organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-(2,7-dimeth­­oxy-1-naphtho­yl)benzoate

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 18 January 2010; accepted 31 January 2010; online 6 February 2010)

In the title compound, C21H18O5, the dihedral angle between the naphthalene ring system and the benzene ring is 86.65 (6)°. The bridging carbonyl C—C(=O)—C plane makes dihedral angles of 83.57 (7) and 20.21 (8)°, respectively, with the naphthalene ring system and the benzene ring. The ester O—C=O plane and the benzene ring are almost coplanar, making a dihedral angle of 3.81 (18)°. The two meth­oxy groups lie essentially in the naphthalene ring plane [C—O—C—C torsion angles = 2.1 (2) and −1.44 (19)°]. In the crystal structure, a centrosymmetric dimer is formed through C—H⋯O bonds connecting the 7-meth­oxy group and the carbonyl O atom of the ester group. The dimers are further linked by C—H⋯O hydrogen bonds between the methoxy­carbonyl group and the bridging carbonyl O atom.

Related literature

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For the structures of closely related compounds, see: Mitsui, Nakaema, Noguchi et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.]); Mitsui, Nakaema, Noguchi & Yonezawa (2008[Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.]); Mitsui et al. (2009[Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.]); Watanabe et al. (2010[Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18O5

  • Mr = 350.35

  • Triclinic, [P \overline 1]

  • a = 7.7714 (2) Å

  • b = 9.5195 (3) Å

  • c = 12.2737 (4) Å

  • α = 97.525 (2)°

  • β = 97.919 (2)°

  • γ = 106.630 (2)°

  • V = 847.73 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 193 K

  • 0.40 × 0.20 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.816, Tmax = 0.960

  • 15482 measured reflections

  • 3066 independent reflections

  • 2571 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.117

  • S = 1.08

  • 3066 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19B⋯O2i 0.98 2.57 3.461 (2) 152
C21—H21A⋯O1ii 0.98 2.49 3.4446 (19) 163
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y-1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009). The aroyl groups at 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but a little tiltedly toward exo sides against the naphthalene ring.

Recently, we have reported the X-ray crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by bis(4-bromobenzoyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010). Furthermore, we have also clarified the crystal structures of 1-monoaroylated naphthalenes. 1-(4-Chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008) and (4-chlorobenzoyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009) have essentially same non-coplanar structure as 1,8-diaroylated naphthalenes, and (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone has substantially coplanar structure by intramolecular hydrogen bonding (Mitsui, Nakaema, Noguchi & Yonezawa, 2008). As a part of the course of our continuous study on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, 1-monoaroylnaphthalene bearing ester group, is discussed in this report.

An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is displayed in Fig. 1. In the molecule of (I), the interplanar angle between the benzene ring (C12—C17) and the naphthalene ring (C1—C10) is 86.65 (6)°. The dihedral angle between the ketonic C=O plane and the naphthalene ring is 83.57 (7)° [C10—C1—C11—O1 torsion angle = 84.41 (18)°]. The dihedral angle between the ketonic C=O plane and the benzene ring is 20.21 (8)° [C17—C12—C11—O1 torsion angle = 19.9 (2)°]. The torsion angle between the ketonic carbonyl group and benzene ring [C17—C12—C11—O1 torsion angle = 19.9 (2)°] is larger than that between the carbonyl moiety of ester group and the benzene ring [C14—C15—C20—O2 torsion angle = -4.0 (2)°]. Two methoxy groups lie essentially on the naphthalene ring plane. The methyl group on O4, which is a part of methoxy group adjacent to the aroyl group, is oriented to the exo site of the molecule and that on O5 is directed to endo site. In the crystal packing, molecules are aligned forming dimeric pairs. Each pair has two intermolecular C—H···O bonds therein: equivalent hydrogen bonds between a H atom of 7-methoxy group (H19B) and the O atom of carbonyl moiety in ester group (O2). There is another type of hydrogen bond between dimeric pairs: hydrogen bonds between a H atom of the methyl moiety in ester group (H21A) and the O atom of ketonic carbonyl group (O1) (Fig. 2 and Table 1).

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Mitsui, Nakaema, Noguchi et al. (2008); Mitsui, Nakaema, Noguchi & Yonezawa (2008); Mitsui et al. (2009); Watanabe et al. (2010).

Experimental top

The title compound was prepared by regioselective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene with 4-(bromomethyl)benzoyl chloride followed by transformation of bromomethyl group. Single crystals suitable for X-ray diffraction were obtained by recrystallization from ethanol.

Spectroscopic Data: 1H NMR (300 MHz, CDCl3): δ 3.73 (3H, s), 3.76 (3H, s), 3.94 (3H, s), 6.83 (1H, s), 7.01 (1H, d, J = 9.0 Hz), 7.14 (1H, d, J = 9.0 Hz), 7.71 (1H, d, J = 9.0 Hz), 7.87–7.90 (3H, m), 8.07 (2H, d, J = 8.1 Hz); 13C NMR (75.0 MHz, CDCl3): δ 52.4, 55.2, 56.2, 101.9, 110.1, 117.2, 121.0, 124.4, 129.2, 129.7, 129.8, 131.6, 133.0, 133.9, 141.6, 155.4, 159.1, 166.4, 197.5; IR (KBr): 1674, 1625, 1511; m.p. = 154.6–157.1 °C; Anal. Calcd for C21H18O5: C 71.99, H 5.18%. Found: C 72.05, H 5.25%.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial crystal packing diagram of compound (I). The intermolecular C—H···O interactions are shown as dashed lines.
Methyl 4-(2,7-dimethoxy-1-naphthoyl)benzoate top
Crystal data top
C21H18O5Z = 2
Mr = 350.35F(000) = 368
Triclinic, P1Dx = 1.373 Mg m3
Hall symbol: -P 1Melting point = 427.6–430.1 K
a = 7.7714 (2) ÅCu Kα radiation, λ = 1.54187 Å
b = 9.5195 (3) ÅCell parameters from 10631 reflections
c = 12.2737 (4) Åθ = 3.7–68.2°
α = 97.525 (2)°µ = 0.81 mm1
β = 97.919 (2)°T = 193 K
γ = 106.630 (2)°Block, yellow
V = 847.73 (5) Å30.40 × 0.20 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3066 independent reflections
Radiation source: rotating anode2571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 3.7°
ω scansh = 99
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1111
Tmin = 0.816, Tmax = 0.960l = 1414
15482 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.1365P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3066 reflectionsΔρmax = 0.24 e Å3
239 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0056 (9)
Crystal data top
C21H18O5γ = 106.630 (2)°
Mr = 350.35V = 847.73 (5) Å3
Triclinic, P1Z = 2
a = 7.7714 (2) ÅCu Kα radiation
b = 9.5195 (3) ŵ = 0.81 mm1
c = 12.2737 (4) ÅT = 193 K
α = 97.525 (2)°0.40 × 0.20 × 0.05 mm
β = 97.919 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3066 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2571 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.960Rint = 0.029
15482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
3066 reflectionsΔρmin = 0.20 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.18952 (13)0.98013 (12)0.33288 (8)0.0454 (3)
O20.76893 (17)0.46407 (13)0.65183 (9)0.0570 (3)
O30.59054 (13)0.32936 (11)0.49174 (8)0.0423 (3)
O40.76938 (14)1.00486 (13)0.26247 (8)0.0470 (3)
O51.29922 (14)0.59184 (12)0.00036 (9)0.0479 (3)
C10.94439 (17)0.87694 (14)0.17801 (11)0.0320 (3)
C20.80587 (18)0.93926 (15)0.16515 (12)0.0363 (3)
C30.7095 (2)0.93512 (17)0.05840 (12)0.0420 (4)
H30.61440.97940.05020.050*
C40.7548 (2)0.86624 (17)0.03362 (12)0.0431 (4)
H40.68980.86350.10580.052*
C50.89479 (18)0.79937 (15)0.02438 (11)0.0351 (3)
C60.9413 (2)0.72579 (16)0.11830 (12)0.0426 (4)
H60.87800.72280.19100.051*
C71.0735 (2)0.65969 (16)0.10717 (12)0.0439 (4)
H71.10120.60980.17150.053*
C81.17077 (19)0.66469 (15)0.00021 (12)0.0375 (3)
C91.13305 (18)0.73542 (15)0.09430 (11)0.0342 (3)
H91.19970.73830.16590.041*
C100.99256 (17)0.80497 (14)0.08386 (11)0.0326 (3)
C111.04313 (18)0.88600 (15)0.29455 (11)0.0334 (3)
C120.95508 (17)0.77299 (15)0.36010 (11)0.0328 (3)
C131.00721 (19)0.79937 (16)0.47627 (11)0.0370 (3)
H131.09700.88990.51340.044*
C140.92869 (19)0.69435 (16)0.53730 (11)0.0391 (3)
H140.96340.71330.61640.047*
C150.79879 (18)0.56076 (16)0.48323 (11)0.0352 (3)
C160.74621 (19)0.53386 (16)0.36727 (11)0.0370 (3)
H160.65730.44290.33010.044*
C170.82356 (18)0.63965 (15)0.30640 (11)0.0358 (3)
H170.78690.62140.22740.043*
C180.6225 (2)1.0673 (2)0.25460 (15)0.0519 (4)
H18A0.61111.10860.32970.062*
H18B0.50850.98950.21850.062*
H18C0.64721.14670.21010.062*
C191.4033 (2)0.59325 (18)0.10659 (13)0.0460 (4)
H19A1.48650.53440.09610.055*
H19B1.32030.55020.15530.055*
H19C1.47420.69610.14110.055*
C200.72025 (19)0.44915 (16)0.55271 (11)0.0381 (3)
C210.5110 (2)0.21403 (17)0.55273 (13)0.0466 (4)
H21A0.41220.13470.50200.056*
H21B0.46210.25680.61380.056*
H21C0.60510.17260.58350.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0398 (6)0.0492 (6)0.0360 (5)0.0012 (5)0.0004 (4)0.0041 (5)
O20.0752 (8)0.0539 (7)0.0302 (6)0.0028 (6)0.0075 (5)0.0079 (5)
O30.0465 (6)0.0410 (6)0.0352 (5)0.0071 (4)0.0065 (4)0.0075 (4)
O40.0489 (6)0.0594 (7)0.0394 (6)0.0285 (5)0.0095 (5)0.0043 (5)
O50.0547 (6)0.0520 (6)0.0406 (6)0.0230 (5)0.0140 (5)0.0008 (5)
C10.0331 (7)0.0312 (7)0.0297 (7)0.0068 (5)0.0052 (5)0.0061 (5)
C20.0357 (7)0.0351 (7)0.0363 (7)0.0084 (6)0.0066 (6)0.0063 (6)
C30.0391 (8)0.0460 (8)0.0414 (8)0.0157 (6)0.0006 (6)0.0116 (7)
C40.0450 (8)0.0437 (8)0.0349 (7)0.0074 (6)0.0021 (6)0.0113 (6)
C50.0393 (7)0.0317 (7)0.0285 (7)0.0033 (6)0.0031 (5)0.0059 (5)
C60.0530 (9)0.0391 (8)0.0283 (7)0.0047 (7)0.0041 (6)0.0054 (6)
C70.0572 (9)0.0394 (8)0.0313 (7)0.0098 (7)0.0117 (6)0.0017 (6)
C80.0407 (7)0.0325 (7)0.0374 (7)0.0077 (6)0.0112 (6)0.0035 (6)
C90.0383 (7)0.0328 (7)0.0292 (7)0.0077 (6)0.0065 (5)0.0048 (5)
C100.0355 (7)0.0289 (7)0.0290 (7)0.0030 (5)0.0055 (5)0.0058 (5)
C110.0361 (7)0.0349 (7)0.0290 (7)0.0130 (6)0.0059 (5)0.0006 (5)
C120.0338 (7)0.0366 (7)0.0287 (7)0.0139 (6)0.0047 (5)0.0028 (5)
C130.0401 (7)0.0375 (7)0.0290 (7)0.0096 (6)0.0020 (5)0.0005 (6)
C140.0452 (8)0.0445 (8)0.0251 (6)0.0127 (6)0.0039 (5)0.0027 (6)
C150.0388 (7)0.0392 (8)0.0304 (7)0.0164 (6)0.0073 (5)0.0057 (6)
C160.0414 (7)0.0345 (7)0.0317 (7)0.0099 (6)0.0024 (6)0.0023 (6)
C170.0414 (7)0.0387 (8)0.0254 (6)0.0129 (6)0.0020 (5)0.0027 (6)
C180.0459 (9)0.0587 (10)0.0587 (10)0.0274 (8)0.0132 (7)0.0078 (8)
C190.0449 (8)0.0487 (9)0.0463 (9)0.0180 (7)0.0103 (6)0.0051 (7)
C200.0428 (8)0.0407 (8)0.0310 (7)0.0140 (6)0.0078 (6)0.0041 (6)
C210.0498 (9)0.0439 (9)0.0462 (9)0.0121 (7)0.0118 (7)0.0109 (7)
Geometric parameters (Å, º) top
O1—C111.2154 (16)C9—C101.4298 (19)
O2—C201.2002 (17)C9—H90.9500
O3—C201.3368 (17)C11—C121.4933 (18)
O3—C211.4499 (17)C12—C171.3939 (19)
O4—C21.3772 (17)C12—C131.3960 (18)
O4—C181.4277 (18)C13—C141.381 (2)
O5—C81.3687 (17)C13—H130.9500
O5—C191.4327 (18)C14—C151.391 (2)
C1—C21.3708 (19)C14—H140.9500
C1—C101.4154 (19)C15—C161.3937 (19)
C1—C111.5065 (18)C15—C201.496 (2)
C2—C31.407 (2)C16—C171.3813 (19)
C3—C41.370 (2)C16—H160.9500
C3—H30.9500C17—H170.9500
C4—C51.408 (2)C18—H18A0.9800
C4—H40.9500C18—H18B0.9800
C5—C61.413 (2)C18—H18C0.9800
C5—C101.4231 (18)C19—H19A0.9800
C6—C71.351 (2)C19—H19B0.9800
C6—H60.9500C19—H19C0.9800
C7—C81.414 (2)C21—H21A0.9800
C7—H70.9500C21—H21B0.9800
C8—C91.3695 (19)C21—H21C0.9800
C20—O3—C21115.70 (11)C13—C12—C11119.85 (12)
C2—O4—C18118.25 (12)C14—C13—C12120.21 (13)
C8—O5—C19117.18 (11)C14—C13—H13119.9
C2—C1—C10120.65 (12)C12—C13—H13119.9
C2—C1—C11118.48 (12)C13—C14—C15120.17 (12)
C10—C1—C11120.86 (12)C13—C14—H14119.9
C1—C2—O4115.70 (12)C15—C14—H14119.9
C1—C2—C3121.08 (14)C14—C15—C16119.85 (13)
O4—C2—C3123.22 (13)C14—C15—C20118.23 (12)
C4—C3—C2118.99 (14)C16—C15—C20121.91 (12)
C4—C3—H3120.5C17—C16—C15119.91 (13)
C2—C3—H3120.5C17—C16—H16120.0
C3—C4—C5121.91 (13)C15—C16—H16120.0
C3—C4—H4119.0C16—C17—C12120.43 (12)
C5—C4—H4119.0C16—C17—H17119.8
C4—C5—C6122.64 (13)C12—C17—H17119.8
C4—C5—C10118.76 (13)O4—C18—H18A109.5
C6—C5—C10118.61 (13)O4—C18—H18B109.5
C7—C6—C5121.56 (13)H18A—C18—H18B109.5
C7—C6—H6119.2O4—C18—H18C109.5
C5—C6—H6119.2H18A—C18—H18C109.5
C6—C7—C8120.04 (14)H18B—C18—H18C109.5
C6—C7—H7120.0O5—C19—H19A109.5
C8—C7—H7120.0O5—C19—H19B109.5
O5—C8—C9124.51 (13)H19A—C19—H19B109.5
O5—C8—C7114.37 (12)O5—C19—H19C109.5
C9—C8—C7121.10 (14)H19A—C19—H19C109.5
C8—C9—C10119.48 (13)H19B—C19—H19C109.5
C8—C9—H9120.3O2—C20—O3123.51 (13)
C10—C9—H9120.3O2—C20—C15124.10 (13)
C1—C10—C5118.60 (13)O3—C20—C15112.39 (11)
C1—C10—C9122.18 (12)O3—C21—H21A109.5
C5—C10—C9119.20 (12)O3—C21—H21B109.5
O1—C11—C12121.49 (12)H21A—C21—H21B109.5
O1—C11—C1121.30 (12)O3—C21—H21C109.5
C12—C11—C1117.20 (11)H21A—C21—H21C109.5
C17—C12—C13119.41 (12)H21B—C21—H21C109.5
C17—C12—C11120.72 (11)
C10—C1—C2—O4179.30 (11)C6—C5—C10—C90.47 (18)
C11—C1—C2—O40.32 (18)C8—C9—C10—C1178.58 (11)
C10—C1—C2—C30.8 (2)C8—C9—C10—C50.08 (18)
C11—C1—C2—C3179.60 (12)C2—C1—C11—O198.98 (16)
C18—O4—C2—C1177.96 (12)C10—C1—C11—O181.40 (17)
C18—O4—C2—C32.1 (2)C2—C1—C11—C1282.03 (15)
C1—C2—C3—C40.6 (2)C10—C1—C11—C1297.59 (14)
O4—C2—C3—C4179.50 (13)O1—C11—C12—C17158.78 (14)
C2—C3—C4—C50.1 (2)C1—C11—C12—C1720.22 (18)
C3—C4—C5—C6178.96 (13)O1—C11—C12—C1319.9 (2)
C3—C4—C5—C100.5 (2)C1—C11—C12—C13161.07 (12)
C4—C5—C6—C7178.55 (13)C17—C12—C13—C140.2 (2)
C10—C5—C6—C70.9 (2)C11—C12—C13—C14178.91 (12)
C5—C6—C7—C80.8 (2)C12—C13—C14—C150.8 (2)
C19—O5—C8—C91.44 (19)C13—C14—C15—C160.8 (2)
C19—O5—C8—C7179.73 (12)C13—C14—C15—C20178.81 (13)
C6—C7—C8—O5179.11 (12)C14—C15—C16—C170.2 (2)
C6—C7—C8—C90.2 (2)C20—C15—C16—C17179.44 (13)
O5—C8—C9—C10178.55 (11)C15—C16—C17—C120.5 (2)
C7—C8—C9—C100.2 (2)C13—C12—C17—C160.5 (2)
C2—C1—C10—C50.31 (19)C11—C12—C17—C16178.25 (12)
C11—C1—C10—C5179.92 (11)C21—O3—C20—O20.9 (2)
C2—C1—C10—C9178.35 (12)C21—O3—C20—C15178.40 (12)
C11—C1—C10—C91.26 (19)C14—C15—C20—O24.0 (2)
C4—C5—C10—C10.33 (18)C16—C15—C20—O2175.62 (15)
C6—C5—C10—C1179.18 (11)C14—C15—C20—O3176.73 (12)
C4—C5—C10—C9179.04 (11)C16—C15—C20—O33.64 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···O2i0.982.573.461 (2)152
C21—H21A···O1ii0.982.493.4446 (19)163
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC21H18O5
Mr350.35
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)7.7714 (2), 9.5195 (3), 12.2737 (4)
α, β, γ (°)97.525 (2), 97.919 (2), 106.630 (2)
V3)847.73 (5)
Z2
Radiation typeCu Kα
µ (mm1)0.81
Crystal size (mm)0.40 × 0.20 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.816, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
15482, 3066, 2571
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.117, 1.08
No. of reflections3066
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···O2i0.982.573.461 (2)152
C21—H21A···O1ii0.982.493.4446 (19)163
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y1, z.
 

Acknowledgements

The authors would express their gratitude to Professor Keiichi Noguchi for technical advice. This work was partially supported by the Iketani Science and Technology Foundation, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds