organic compounds
Methyl 4-(2,7-dimethoxy-1-naphthoyl)benzoate
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp
In the title compound, C21H18O5, the dihedral angle between the naphthalene ring system and the benzene ring is 86.65 (6)°. The bridging carbonyl C—C(=O)—C plane makes dihedral angles of 83.57 (7) and 20.21 (8)°, respectively, with the naphthalene ring system and the benzene ring. The ester O—C=O plane and the benzene ring are almost coplanar, making a dihedral angle of 3.81 (18)°. The two methoxy groups lie essentially in the naphthalene ring plane [C—O—C—C torsion angles = 2.1 (2) and −1.44 (19)°]. In the a centrosymmetric dimer is formed through C—H⋯O bonds connecting the 7-methoxy group and the carbonyl O atom of the ester group. The dimers are further linked by C—H⋯O hydrogen bonds between the methoxycarbonyl group and the bridging carbonyl O atom.
Related literature
For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Mitsui, Nakaema, Noguchi et al. (2008); Mitsui, Nakaema, Noguchi & Yonezawa (2008); Mitsui et al. (2009); Watanabe et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053681000382X/is2518sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681000382X/is2518Isup2.hkl
The title compound was prepared by regioselective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene with 4-(bromomethyl)benzoyl chloride followed by transformation of bromomethyl group. Single crystals suitable for X-ray diffraction were obtained by recrystallization from ethanol.
Spectroscopic Data: 1H NMR (300 MHz, CDCl3): δ 3.73 (3H, s), 3.76 (3H, s), 3.94 (3H, s), 6.83 (1H, s), 7.01 (1H, d, J = 9.0 Hz), 7.14 (1H, d, J = 9.0 Hz), 7.71 (1H, d, J = 9.0 Hz), 7.87–7.90 (3H, m), 8.07 (2H, d, J = 8.1 Hz); 13C NMR (75.0 MHz, CDCl3): δ 52.4, 55.2, 56.2, 101.9, 110.1, 117.2, 121.0, 124.4, 129.2, 129.7, 129.8, 131.6, 133.0, 133.9, 141.6, 155.4, 159.1, 166.4, 197.5; IR (KBr): 1674, 1625, 1511; m.p. = 154.6–157.1 °C; Anal. Calcd for C21H18O5: C 71.99, H 5.18%. Found: C 72.05, H 5.25%.
All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C21H18O5 | Z = 2 |
Mr = 350.35 | F(000) = 368 |
Triclinic, P1 | Dx = 1.373 Mg m−3 |
Hall symbol: -P 1 | Melting point = 427.6–430.1 K |
a = 7.7714 (2) Å | Cu Kα radiation, λ = 1.54187 Å |
b = 9.5195 (3) Å | Cell parameters from 10631 reflections |
c = 12.2737 (4) Å | θ = 3.7–68.2° |
α = 97.525 (2)° | µ = 0.81 mm−1 |
β = 97.919 (2)° | T = 193 K |
γ = 106.630 (2)° | Block, yellow |
V = 847.73 (5) Å3 | 0.40 × 0.20 × 0.05 mm |
Rigaku R-AXIS RAPID diffractometer | 3066 independent reflections |
Radiation source: rotating anode | 2571 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 10.00 pixels mm-1 | θmax = 68.2°, θmin = 3.7° |
ω scans | h = −9→9 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −11→11 |
Tmin = 0.816, Tmax = 0.960 | l = −14→14 |
15482 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.0674P)2 + 0.1365P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3066 reflections | Δρmax = 0.24 e Å−3 |
239 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0056 (9) |
C21H18O5 | γ = 106.630 (2)° |
Mr = 350.35 | V = 847.73 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7714 (2) Å | Cu Kα radiation |
b = 9.5195 (3) Å | µ = 0.81 mm−1 |
c = 12.2737 (4) Å | T = 193 K |
α = 97.525 (2)° | 0.40 × 0.20 × 0.05 mm |
β = 97.919 (2)° |
Rigaku R-AXIS RAPID diffractometer | 3066 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2571 reflections with I > 2σ(I) |
Tmin = 0.816, Tmax = 0.960 | Rint = 0.029 |
15482 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.24 e Å−3 |
3066 reflections | Δρmin = −0.20 e Å−3 |
239 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.18952 (13) | 0.98013 (12) | 0.33288 (8) | 0.0454 (3) | |
O2 | 0.76893 (17) | 0.46407 (13) | 0.65183 (9) | 0.0570 (3) | |
O3 | 0.59054 (13) | 0.32936 (11) | 0.49174 (8) | 0.0423 (3) | |
O4 | 0.76938 (14) | 1.00486 (13) | 0.26247 (8) | 0.0470 (3) | |
O5 | 1.29922 (14) | 0.59184 (12) | 0.00036 (9) | 0.0479 (3) | |
C1 | 0.94439 (17) | 0.87694 (14) | 0.17801 (11) | 0.0320 (3) | |
C2 | 0.80587 (18) | 0.93926 (15) | 0.16515 (12) | 0.0363 (3) | |
C3 | 0.7095 (2) | 0.93512 (17) | 0.05840 (12) | 0.0420 (4) | |
H3 | 0.6144 | 0.9794 | 0.0502 | 0.050* | |
C4 | 0.7548 (2) | 0.86624 (17) | −0.03362 (12) | 0.0431 (4) | |
H4 | 0.6898 | 0.8635 | −0.1058 | 0.052* | |
C5 | 0.89479 (18) | 0.79937 (15) | −0.02438 (11) | 0.0351 (3) | |
C6 | 0.9413 (2) | 0.72579 (16) | −0.11830 (12) | 0.0426 (4) | |
H6 | 0.8780 | 0.7228 | −0.1910 | 0.051* | |
C7 | 1.0735 (2) | 0.65969 (16) | −0.10717 (12) | 0.0439 (4) | |
H7 | 1.1012 | 0.6098 | −0.1715 | 0.053* | |
C8 | 1.17077 (19) | 0.66469 (15) | 0.00021 (12) | 0.0375 (3) | |
C9 | 1.13305 (18) | 0.73542 (15) | 0.09430 (11) | 0.0342 (3) | |
H9 | 1.1997 | 0.7383 | 0.1659 | 0.041* | |
C10 | 0.99256 (17) | 0.80497 (14) | 0.08386 (11) | 0.0326 (3) | |
C11 | 1.04313 (18) | 0.88600 (15) | 0.29455 (11) | 0.0334 (3) | |
C12 | 0.95508 (17) | 0.77299 (15) | 0.36010 (11) | 0.0328 (3) | |
C13 | 1.00721 (19) | 0.79937 (16) | 0.47627 (11) | 0.0370 (3) | |
H13 | 1.0970 | 0.8899 | 0.5134 | 0.044* | |
C14 | 0.92869 (19) | 0.69435 (16) | 0.53730 (11) | 0.0391 (3) | |
H14 | 0.9634 | 0.7133 | 0.6164 | 0.047* | |
C15 | 0.79879 (18) | 0.56076 (16) | 0.48323 (11) | 0.0352 (3) | |
C16 | 0.74621 (19) | 0.53386 (16) | 0.36727 (11) | 0.0370 (3) | |
H16 | 0.6573 | 0.4429 | 0.3301 | 0.044* | |
C17 | 0.82356 (18) | 0.63965 (15) | 0.30640 (11) | 0.0358 (3) | |
H17 | 0.7869 | 0.6214 | 0.2274 | 0.043* | |
C18 | 0.6225 (2) | 1.0673 (2) | 0.25460 (15) | 0.0519 (4) | |
H18A | 0.6111 | 1.1086 | 0.3297 | 0.062* | |
H18B | 0.5085 | 0.9895 | 0.2185 | 0.062* | |
H18C | 0.6472 | 1.1467 | 0.2101 | 0.062* | |
C19 | 1.4033 (2) | 0.59325 (18) | 0.10659 (13) | 0.0460 (4) | |
H19A | 1.4865 | 0.5344 | 0.0961 | 0.055* | |
H19B | 1.3203 | 0.5502 | 0.1553 | 0.055* | |
H19C | 1.4742 | 0.6961 | 0.1411 | 0.055* | |
C20 | 0.72025 (19) | 0.44915 (16) | 0.55271 (11) | 0.0381 (3) | |
C21 | 0.5110 (2) | 0.21403 (17) | 0.55273 (13) | 0.0466 (4) | |
H21A | 0.4122 | 0.1347 | 0.5020 | 0.056* | |
H21B | 0.4621 | 0.2568 | 0.6138 | 0.056* | |
H21C | 0.6051 | 0.1726 | 0.5835 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0398 (6) | 0.0492 (6) | 0.0360 (5) | 0.0012 (5) | 0.0004 (4) | 0.0041 (5) |
O2 | 0.0752 (8) | 0.0539 (7) | 0.0302 (6) | 0.0028 (6) | 0.0075 (5) | 0.0079 (5) |
O3 | 0.0465 (6) | 0.0410 (6) | 0.0352 (5) | 0.0071 (4) | 0.0065 (4) | 0.0075 (4) |
O4 | 0.0489 (6) | 0.0594 (7) | 0.0394 (6) | 0.0285 (5) | 0.0095 (5) | 0.0043 (5) |
O5 | 0.0547 (6) | 0.0520 (6) | 0.0406 (6) | 0.0230 (5) | 0.0140 (5) | 0.0008 (5) |
C1 | 0.0331 (7) | 0.0312 (7) | 0.0297 (7) | 0.0068 (5) | 0.0052 (5) | 0.0061 (5) |
C2 | 0.0357 (7) | 0.0351 (7) | 0.0363 (7) | 0.0084 (6) | 0.0066 (6) | 0.0063 (6) |
C3 | 0.0391 (8) | 0.0460 (8) | 0.0414 (8) | 0.0157 (6) | 0.0006 (6) | 0.0116 (7) |
C4 | 0.0450 (8) | 0.0437 (8) | 0.0349 (7) | 0.0074 (6) | −0.0021 (6) | 0.0113 (6) |
C5 | 0.0393 (7) | 0.0317 (7) | 0.0285 (7) | 0.0033 (6) | 0.0031 (5) | 0.0059 (5) |
C6 | 0.0530 (9) | 0.0391 (8) | 0.0283 (7) | 0.0047 (7) | 0.0041 (6) | 0.0054 (6) |
C7 | 0.0572 (9) | 0.0394 (8) | 0.0313 (7) | 0.0098 (7) | 0.0117 (6) | 0.0017 (6) |
C8 | 0.0407 (7) | 0.0325 (7) | 0.0374 (7) | 0.0077 (6) | 0.0112 (6) | 0.0035 (6) |
C9 | 0.0383 (7) | 0.0328 (7) | 0.0292 (7) | 0.0077 (6) | 0.0065 (5) | 0.0048 (5) |
C10 | 0.0355 (7) | 0.0289 (7) | 0.0290 (7) | 0.0030 (5) | 0.0055 (5) | 0.0058 (5) |
C11 | 0.0361 (7) | 0.0349 (7) | 0.0290 (7) | 0.0130 (6) | 0.0059 (5) | 0.0006 (5) |
C12 | 0.0338 (7) | 0.0366 (7) | 0.0287 (7) | 0.0139 (6) | 0.0047 (5) | 0.0028 (5) |
C13 | 0.0401 (7) | 0.0375 (7) | 0.0290 (7) | 0.0096 (6) | 0.0020 (5) | 0.0005 (6) |
C14 | 0.0452 (8) | 0.0445 (8) | 0.0251 (6) | 0.0127 (6) | 0.0039 (5) | 0.0027 (6) |
C15 | 0.0388 (7) | 0.0392 (8) | 0.0304 (7) | 0.0164 (6) | 0.0073 (5) | 0.0057 (6) |
C16 | 0.0414 (7) | 0.0345 (7) | 0.0317 (7) | 0.0099 (6) | 0.0024 (6) | 0.0023 (6) |
C17 | 0.0414 (7) | 0.0387 (8) | 0.0254 (6) | 0.0129 (6) | 0.0020 (5) | 0.0027 (6) |
C18 | 0.0459 (9) | 0.0587 (10) | 0.0587 (10) | 0.0274 (8) | 0.0132 (7) | 0.0078 (8) |
C19 | 0.0449 (8) | 0.0487 (9) | 0.0463 (9) | 0.0180 (7) | 0.0103 (6) | 0.0051 (7) |
C20 | 0.0428 (8) | 0.0407 (8) | 0.0310 (7) | 0.0140 (6) | 0.0078 (6) | 0.0041 (6) |
C21 | 0.0498 (9) | 0.0439 (9) | 0.0462 (9) | 0.0121 (7) | 0.0118 (7) | 0.0109 (7) |
O1—C11 | 1.2154 (16) | C9—C10 | 1.4298 (19) |
O2—C20 | 1.2002 (17) | C9—H9 | 0.9500 |
O3—C20 | 1.3368 (17) | C11—C12 | 1.4933 (18) |
O3—C21 | 1.4499 (17) | C12—C17 | 1.3939 (19) |
O4—C2 | 1.3772 (17) | C12—C13 | 1.3960 (18) |
O4—C18 | 1.4277 (18) | C13—C14 | 1.381 (2) |
O5—C8 | 1.3687 (17) | C13—H13 | 0.9500 |
O5—C19 | 1.4327 (18) | C14—C15 | 1.391 (2) |
C1—C2 | 1.3708 (19) | C14—H14 | 0.9500 |
C1—C10 | 1.4154 (19) | C15—C16 | 1.3937 (19) |
C1—C11 | 1.5065 (18) | C15—C20 | 1.496 (2) |
C2—C3 | 1.407 (2) | C16—C17 | 1.3813 (19) |
C3—C4 | 1.370 (2) | C16—H16 | 0.9500 |
C3—H3 | 0.9500 | C17—H17 | 0.9500 |
C4—C5 | 1.408 (2) | C18—H18A | 0.9800 |
C4—H4 | 0.9500 | C18—H18B | 0.9800 |
C5—C6 | 1.413 (2) | C18—H18C | 0.9800 |
C5—C10 | 1.4231 (18) | C19—H19A | 0.9800 |
C6—C7 | 1.351 (2) | C19—H19B | 0.9800 |
C6—H6 | 0.9500 | C19—H19C | 0.9800 |
C7—C8 | 1.414 (2) | C21—H21A | 0.9800 |
C7—H7 | 0.9500 | C21—H21B | 0.9800 |
C8—C9 | 1.3695 (19) | C21—H21C | 0.9800 |
C20—O3—C21 | 115.70 (11) | C13—C12—C11 | 119.85 (12) |
C2—O4—C18 | 118.25 (12) | C14—C13—C12 | 120.21 (13) |
C8—O5—C19 | 117.18 (11) | C14—C13—H13 | 119.9 |
C2—C1—C10 | 120.65 (12) | C12—C13—H13 | 119.9 |
C2—C1—C11 | 118.48 (12) | C13—C14—C15 | 120.17 (12) |
C10—C1—C11 | 120.86 (12) | C13—C14—H14 | 119.9 |
C1—C2—O4 | 115.70 (12) | C15—C14—H14 | 119.9 |
C1—C2—C3 | 121.08 (14) | C14—C15—C16 | 119.85 (13) |
O4—C2—C3 | 123.22 (13) | C14—C15—C20 | 118.23 (12) |
C4—C3—C2 | 118.99 (14) | C16—C15—C20 | 121.91 (12) |
C4—C3—H3 | 120.5 | C17—C16—C15 | 119.91 (13) |
C2—C3—H3 | 120.5 | C17—C16—H16 | 120.0 |
C3—C4—C5 | 121.91 (13) | C15—C16—H16 | 120.0 |
C3—C4—H4 | 119.0 | C16—C17—C12 | 120.43 (12) |
C5—C4—H4 | 119.0 | C16—C17—H17 | 119.8 |
C4—C5—C6 | 122.64 (13) | C12—C17—H17 | 119.8 |
C4—C5—C10 | 118.76 (13) | O4—C18—H18A | 109.5 |
C6—C5—C10 | 118.61 (13) | O4—C18—H18B | 109.5 |
C7—C6—C5 | 121.56 (13) | H18A—C18—H18B | 109.5 |
C7—C6—H6 | 119.2 | O4—C18—H18C | 109.5 |
C5—C6—H6 | 119.2 | H18A—C18—H18C | 109.5 |
C6—C7—C8 | 120.04 (14) | H18B—C18—H18C | 109.5 |
C6—C7—H7 | 120.0 | O5—C19—H19A | 109.5 |
C8—C7—H7 | 120.0 | O5—C19—H19B | 109.5 |
O5—C8—C9 | 124.51 (13) | H19A—C19—H19B | 109.5 |
O5—C8—C7 | 114.37 (12) | O5—C19—H19C | 109.5 |
C9—C8—C7 | 121.10 (14) | H19A—C19—H19C | 109.5 |
C8—C9—C10 | 119.48 (13) | H19B—C19—H19C | 109.5 |
C8—C9—H9 | 120.3 | O2—C20—O3 | 123.51 (13) |
C10—C9—H9 | 120.3 | O2—C20—C15 | 124.10 (13) |
C1—C10—C5 | 118.60 (13) | O3—C20—C15 | 112.39 (11) |
C1—C10—C9 | 122.18 (12) | O3—C21—H21A | 109.5 |
C5—C10—C9 | 119.20 (12) | O3—C21—H21B | 109.5 |
O1—C11—C12 | 121.49 (12) | H21A—C21—H21B | 109.5 |
O1—C11—C1 | 121.30 (12) | O3—C21—H21C | 109.5 |
C12—C11—C1 | 117.20 (11) | H21A—C21—H21C | 109.5 |
C17—C12—C13 | 119.41 (12) | H21B—C21—H21C | 109.5 |
C17—C12—C11 | 120.72 (11) | ||
C10—C1—C2—O4 | 179.30 (11) | C6—C5—C10—C9 | −0.47 (18) |
C11—C1—C2—O4 | −0.32 (18) | C8—C9—C10—C1 | 178.58 (11) |
C10—C1—C2—C3 | −0.8 (2) | C8—C9—C10—C5 | −0.08 (18) |
C11—C1—C2—C3 | 179.60 (12) | C2—C1—C11—O1 | −98.98 (16) |
C18—O4—C2—C1 | −177.96 (12) | C10—C1—C11—O1 | 81.40 (17) |
C18—O4—C2—C3 | 2.1 (2) | C2—C1—C11—C12 | 82.03 (15) |
C1—C2—C3—C4 | 0.6 (2) | C10—C1—C11—C12 | −97.59 (14) |
O4—C2—C3—C4 | −179.50 (13) | O1—C11—C12—C17 | −158.78 (14) |
C2—C3—C4—C5 | 0.1 (2) | C1—C11—C12—C17 | 20.22 (18) |
C3—C4—C5—C6 | 178.96 (13) | O1—C11—C12—C13 | 19.9 (2) |
C3—C4—C5—C10 | −0.5 (2) | C1—C11—C12—C13 | −161.07 (12) |
C4—C5—C6—C7 | −178.55 (13) | C17—C12—C13—C14 | −0.2 (2) |
C10—C5—C6—C7 | 0.9 (2) | C11—C12—C13—C14 | −178.91 (12) |
C5—C6—C7—C8 | −0.8 (2) | C12—C13—C14—C15 | 0.8 (2) |
C19—O5—C8—C9 | −1.44 (19) | C13—C14—C15—C16 | −0.8 (2) |
C19—O5—C8—C7 | 179.73 (12) | C13—C14—C15—C20 | 178.81 (13) |
C6—C7—C8—O5 | 179.11 (12) | C14—C15—C16—C17 | 0.2 (2) |
C6—C7—C8—C9 | 0.2 (2) | C20—C15—C16—C17 | −179.44 (13) |
O5—C8—C9—C10 | −178.55 (11) | C15—C16—C17—C12 | 0.5 (2) |
C7—C8—C9—C10 | 0.2 (2) | C13—C12—C17—C16 | −0.5 (2) |
C2—C1—C10—C5 | 0.31 (19) | C11—C12—C17—C16 | 178.25 (12) |
C11—C1—C10—C5 | 179.92 (11) | C21—O3—C20—O2 | −0.9 (2) |
C2—C1—C10—C9 | −178.35 (12) | C21—O3—C20—C15 | 178.40 (12) |
C11—C1—C10—C9 | 1.26 (19) | C14—C15—C20—O2 | −4.0 (2) |
C4—C5—C10—C1 | 0.33 (18) | C16—C15—C20—O2 | 175.62 (15) |
C6—C5—C10—C1 | −179.18 (11) | C14—C15—C20—O3 | 176.73 (12) |
C4—C5—C10—C9 | 179.04 (11) | C16—C15—C20—O3 | −3.64 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19B···O2i | 0.98 | 2.57 | 3.461 (2) | 152 |
C21—H21A···O1ii | 0.98 | 2.49 | 3.4446 (19) | 163 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C21H18O5 |
Mr | 350.35 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 193 |
a, b, c (Å) | 7.7714 (2), 9.5195 (3), 12.2737 (4) |
α, β, γ (°) | 97.525 (2), 97.919 (2), 106.630 (2) |
V (Å3) | 847.73 (5) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.81 |
Crystal size (mm) | 0.40 × 0.20 × 0.05 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.816, 0.960 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15482, 3066, 2571 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.117, 1.08 |
No. of reflections | 3066 |
No. of parameters | 239 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.20 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19B···O2i | 0.98 | 2.57 | 3.461 (2) | 152 |
C21—H21A···O1ii | 0.98 | 2.49 | 3.4446 (19) | 163 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1, y−1, z. |
Acknowledgements
The authors would express their gratitude to Professor Keiichi Noguchi for technical advice. This work was partially supported by the Iketani Science and Technology Foundation, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009). The aroyl groups at 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but a little tiltedly toward exo sides against the naphthalene ring.
Recently, we have reported the X-ray crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by bis(4-bromobenzoyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010). Furthermore, we have also clarified the crystal structures of 1-monoaroylated naphthalenes. 1-(4-Chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008) and (4-chlorobenzoyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009) have essentially same non-coplanar structure as 1,8-diaroylated naphthalenes, and (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone has substantially coplanar structure by intramolecular hydrogen bonding (Mitsui, Nakaema, Noguchi & Yonezawa, 2008). As a part of the course of our continuous study on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, 1-monoaroylnaphthalene bearing ester group, is discussed in this report.
An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is displayed in Fig. 1. In the molecule of (I), the interplanar angle between the benzene ring (C12—C17) and the naphthalene ring (C1—C10) is 86.65 (6)°. The dihedral angle between the ketonic C=O plane and the naphthalene ring is 83.57 (7)° [C10—C1—C11—O1 torsion angle = 84.41 (18)°]. The dihedral angle between the ketonic C=O plane and the benzene ring is 20.21 (8)° [C17—C12—C11—O1 torsion angle = 19.9 (2)°]. The torsion angle between the ketonic carbonyl group and benzene ring [C17—C12—C11—O1 torsion angle = 19.9 (2)°] is larger than that between the carbonyl moiety of ester group and the benzene ring [C14—C15—C20—O2 torsion angle = -4.0 (2)°]. Two methoxy groups lie essentially on the naphthalene ring plane. The methyl group on O4, which is a part of methoxy group adjacent to the aroyl group, is oriented to the exo site of the molecule and that on O5 is directed to endo site. In the crystal packing, molecules are aligned forming dimeric pairs. Each pair has two intermolecular C—H···O bonds therein: equivalent hydrogen bonds between a H atom of 7-methoxy group (H19B) and the O atom of carbonyl moiety in ester group (O2). There is another type of hydrogen bond between dimeric pairs: hydrogen bonds between a H atom of the methyl moiety in ester group (H21A) and the O atom of ketonic carbonyl group (O1) (Fig. 2 and Table 1).