organic compounds
4-(4-Chlorophenyl)piperidin-4-ol
aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Chemistry, V. V. Puram College of Science, Bangalore 560 004, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: mkubicki@amu.edu.pl
In the title compound, C11H14ClNO, the piperidine ring adopts a chair conformation: the hydroxyl substituent and the N-bound H atom occupy the axial positions, while the benzene ring occupies the equatorial position. In the crystal, the molecules are linked into a centrosymmetric tetramer through strong O—H⋯N and weak N—H⋯O hydrogen bonds; the N and O atoms act as both donor and acceptor for these interactions. The tetramers are further joined by hydrogen bonds into a layer parallel to (100).
Related literature
For related structures, see: De Camp & Ahmed (1972a,b); Friederich et al. (1993); Kimura & Okabayashi (1986). For details of the asymmetry parameters for chair conformations, see: Duax & Norton (1975). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810004216/is2520sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810004216/is2520Isup2.hkl
The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore, India. X-ray quality crystals were obtained by a slow evaporation from an ethyl acetate solution (m.p. 410–413 K).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C11H14ClNO | F(000) = 448 |
Mr = 211.68 | Dx = 1.290 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 3304 reflections |
a = 11.3706 (10) Å | θ = 4.1–75.2° |
b = 9.5204 (8) Å | µ = 2.83 mm−1 |
c = 10.6164 (9) Å | T = 295 K |
β = 108.458 (8)° | Prism, yellow |
V = 1090.13 (16) Å3 | 0.3 × 0.2 × 0.15 mm |
Z = 4 |
Oxford Diffraction SuperNova, single source at offset, Atlas diffractometer | 2190 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 2014 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.011 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 75.3°, θmin = 4.1° |
ω scans | h = −13→14 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −11→7 |
Tmin = 0.401, Tmax = 0.654 | l = −12→13 |
4068 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0549P)2 + 0.250P] where P = (Fo2 + 2Fc2)/3 |
2190 reflections | (Δ/σ)max < 0.001 |
183 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
C11H14ClNO | V = 1090.13 (16) Å3 |
Mr = 211.68 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 11.3706 (10) Å | µ = 2.83 mm−1 |
b = 9.5204 (8) Å | T = 295 K |
c = 10.6164 (9) Å | 0.3 × 0.2 × 0.15 mm |
β = 108.458 (8)° |
Oxford Diffraction SuperNova, single source at offset, Atlas diffractometer | 2190 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 2014 reflections with I > 2σ(I) |
Tmin = 0.401, Tmax = 0.654 | Rint = 0.011 |
4068 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.32 e Å−3 |
2190 reflections | Δρmin = −0.38 e Å−3 |
183 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.92832 (13) | 0.42199 (14) | 0.33836 (13) | 0.0530 (3) | |
H1 | 0.8930 (19) | 0.430 (2) | 0.402 (2) | 0.069 (5)* | |
C2 | 0.83116 (16) | 0.40784 (17) | 0.20917 (16) | 0.0537 (4) | |
H21 | 0.8738 (17) | 0.4069 (19) | 0.1413 (18) | 0.058 (5)* | |
H22 | 0.7767 (18) | 0.491 (2) | 0.1973 (18) | 0.065 (5)* | |
C3 | 0.75467 (14) | 0.27404 (16) | 0.19461 (16) | 0.0507 (3) | |
H31 | 0.7086 (19) | 0.277 (2) | 0.255 (2) | 0.072 (6)* | |
H32 | 0.6977 (17) | 0.2675 (19) | 0.0997 (19) | 0.061 (5)* | |
C4 | 0.83678 (12) | 0.14272 (14) | 0.22350 (12) | 0.0414 (3) | |
O4 | 0.89540 (10) | 0.13797 (11) | 0.12224 (9) | 0.0476 (3) | |
H4A | 0.949 (2) | 0.073 (2) | 0.140 (2) | 0.074 (6)* | |
C5 | 0.93538 (14) | 0.16101 (17) | 0.36010 (13) | 0.0462 (3) | |
H51 | 0.9930 (16) | 0.0777 (19) | 0.3783 (16) | 0.052 (4)* | |
H52 | 0.8963 (17) | 0.1649 (19) | 0.4293 (18) | 0.058 (5)* | |
C6 | 1.00732 (15) | 0.29679 (18) | 0.36784 (15) | 0.0534 (4) | |
H61 | 1.0557 (17) | 0.2932 (19) | 0.3036 (18) | 0.059 (5)* | |
H62 | 1.0676 (18) | 0.307 (2) | 0.457 (2) | 0.066 (5)* | |
C41 | 0.75873 (12) | 0.01087 (15) | 0.21490 (13) | 0.0433 (3) | |
C42 | 0.76509 (17) | −0.0736 (2) | 0.32296 (16) | 0.0604 (4) | |
H42 | 0.818 (2) | −0.051 (2) | 0.409 (2) | 0.080 (6)* | |
C43 | 0.69364 (19) | −0.1934 (2) | 0.3105 (2) | 0.0715 (5) | |
H43 | 0.699 (2) | −0.251 (2) | 0.384 (2) | 0.084 (6)* | |
C44 | 0.61247 (15) | −0.22890 (18) | 0.18927 (19) | 0.0600 (4) | |
Cl44 | 0.52022 (5) | −0.37870 (6) | 0.17414 (7) | 0.0901 (2) | |
C45 | 0.60313 (16) | −0.14761 (19) | 0.07924 (18) | 0.0601 (4) | |
H45 | 0.550 (2) | −0.174 (2) | −0.007 (2) | 0.081 (6)* | |
C46 | 0.67646 (14) | −0.02996 (18) | 0.09244 (15) | 0.0536 (4) | |
H46 | 0.6735 (18) | 0.028 (2) | 0.014 (2) | 0.072 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0619 (8) | 0.0540 (7) | 0.0485 (7) | −0.0073 (6) | 0.0250 (6) | −0.0050 (5) |
C2 | 0.0587 (9) | 0.0478 (8) | 0.0548 (8) | 0.0021 (7) | 0.0181 (7) | 0.0037 (6) |
C3 | 0.0468 (7) | 0.0509 (8) | 0.0539 (8) | 0.0038 (6) | 0.0152 (6) | 0.0030 (6) |
C4 | 0.0446 (7) | 0.0485 (7) | 0.0339 (6) | 0.0023 (5) | 0.0163 (5) | 0.0033 (5) |
O4 | 0.0558 (6) | 0.0550 (6) | 0.0377 (5) | 0.0044 (5) | 0.0227 (4) | 0.0064 (4) |
C5 | 0.0492 (7) | 0.0539 (8) | 0.0356 (6) | −0.0010 (6) | 0.0136 (5) | 0.0032 (5) |
C6 | 0.0508 (8) | 0.0627 (9) | 0.0451 (7) | −0.0073 (7) | 0.0129 (6) | −0.0003 (7) |
C41 | 0.0435 (6) | 0.0479 (7) | 0.0407 (6) | 0.0032 (6) | 0.0167 (5) | 0.0004 (5) |
C42 | 0.0649 (10) | 0.0668 (10) | 0.0459 (8) | −0.0133 (8) | 0.0123 (7) | 0.0086 (7) |
C43 | 0.0746 (11) | 0.0722 (12) | 0.0672 (10) | −0.0159 (9) | 0.0216 (9) | 0.0162 (9) |
C44 | 0.0495 (8) | 0.0533 (9) | 0.0805 (11) | −0.0037 (7) | 0.0253 (8) | −0.0041 (8) |
Cl44 | 0.0732 (3) | 0.0695 (3) | 0.1295 (5) | −0.0240 (2) | 0.0349 (3) | −0.0071 (3) |
C45 | 0.0515 (8) | 0.0656 (10) | 0.0609 (9) | −0.0039 (7) | 0.0145 (7) | −0.0124 (8) |
C46 | 0.0540 (8) | 0.0600 (9) | 0.0453 (7) | −0.0006 (7) | 0.0138 (6) | −0.0004 (7) |
N1—C6 | 1.465 (2) | C5—H52 | 0.972 (19) |
N1—C2 | 1.470 (2) | C6—H61 | 1.003 (19) |
N1—H1 | 0.89 (2) | C6—H62 | 0.99 (2) |
C2—C3 | 1.522 (2) | C41—C42 | 1.384 (2) |
C2—H21 | 0.987 (19) | C41—C46 | 1.395 (2) |
C2—H22 | 0.99 (2) | C42—C43 | 1.382 (3) |
C3—C4 | 1.5322 (19) | C42—H42 | 0.95 (2) |
C3—H31 | 0.95 (2) | C43—C44 | 1.368 (3) |
C3—H32 | 1.013 (18) | C43—H43 | 0.94 (2) |
C4—O4 | 1.4337 (15) | C44—C45 | 1.377 (3) |
C4—C41 | 1.5233 (19) | C44—Cl44 | 1.7473 (17) |
C4—C5 | 1.5365 (18) | C45—C46 | 1.377 (2) |
O4—H4A | 0.84 (2) | C45—H45 | 0.96 (2) |
C5—C6 | 1.518 (2) | C46—H46 | 0.99 (2) |
C5—H51 | 1.008 (17) | ||
C6—N1—C2 | 110.71 (12) | C4—C5—H52 | 110.2 (11) |
C6—N1—H1 | 107.4 (13) | H51—C5—H52 | 108.1 (14) |
C2—N1—H1 | 109.3 (13) | N1—C6—C5 | 113.44 (13) |
N1—C2—C3 | 114.07 (13) | N1—C6—H61 | 108.3 (10) |
N1—C2—H21 | 106.5 (10) | C5—C6—H61 | 109.6 (10) |
C3—C2—H21 | 108.4 (11) | N1—C6—H62 | 108.6 (11) |
N1—C2—H22 | 107.6 (11) | C5—C6—H62 | 109.5 (11) |
C3—C2—H22 | 110.0 (11) | H61—C6—H62 | 107.2 (15) |
H21—C2—H22 | 110.3 (15) | C42—C41—C46 | 117.02 (14) |
C2—C3—C4 | 111.72 (12) | C42—C41—C4 | 123.54 (13) |
C2—C3—H31 | 109.2 (13) | C46—C41—C4 | 119.44 (12) |
C4—C3—H31 | 108.6 (12) | C43—C42—C41 | 121.70 (15) |
C2—C3—H32 | 108.5 (10) | C43—C42—H42 | 117.1 (13) |
C4—C3—H32 | 107.8 (10) | C41—C42—H42 | 121.2 (13) |
H31—C3—H32 | 111.1 (15) | C44—C43—C42 | 119.67 (16) |
O4—C4—C41 | 109.23 (10) | C44—C43—H43 | 119.2 (14) |
O4—C4—C3 | 105.91 (11) | C42—C43—H43 | 121.1 (14) |
C41—C4—C3 | 110.72 (11) | C43—C44—C45 | 120.47 (16) |
O4—C4—C5 | 109.74 (11) | C43—C44—Cl44 | 119.66 (14) |
C41—C4—C5 | 112.78 (11) | C45—C44—Cl44 | 119.87 (14) |
C3—C4—C5 | 108.23 (12) | C46—C45—C44 | 119.30 (15) |
C4—O4—H4A | 109.3 (14) | C46—C45—H45 | 119.4 (13) |
C6—C5—C4 | 111.55 (12) | C44—C45—H45 | 121.3 (13) |
C6—C5—H51 | 110.7 (10) | C45—C46—C41 | 121.82 (15) |
C4—C5—H51 | 109.1 (9) | C45—C46—H46 | 120.8 (12) |
C6—C5—H52 | 107.1 (11) | C41—C46—H46 | 117.4 (12) |
C6—N1—C2—C3 | 53.23 (17) | O4—C4—C41—C46 | −49.35 (16) |
N1—C2—C3—C4 | −54.44 (18) | C3—C4—C41—C46 | 66.91 (16) |
C2—C3—C4—O4 | −64.46 (15) | C5—C4—C41—C46 | −171.65 (13) |
C2—C3—C4—C41 | 177.25 (12) | C46—C41—C42—C43 | 0.2 (3) |
C2—C3—C4—C5 | 53.16 (15) | C4—C41—C42—C43 | −179.21 (17) |
O4—C4—C5—C6 | 60.81 (15) | C41—C42—C43—C44 | −1.3 (3) |
C41—C4—C5—C6 | −177.17 (11) | C42—C43—C44—C45 | 1.2 (3) |
C3—C4—C5—C6 | −54.33 (15) | C42—C43—C44—Cl44 | −178.91 (16) |
C2—N1—C6—C5 | −54.19 (16) | C43—C44—C45—C46 | 0.0 (3) |
C4—C5—C6—N1 | 56.56 (16) | Cl44—C44—C45—C46 | −179.90 (13) |
O4—C4—C41—C42 | 130.07 (15) | C44—C45—C46—C41 | −1.1 (3) |
C3—C4—C41—C42 | −113.68 (16) | C42—C41—C46—C45 | 1.0 (2) |
C5—C4—C41—C42 | 7.76 (19) | C4—C41—C46—C45 | −179.54 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4i | 0.89 (2) | 2.41 (2) | 3.2036 (16) | 147.2 (17) |
O4—H4A···N1ii | 0.84 (2) | 1.97 (2) | 2.8089 (17) | 174 (2) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H14ClNO |
Mr | 211.68 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 11.3706 (10), 9.5204 (8), 10.6164 (9) |
β (°) | 108.458 (8) |
V (Å3) | 1090.13 (16) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.83 |
Crystal size (mm) | 0.3 × 0.2 × 0.15 |
Data collection | |
Diffractometer | Oxford Diffraction SuperNova, single source at offset, Atlas diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.401, 0.654 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4068, 2190, 2014 |
Rint | 0.011 |
(sin θ/λ)max (Å−1) | 0.627 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.111, 1.07 |
No. of reflections | 2190 |
No. of parameters | 183 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.38 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4i | 0.89 (2) | 2.41 (2) | 3.2036 (16) | 147.2 (17) |
O4—H4A···N1ii | 0.84 (2) | 1.97 (2) | 2.8089 (17) | 174 (2) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, y−1/2, −z+1/2. |
Acknowledgements
BPS thanks R. L. FineChem, Bangalore, India, for the gift of a sample of the title compound.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
De Camp, W. H. & Ahmed, F. R. (1972a). Acta Cryst. B28, 1796–1800. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
De Camp, W. H. & Ahmed, F. R. (1972b). Acta Cryst. B28, 3484–3489. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures. New York: Plenum. Google Scholar
Friederich, R., Nieger, M. & Vögtle, F. (1993). Chem. Ber. 126, 1723–1732. CrossRef CAS Web of Science Google Scholar
Kimura, M. & Okabayashi, I. (1986). J. Heterocycl. Chem. 23, 1287–1289. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd. Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (1, Scheme 1), 4-(4-chlorophenyl)piperidin-4-ol is used as an intermediate for the synthesis of pharmaceuticals such as haloperidol (neuroleptic drug used to treat psychotic illnesses, extreme agitation, or Tourette's syndrome) and loperamide which is effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease.
The piperidine ring adopts an almost ideal chair conformation (Fig. 1); the asymmetry parameters (Duax & Norton, 1975) are all smaller than 2.5°. The hydroxy group and N—H hydrogen atom occupy the axial positions [torsion angles: C2—C3—C4—O4 -64.46 (15)°, C6—C5—C4—O4 60.81 (15)°, C5—C6—N1—H1 65.0 (13)°, and C3—C2—N1—H1 -64.8 (14)°]. Such a mutual conformation of hydroxyl and phenyl groups is very typical, in the Cambridge Database (Allen, 2002; ver. 5.30 of Nov. 2008, last update Sep. 2009) there are 65 crystal structures of six-membered saturated rings with both OH and aromatic substituent in one position, only in three of them the hydroxyl group adopts the equatorial position [two polymorphs of (±)-β-1,2,5-trimethyl-4-phenylpiperidin-4-ol (De Camp & Ahmed, 1972a,b), cis-1,4-bis(4-bromophenyl)-1,4-dimethoxycyclohexane (Friederich et al., 1993), and cis-1-phenyl-3-piperidinocyclohexan-1-ol hydrochloride (Kimura & Okabayashi, 1986)].
The relatively strong and directional O—H···N hydrogen bonds join the molecules of 1, related by two-fold screw axis, into the chains along [010] directions. These chains are interconnected by far weaker N—H···O hydrogen bonds. These two kinds of contacts form centrosymmetric tetramers of the molecules (Fig. 2). In the crystal structures there are the hydrogen-bonded layers of molecules, created by interconnecting chains, in the bc plane (Fig. 3a). There are no directional interactions between neighbouring layers (Fig. 3b).