organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)piperidin-4-ol

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Chemistry, V. V. Puram College of Science, Bangalore 560 004, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 28 January 2010; accepted 2 February 2010; online 6 February 2010)

In the title compound, C11H14ClNO, the piperidine ring adopts a chair conformation: the hydroxyl substituent and the N-bound H atom occupy the axial positions, while the benzene ring occupies the equatorial position. In the crystal, the mol­ecules are linked into a centrosymmetric tetra­mer through strong O—H⋯N and weak N—H⋯O hydrogen bonds; the N and O atoms act as both donor and acceptor for these inter­actions. The tetra­mers are further joined by hydrogen bonds into a layer parallel to (100).

Related literature

For related structures, see: De Camp & Ahmed (1972a[De Camp, W. H. & Ahmed, F. R. (1972a). Acta Cryst. B28, 1796-1800.],b[De Camp, W. H. & Ahmed, F. R. (1972b). Acta Cryst. B28, 3484-3489.]); Friederich et al. (1993[Friederich, R., Nieger, M. & Vögtle, F. (1993). Chem. Ber. 126, 1723-1732.]); Kimura & Okabayashi (1986[Kimura, M. & Okabayashi, I. (1986). J. Heterocycl. Chem. 23, 1287-1289.]). For details of the asymmetry parameters for chair conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures. New York: Plenum.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14ClNO

  • Mr = 211.68

  • Monoclinic, P 21 /c

  • a = 11.3706 (10) Å

  • b = 9.5204 (8) Å

  • c = 10.6164 (9) Å

  • β = 108.458 (8)°

  • V = 1090.13 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.83 mm−1

  • T = 295 K

  • 0.3 × 0.2 × 0.15 mm

Data collection
  • Oxford Diffraction SuperNova, single source at offset, Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd. Yarnton, England.]) Tmin = 0.401, Tmax = 0.654

  • 4068 measured reflections

  • 2190 independent reflections

  • 2014 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.07

  • 2190 reflections

  • 183 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.89 (2) 2.41 (2) 3.2036 (16) 147.2 (17)
O4—H4A⋯N1ii 0.84 (2) 1.97 (2) 2.8089 (17) 174 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd. Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (1, Scheme 1), 4-(4-chlorophenyl)piperidin-4-ol is used as an intermediate for the synthesis of pharmaceuticals such as haloperidol (neuroleptic drug used to treat psychotic illnesses, extreme agitation, or Tourette's syndrome) and loperamide which is effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease.

The piperidine ring adopts an almost ideal chair conformation (Fig. 1); the asymmetry parameters (Duax & Norton, 1975) are all smaller than 2.5°. The hydroxy group and N—H hydrogen atom occupy the axial positions [torsion angles: C2—C3—C4—O4 -64.46 (15)°, C6—C5—C4—O4 60.81 (15)°, C5—C6—N1—H1 65.0 (13)°, and C3—C2—N1—H1 -64.8 (14)°]. Such a mutual conformation of hydroxyl and phenyl groups is very typical, in the Cambridge Database (Allen, 2002; ver. 5.30 of Nov. 2008, last update Sep. 2009) there are 65 crystal structures of six-membered saturated rings with both OH and aromatic substituent in one position, only in three of them the hydroxyl group adopts the equatorial position [two polymorphs of (±)-β-1,2,5-trimethyl-4-phenylpiperidin-4-ol (De Camp & Ahmed, 1972a,b), cis-1,4-bis(4-bromophenyl)-1,4-dimethoxycyclohexane (Friederich et al., 1993), and cis-1-phenyl-3-piperidinocyclohexan-1-ol hydrochloride (Kimura & Okabayashi, 1986)].

The relatively strong and directional O—H···N hydrogen bonds join the molecules of 1, related by two-fold screw axis, into the chains along [010] directions. These chains are interconnected by far weaker N—H···O hydrogen bonds. These two kinds of contacts form centrosymmetric tetramers of the molecules (Fig. 2). In the crystal structures there are the hydrogen-bonded layers of molecules, created by interconnecting chains, in the bc plane (Fig. 3a). There are no directional interactions between neighbouring layers (Fig. 3b).

Related literature top

For related structures, see: De Camp & Ahmed (1972a,b); Friederich et al. (1993); Kimura & Okabayashi (1986). For details of the asymmetry parameters for chair conformations, see: Duax & Norton (1975). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore, India. X-ray quality crystals were obtained by a slow evaporation from an ethyl acetate solution (m.p. 410–413 K).

Refinement top

Hydrogen atoms were found in the subsequent difference Fourier maps, and freely refined.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the compound 1 together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.
[Figure 2] Fig. 2. Hydrogen-bonded tetramer [symmetry codes: (i) x, 1/2 - y, 1/2 + z; (ii) 2 - x, 1 - y, 1 - z; (iii) 2 - x, 1/2 + y, 1/2 - z].
[Figure 3] Fig. 3. The packing of the molecules of 1. (a) Hydrogen-boded layer; (b) the packing as seen along the y-direction.
4-(4-Chlorophenyl)piperidin-4-ol top
Crystal data top
C11H14ClNOF(000) = 448
Mr = 211.68Dx = 1.290 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3304 reflections
a = 11.3706 (10) Åθ = 4.1–75.2°
b = 9.5204 (8) ŵ = 2.83 mm1
c = 10.6164 (9) ÅT = 295 K
β = 108.458 (8)°Prism, yellow
V = 1090.13 (16) Å30.3 × 0.2 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction SuperNova, single source at offset, Atlas
diffractometer
2190 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2014 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.011
Detector resolution: 10.5357 pixels mm-1θmax = 75.3°, θmin = 4.1°
ω scansh = 1314
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 117
Tmin = 0.401, Tmax = 0.654l = 1213
4068 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.250P]
where P = (Fo2 + 2Fc2)/3
2190 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C11H14ClNOV = 1090.13 (16) Å3
Mr = 211.68Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.3706 (10) ŵ = 2.83 mm1
b = 9.5204 (8) ÅT = 295 K
c = 10.6164 (9) Å0.3 × 0.2 × 0.15 mm
β = 108.458 (8)°
Data collection top
Oxford Diffraction SuperNova, single source at offset, Atlas
diffractometer
2190 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2014 reflections with I > 2σ(I)
Tmin = 0.401, Tmax = 0.654Rint = 0.011
4068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.32 e Å3
2190 reflectionsΔρmin = 0.38 e Å3
183 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.92832 (13)0.42199 (14)0.33836 (13)0.0530 (3)
H10.8930 (19)0.430 (2)0.402 (2)0.069 (5)*
C20.83116 (16)0.40784 (17)0.20917 (16)0.0537 (4)
H210.8738 (17)0.4069 (19)0.1413 (18)0.058 (5)*
H220.7767 (18)0.491 (2)0.1973 (18)0.065 (5)*
C30.75467 (14)0.27404 (16)0.19461 (16)0.0507 (3)
H310.7086 (19)0.277 (2)0.255 (2)0.072 (6)*
H320.6977 (17)0.2675 (19)0.0997 (19)0.061 (5)*
C40.83678 (12)0.14272 (14)0.22350 (12)0.0414 (3)
O40.89540 (10)0.13797 (11)0.12224 (9)0.0476 (3)
H4A0.949 (2)0.073 (2)0.140 (2)0.074 (6)*
C50.93538 (14)0.16101 (17)0.36010 (13)0.0462 (3)
H510.9930 (16)0.0777 (19)0.3783 (16)0.052 (4)*
H520.8963 (17)0.1649 (19)0.4293 (18)0.058 (5)*
C61.00732 (15)0.29679 (18)0.36784 (15)0.0534 (4)
H611.0557 (17)0.2932 (19)0.3036 (18)0.059 (5)*
H621.0676 (18)0.307 (2)0.457 (2)0.066 (5)*
C410.75873 (12)0.01087 (15)0.21490 (13)0.0433 (3)
C420.76509 (17)0.0736 (2)0.32296 (16)0.0604 (4)
H420.818 (2)0.051 (2)0.409 (2)0.080 (6)*
C430.69364 (19)0.1934 (2)0.3105 (2)0.0715 (5)
H430.699 (2)0.251 (2)0.384 (2)0.084 (6)*
C440.61247 (15)0.22890 (18)0.18927 (19)0.0600 (4)
Cl440.52022 (5)0.37870 (6)0.17414 (7)0.0901 (2)
C450.60313 (16)0.14761 (19)0.07924 (18)0.0601 (4)
H450.550 (2)0.174 (2)0.007 (2)0.081 (6)*
C460.67646 (14)0.02996 (18)0.09244 (15)0.0536 (4)
H460.6735 (18)0.028 (2)0.014 (2)0.072 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0619 (8)0.0540 (7)0.0485 (7)0.0073 (6)0.0250 (6)0.0050 (5)
C20.0587 (9)0.0478 (8)0.0548 (8)0.0021 (7)0.0181 (7)0.0037 (6)
C30.0468 (7)0.0509 (8)0.0539 (8)0.0038 (6)0.0152 (6)0.0030 (6)
C40.0446 (7)0.0485 (7)0.0339 (6)0.0023 (5)0.0163 (5)0.0033 (5)
O40.0558 (6)0.0550 (6)0.0377 (5)0.0044 (5)0.0227 (4)0.0064 (4)
C50.0492 (7)0.0539 (8)0.0356 (6)0.0010 (6)0.0136 (5)0.0032 (5)
C60.0508 (8)0.0627 (9)0.0451 (7)0.0073 (7)0.0129 (6)0.0003 (7)
C410.0435 (6)0.0479 (7)0.0407 (6)0.0032 (6)0.0167 (5)0.0004 (5)
C420.0649 (10)0.0668 (10)0.0459 (8)0.0133 (8)0.0123 (7)0.0086 (7)
C430.0746 (11)0.0722 (12)0.0672 (10)0.0159 (9)0.0216 (9)0.0162 (9)
C440.0495 (8)0.0533 (9)0.0805 (11)0.0037 (7)0.0253 (8)0.0041 (8)
Cl440.0732 (3)0.0695 (3)0.1295 (5)0.0240 (2)0.0349 (3)0.0071 (3)
C450.0515 (8)0.0656 (10)0.0609 (9)0.0039 (7)0.0145 (7)0.0124 (8)
C460.0540 (8)0.0600 (9)0.0453 (7)0.0006 (7)0.0138 (6)0.0004 (7)
Geometric parameters (Å, º) top
N1—C61.465 (2)C5—H520.972 (19)
N1—C21.470 (2)C6—H611.003 (19)
N1—H10.89 (2)C6—H620.99 (2)
C2—C31.522 (2)C41—C421.384 (2)
C2—H210.987 (19)C41—C461.395 (2)
C2—H220.99 (2)C42—C431.382 (3)
C3—C41.5322 (19)C42—H420.95 (2)
C3—H310.95 (2)C43—C441.368 (3)
C3—H321.013 (18)C43—H430.94 (2)
C4—O41.4337 (15)C44—C451.377 (3)
C4—C411.5233 (19)C44—Cl441.7473 (17)
C4—C51.5365 (18)C45—C461.377 (2)
O4—H4A0.84 (2)C45—H450.96 (2)
C5—C61.518 (2)C46—H460.99 (2)
C5—H511.008 (17)
C6—N1—C2110.71 (12)C4—C5—H52110.2 (11)
C6—N1—H1107.4 (13)H51—C5—H52108.1 (14)
C2—N1—H1109.3 (13)N1—C6—C5113.44 (13)
N1—C2—C3114.07 (13)N1—C6—H61108.3 (10)
N1—C2—H21106.5 (10)C5—C6—H61109.6 (10)
C3—C2—H21108.4 (11)N1—C6—H62108.6 (11)
N1—C2—H22107.6 (11)C5—C6—H62109.5 (11)
C3—C2—H22110.0 (11)H61—C6—H62107.2 (15)
H21—C2—H22110.3 (15)C42—C41—C46117.02 (14)
C2—C3—C4111.72 (12)C42—C41—C4123.54 (13)
C2—C3—H31109.2 (13)C46—C41—C4119.44 (12)
C4—C3—H31108.6 (12)C43—C42—C41121.70 (15)
C2—C3—H32108.5 (10)C43—C42—H42117.1 (13)
C4—C3—H32107.8 (10)C41—C42—H42121.2 (13)
H31—C3—H32111.1 (15)C44—C43—C42119.67 (16)
O4—C4—C41109.23 (10)C44—C43—H43119.2 (14)
O4—C4—C3105.91 (11)C42—C43—H43121.1 (14)
C41—C4—C3110.72 (11)C43—C44—C45120.47 (16)
O4—C4—C5109.74 (11)C43—C44—Cl44119.66 (14)
C41—C4—C5112.78 (11)C45—C44—Cl44119.87 (14)
C3—C4—C5108.23 (12)C46—C45—C44119.30 (15)
C4—O4—H4A109.3 (14)C46—C45—H45119.4 (13)
C6—C5—C4111.55 (12)C44—C45—H45121.3 (13)
C6—C5—H51110.7 (10)C45—C46—C41121.82 (15)
C4—C5—H51109.1 (9)C45—C46—H46120.8 (12)
C6—C5—H52107.1 (11)C41—C46—H46117.4 (12)
C6—N1—C2—C353.23 (17)O4—C4—C41—C4649.35 (16)
N1—C2—C3—C454.44 (18)C3—C4—C41—C4666.91 (16)
C2—C3—C4—O464.46 (15)C5—C4—C41—C46171.65 (13)
C2—C3—C4—C41177.25 (12)C46—C41—C42—C430.2 (3)
C2—C3—C4—C553.16 (15)C4—C41—C42—C43179.21 (17)
O4—C4—C5—C660.81 (15)C41—C42—C43—C441.3 (3)
C41—C4—C5—C6177.17 (11)C42—C43—C44—C451.2 (3)
C3—C4—C5—C654.33 (15)C42—C43—C44—Cl44178.91 (16)
C2—N1—C6—C554.19 (16)C43—C44—C45—C460.0 (3)
C4—C5—C6—N156.56 (16)Cl44—C44—C45—C46179.90 (13)
O4—C4—C41—C42130.07 (15)C44—C45—C46—C411.1 (3)
C3—C4—C41—C42113.68 (16)C42—C41—C46—C451.0 (2)
C5—C4—C41—C427.76 (19)C4—C41—C46—C45179.54 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.89 (2)2.41 (2)3.2036 (16)147.2 (17)
O4—H4A···N1ii0.84 (2)1.97 (2)2.8089 (17)174 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H14ClNO
Mr211.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.3706 (10), 9.5204 (8), 10.6164 (9)
β (°) 108.458 (8)
V3)1090.13 (16)
Z4
Radiation typeCu Kα
µ (mm1)2.83
Crystal size (mm)0.3 × 0.2 × 0.15
Data collection
DiffractometerOxford Diffraction SuperNova, single source at offset, Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.401, 0.654
No. of measured, independent and
observed [I > 2σ(I)] reflections
4068, 2190, 2014
Rint0.011
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.07
No. of reflections2190
No. of parameters183
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.38

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.89 (2)2.41 (2)3.2036 (16)147.2 (17)
O4—H4A···N1ii0.84 (2)1.97 (2)2.8089 (17)174 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

BPS thanks R. L. FineChem, Bangalore, India, for the gift of a sample of the title compound.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDe Camp, W. H. & Ahmed, F. R. (1972a). Acta Cryst. B28, 1796–1800.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDe Camp, W. H. & Ahmed, F. R. (1972b). Acta Cryst. B28, 3484–3489.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures. New York: Plenum.  Google Scholar
First citationFriederich, R., Nieger, M. & Vögtle, F. (1993). Chem. Ber. 126, 1723–1732.  CrossRef CAS Web of Science Google Scholar
First citationKimura, M. & Okabayashi, I. (1986). J. Heterocycl. Chem. 23, 1287–1289.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd. Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds