C30A—C29A—H29A113.1
H13A—C13—H13C109.5O1—C29A—H29B113.1
H13B—C13—H13C109.5C30A—C29A—H29B113.1
C12—C14—H14A109.5H29A—C29A—H29B110.5
C12—C14—H14B109.5C29A—C30A—H30A109.5
H14A—C14—H14B109.5C29A—C30A—H30B109.5
C12—C14—H14C109.5H30A—C30A—H30B109.5
H14A—C14—H14C109.5C29A—C30A—H30C109.5
H14B—C14—H14C109.5H30A—C30A—H30C109.5
C20—C15—C16120.0 (2)H30B—C30A—H30C109.5
C20—C15—N2120.7 (2)C28B—C27B—H27D109.5
C16—C15—N2119.3 (2)C28B—C27B—H27E109.5
C17—C16—C15118.8 (3)H27D—C27B—H27E109.5
C17—C16—C24119.0 (3)C28B—C27B—H27F109.5
C15—C16—C24122.1 (2)H27D—C27B—H27F109.5
C18—C17—C16121.2 (3)H27E—C27B—H27F109.5
C18—C17—H17A119.4O1—C28B—C27B88.8 (6)
C16—C17—H17A119.4O1—C28B—H28C113.8
C19—C18—C17119.6 (3)C27B—C28B—H28C113.8
C19—C18—H18A120.2O1—C28B—H28D113.8
C17—C18—H18A120.2C27B—C28B—H28D113.8
C18—C19—C20121.4 (3)H28C—C28B—H28D111.1
C18—C19—H19A119.3O1—C29B—C30B121.4 (7)
C20—C19—H19A119.3O1—C29B—H29C107.0
C19—C20—C15118.9 (3)C30B—C29B—H29C107.0
C19—C20—C21118.7 (3)O1—C29B—H29D107.0
C15—C20—C21122.5 (2)C30B—C29B—H29D107.0
C20—C21—C22112.8 (3)H29C—C29B—H29D106.7
C20—C21—C23111.6 (3)C29B—C30B—H30D109.5
C22—C21—C23110.7 (3)C29B—C30B—H30E109.5
C20—C21—H21A107.2H30D—C30B—H30E109.5
C22—C21—H21A107.2C29B—C30B—H30F109.5
C23—C21—H21A107.2H30D—C30B—H30F109.5
C21—C22—H22A109.5H30E—C30B—H30F109.5
C21—C22—H22B109.5C32—C31—H31A109.5
H22A—C22—H22B109.5C32—C31—H31B109.5
C21—C22—H22C109.5H31A—C31—H31B109.5
H22A—C22—H22C109.5C32—C31—H31C109.5
H22B—C22—H22C109.5H31A—C31—H31C109.5
C21—C23—H23A109.5H31B—C31—H31C109.5
C21—C23—H23B109.5C31—C32—C33111.6 (17)
H23A—C23—H23B109.5C31—C32—H32A109.3
C21—C23—H23C109.5C33—C32—H32A109.3
H23A—C23—H23C109.5C31—C32—H32B109.3
H23B—C23—H23C109.5C33—C32—H32B109.3
C26—C24—C25109.6 (4)H32A—C32—H32B108.0
C26—C24—C16110.0 (3)C32—C33—C34128.5 (18)
C25—C24—C16113.8 (3)C32—C33—H33A105.2
C26—C24—H24A107.7C34—C33—H33A105.2
C25—C24—H24A107.7C32—C33—H33B105.2
C16—C24—H24A107.7C34—C33—H33B105.2
C24—C25—H25A109.5H33A—C33—H33B105.9
C24—C25—H25B109.5C35—C34—C33111.6 (16)
H25A—C25—H25B109.5C35—C34—H34A109.3
C24—C25—H25C109.5C33—C34—H34A109.3
H25A—C25—H25C109.5C35—C34—H34B109.3
H25B—C25—H25C109.5C33—C34—H34B109.3
C24—C26—H26A109.5H34A—C34—H34B108.0
C24—C26—H26B109.5C34—C35—H35A109.5
H26A—C26—H26B109.5C34—C35—H35B109.5
C24—C26—H26C109.5H35A—C35—H35B109.5
H26A—C26—H26C109.5C34—C35—H35C109.5
H26B—C26—H26C109.5H35A—C35—H35C109.5
N2—Cr1—N179.44 (8)H35B—C35—H35C109.5
N2—Cr1—Cr1i139.85 (6)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cr2Li2(C26H36N2)2H2(C4H10O)2]·0.5C5H12
Mr1057.34
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)12.2577 (5), 12.3525 (6), 12.9708 (6)
α, β, γ (°)67.827 (4), 75.039 (3), 66.773 (3)
V3)1657.46 (14)
Z1
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.50 × 0.40 × 0.35
Data collection
DiffractometerSTOE IPDS II
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.809, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
23828, 6500, 4770
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.151, 0.99
No. of reflections6500
No. of parameters337
No. of restraints53
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.59

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

References

First citationAlbahily, K., Al-Baldawi, D., Gambarotta, S., Koc, E. & Duchateau, R. (2008). Organometallics, 27, 5943–5947.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaker, R. J., Jones, C. & Kloth, M. (2005). Dalton Trans. pp. 2106–2110.  Web of Science CSD CrossRef Google Scholar
First citationFryzuk, M. D., Leznoff, D. B., Rettig, S. J. & Thompson, R. C. (1994). Inorg. Chem. 33, 5528–5534.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacAdams, L. A., Buffone, G. P., Incarvito, C. D., Golen, J. A., Rheingold, A. L. & Theopold, K. H. (2003). Chem. Commun. pp. 1164–1165.  Web of Science CSD CrossRef Google Scholar
First citationOverett, M. J., Blann, K., Bollmann, A., Dixon, J. T., Haasbroek, D., Killian, E., Maumela, H., McGuinness, D. S. & Morgan, D. H. J. (2005). J. Am. Chem. Soc. 127, 10723–10730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeitz, S., Peulecke, N., Müller, B. H., Spannenberg, A. & Rosenthal, U. (2009). Acta Cryst. E65, m1574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRozenel, S. S., Chomitz, W. A. & Arnold, J. (2009). Organometallics, 28, 6243–6253.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m296-m297
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds