organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(8-Bromo-2-hy­droxy-7-meth­oxy-1-naph­thyl)(4-chloro­benzoyl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan, and bInstrumentation Analysis Center, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 9 February 2010; accepted 16 February 2010; online 20 February 2010)

In the title compound, C18H12BrClO3, the naphthalene ring system and the benzene ring make a dihedral angle of 82.18 (9)°. The conformation around the central C=O group is such that the C=O bond vector forms a larger angle to the plane of the naphthalene ring system than to the plane of the benzene ring, viz. 60.91 (16)° versus 13.94 (16)°. In the crystal structure, two ππ inter­actions formed between the naphthalene ring systems [centroid–centroid distances of 3.8014 (13) and 3.9823 (13) Å] and inter­molecular O—H⋯O and C—H⋯O hydrogen bonds are present.

Related literature

For the structures of closely related compounds, see: Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.]); Mitsui, Nakaema, Noguchi & Yonezawa (2008[Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.]); Mitsui et al. (2009[Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12BrClO3

  • Mr = 391.64

  • Monoclinic, C 2/c

  • a = 23.1440 (4) Å

  • b = 7.61524 (14) Å

  • c = 20.2652 (4) Å

  • β = 112.733 (1)°

  • V = 3294.22 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 5.00 mm−1

  • T = 193 K

  • 0.35 × 0.10 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.353, Tmax = 0.779

  • 12588 measured reflections

  • 3004 independent reflections

  • 2777 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.30

  • 3004 reflections

  • 213 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.81 (2) 1.93 (2) 2.728 (2) 172 (2)
C3—H3⋯O1i 0.95 2.58 3.205 (3) 124
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we have reported the crystal structures of 1-aroylated 2,7-dimethoxynaphthalene, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008), (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008) and (4-chlorobenzoyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009). As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene derivatives, we prepared and analysed the structure of crystal of 1-bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene, (I). The title compound was prepared by electrophilic aromatic bromination reaction of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone with bromine.

An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is shown in Fig. 1. In the molecule of (I), the interplanar angle between the benzene ring (C12–C17) and the naphthalene ring (C1–C10) is 82.18 (9)°. The CO bond vector and the least-squares plane of the benzene ring are relatively coplanar [13.94 (16)°]. By contrast, the CO bond vector and the least-squares plane of the naphthalene ring are twisted [60.91 (15)°]. The conformation of these groups are similar to that of 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene. Intriguingly, in the compound (I), there is no intramolecular hydrogen bond in contrast with (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone. This is presumably caused by release of the large steric repulsion brought about by the benzene ring and the bromo group in the naphthalene ring of (I).

In the crystal structure, the molecular packing of (I) is stabilized by van der Waals interactions. The 4-chlorophenyl groups interact with the carbonyl groups [H16···O1 = 2.63 Å] and the bromo groups [H16···Br1 = 3.04 Å] along the b axis, and interact with the naphthalene rings [Cl1···H4 = 2.93 Å, H17···H7 = 2.37 Å] along the a axis (Figs. 2 and 3). The carbonyl groups interact with the hydroxy groups [C11···H2O = 2.80 Å] and the naphthalene rings [O1···C3 = 3.205 (3) Å] along the b axis (Fig. 4). Additionally, the naphthalene rings of neighbouring molecules are nearly parallel, and the π systems of the C5–C10 ring (with centroid Cg) in the naphthalene group are exactly parallel. The perpendicular distance between these aromatic rings is 3.4653 (9) and 3.6483 (9) Å. The centroid–centroid distance between the parallel aromatic rings is 3.8014 (13) and 3.9823 (13) Å, and the lateral offsets are 1.563 and 1.596 Å, indicating the presence of a ππ interaction (Fig. 3). Moreover, the crystal packing is stabilized by intermolecular hydrogen bonding between the carbonyl oxygen and hydrogen atom of the hydroxy group and naphthalene ring of the adjacent molecule viz. O2—H2O···O1 and C3—H3···O1 (Fig. 4 and Table 1).

Related literature top

For the structures of closely related compounds, see: Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008); Mitsui, Nakaema, Noguchi & Yonezawa (2008); Mitsui et al. (2009).

Experimental top

To a solution of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (313 mg, 1.00 mmol) in chloroform (5 ml) was added Br2 (161 mg, 1.01 mmol) drop-wise at 0 °C. The reaction mixture was stirred for 2 h at 0 °C, then poured into aqueous 2 M Na2S2O3 (10 ml). The precipitate was collected by vacuum filtration, and washed with several times with water. The crude material was purified by recrystallization from ethanol to give the title compound as a colorless blocks (m.p. 481.5–483.0 K, yield 333 mg, 85%).

Spectroscopic Data: 1H NMR (300 MHz, DMSO-d6) δ 10.26 (s, 1H), 7.98 (d, 1H), 7.92 (d, 1H), 7.74 (d, 2H), 7.53 (d, 2H), 7.33 (d, 1H), 7.11 (d, 1H), 3.90 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 195.6, 155.1, 155.0, 138.3, 137.1, 131.8, 131.5, 130.2, 130.2, 128.5, 124.7, 118.4, 116.1, 110.1, 103.1, 56.7; IR (KBr): 3222, 1648, 1617, 1508, 1273, 1090; HRMS (m/z): [M + H]+ calcd for C18H13BrClO3, 390.9737; found, 390.9705.

Anal. Calcd for C18H12BrClO3: C 55.20, H 3.09. Found: C 55.04, H 2.97.

Refinement top

All the H atoms could be located in difference Fourier maps. The OH hydrogen atom was refined, with a bond restraint [O—H = 0.82 (2) Å], and with Uiso(H) = 1.2Ueq(O). The C-bound H atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Partial crystal packing diagram of compound (I), viewed down the c axis. van der Waals interactions are shown as dashed lines.
[Figure 3] Fig. 3. The arrangement of the molecules in the crystal structure, viewed in an oblique direction. van der Waals interactions and ππ interactions are shown as dashed lines.
[Figure 4] Fig. 4. Partial crystal packing diagram of compound (I), viewed down the b axis. van der Waals interactions and intermolecular hydrogen bonds are shown as dashed lines.
(8-Bromo-2-hydroxy-7-methoxy-1-naphthyl)(4-chlorobenzoyl)methanone top
Crystal data top
C18H12BrClO3F(000) = 1568
Mr = 391.64Dx = 1.579 Mg m3
Dm = 1.57 Mg m3
Dm measured by picnomatar method
Monoclinic, C2/cMelting point = 481.5–483.0 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54187 Å
a = 23.1440 (4) ÅCell parameters from 11710 reflections
b = 7.61524 (14) Åθ = 3.9–68.1°
c = 20.2652 (4) ŵ = 5.00 mm1
β = 112.733 (1)°T = 193 K
V = 3294.22 (10) Å3Block, colorless
Z = 80.35 × 0.10 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3004 independent reflections
Radiation source: rotating anode2777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.1°
ω scansh = 2722
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 97
Tmin = 0.353, Tmax = 0.779l = 2424
12588 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0094P)2 + 5.4643P]
where P = (Fo2 + 2Fc2)/3
S = 1.30(Δ/σ)max < 0.001
3004 reflectionsΔρmax = 0.88 e Å3
213 parametersΔρmin = 0.74 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00022 (2)
Crystal data top
C18H12BrClO3V = 3294.22 (10) Å3
Mr = 391.64Z = 8
Monoclinic, C2/cCu Kα radiation
a = 23.1440 (4) ŵ = 5.00 mm1
b = 7.61524 (14) ÅT = 193 K
c = 20.2652 (4) Å0.35 × 0.10 × 0.05 mm
β = 112.733 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3004 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2777 reflections with I > 2σ(I)
Tmin = 0.353, Tmax = 0.779Rint = 0.032
12588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.30Δρmax = 0.88 e Å3
3004 reflectionsΔρmin = 0.74 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.093885 (11)0.43969 (4)0.001360 (12)0.03654 (11)
Cl10.01318 (3)1.17778 (10)0.09112 (5)0.0656 (3)
O10.14955 (7)0.4263 (2)0.17786 (8)0.0301 (4)
O20.25985 (7)0.6846 (2)0.25441 (8)0.0332 (4)
H2O0.2875 (10)0.750 (3)0.2780 (13)0.040*
O30.13753 (9)0.3672 (3)0.10993 (8)0.0441 (5)
C10.21864 (10)0.5799 (3)0.13670 (11)0.0245 (5)
C20.26939 (10)0.6442 (3)0.19367 (11)0.0274 (5)
C30.32829 (11)0.6678 (3)0.18978 (13)0.0333 (5)
H30.36260.71230.22970.040*
C40.33562 (11)0.6261 (3)0.12813 (13)0.0362 (6)
H40.37540.64210.12550.043*
C50.28538 (11)0.5595 (3)0.06792 (13)0.0313 (5)
C60.29448 (13)0.5147 (4)0.00503 (14)0.0388 (6)
H60.33480.53000.00390.047*
C70.24741 (13)0.4504 (3)0.05395 (14)0.0413 (6)
H70.25510.41970.09530.050*
C80.18770 (12)0.4300 (3)0.05318 (12)0.0336 (5)
C90.17682 (11)0.4728 (3)0.00745 (12)0.0277 (5)
C100.22513 (10)0.5362 (3)0.07094 (11)0.0257 (5)
C110.15967 (10)0.5612 (3)0.15115 (10)0.0241 (5)
C120.11712 (10)0.7145 (3)0.13796 (11)0.0245 (5)
C130.05714 (10)0.6943 (3)0.13793 (12)0.0296 (5)
H130.04380.58220.14710.036*
C140.01708 (11)0.8358 (3)0.12465 (13)0.0358 (6)
H140.02380.82220.12460.043*
C150.03738 (11)0.9985 (3)0.11142 (14)0.0374 (6)
C160.09668 (12)1.0226 (3)0.11234 (14)0.0382 (6)
H160.11011.13550.10420.046*
C170.13615 (11)0.8797 (3)0.12532 (13)0.0319 (5)
H170.17700.89460.12560.038*
C180.14644 (16)0.3312 (4)0.17507 (13)0.0541 (8)
H18A0.10710.28850.21150.065*
H18B0.17900.24160.16600.065*
H18C0.15930.43900.19210.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03018 (15)0.04598 (19)0.02791 (14)0.00231 (11)0.00512 (10)0.00651 (11)
Cl10.0416 (4)0.0394 (4)0.1165 (7)0.0139 (3)0.0313 (4)0.0080 (4)
O10.0297 (8)0.0266 (9)0.0315 (8)0.0011 (7)0.0090 (7)0.0068 (7)
O20.0294 (9)0.0405 (11)0.0283 (8)0.0067 (7)0.0094 (7)0.0108 (7)
O30.0567 (11)0.0509 (12)0.0239 (8)0.0086 (9)0.0146 (8)0.0072 (8)
C10.0263 (11)0.0210 (11)0.0259 (10)0.0015 (9)0.0097 (9)0.0016 (9)
C20.0283 (11)0.0240 (12)0.0300 (11)0.0010 (9)0.0113 (9)0.0020 (9)
C30.0281 (12)0.0324 (13)0.0367 (12)0.0027 (10)0.0096 (10)0.0058 (11)
C40.0294 (12)0.0360 (14)0.0475 (14)0.0031 (11)0.0196 (11)0.0036 (12)
C50.0351 (13)0.0263 (13)0.0370 (13)0.0013 (10)0.0187 (10)0.0008 (10)
C60.0443 (14)0.0386 (15)0.0445 (14)0.0044 (12)0.0291 (12)0.0027 (12)
C70.0609 (17)0.0378 (15)0.0360 (13)0.0052 (13)0.0303 (13)0.0030 (11)
C80.0474 (15)0.0271 (13)0.0270 (11)0.0038 (11)0.0153 (10)0.0006 (10)
C90.0326 (12)0.0237 (12)0.0271 (11)0.0002 (10)0.0117 (9)0.0028 (9)
C100.0306 (11)0.0199 (11)0.0271 (11)0.0001 (9)0.0118 (9)0.0020 (9)
C110.0259 (11)0.0255 (12)0.0171 (9)0.0026 (9)0.0040 (8)0.0026 (8)
C120.0266 (11)0.0256 (12)0.0209 (10)0.0006 (9)0.0088 (8)0.0003 (9)
C130.0281 (11)0.0289 (13)0.0312 (11)0.0046 (10)0.0108 (9)0.0002 (10)
C140.0252 (12)0.0376 (15)0.0439 (14)0.0024 (11)0.0126 (10)0.0035 (11)
C150.0301 (12)0.0312 (14)0.0483 (14)0.0049 (11)0.0121 (11)0.0020 (11)
C160.0357 (13)0.0256 (13)0.0533 (15)0.0002 (11)0.0172 (12)0.0037 (11)
C170.0282 (12)0.0302 (13)0.0399 (13)0.0004 (10)0.0160 (10)0.0036 (10)
C180.087 (2)0.0512 (19)0.0263 (13)0.0088 (17)0.0243 (14)0.0067 (12)
Geometric parameters (Å, º) top
Br1—C91.892 (2)C7—C81.397 (4)
Cl1—C151.741 (3)C7—H70.9500
O1—C111.225 (3)C8—C91.385 (3)
O2—C21.367 (3)C9—C101.424 (3)
O2—H2O0.808 (17)C11—C121.484 (3)
O3—C81.366 (3)C12—C171.389 (3)
O3—C181.439 (3)C12—C131.396 (3)
C1—C21.380 (3)C13—C141.379 (3)
C1—C101.437 (3)C13—H130.9500
C1—C111.509 (3)C14—C151.387 (4)
C2—C31.407 (3)C14—H140.9500
C3—C41.362 (3)C15—C161.378 (3)
C3—H30.9500C16—C171.379 (3)
C4—C51.415 (3)C16—H160.9500
C4—H40.9500C17—H170.9500
C5—C61.411 (3)C18—H18A0.9800
C5—C101.430 (3)C18—H18B0.9800
C6—C71.360 (4)C18—H18C0.9800
C6—H60.9500
C2—O2—H2O108 (2)C9—C10—C1126.1 (2)
C8—O3—C18117.5 (2)C5—C10—C1117.7 (2)
C2—C1—C10119.9 (2)O1—C11—C12120.8 (2)
C2—C1—C11114.35 (19)O1—C11—C1120.4 (2)
C10—C1—C11125.79 (19)C12—C11—C1118.53 (19)
O2—C2—C1116.9 (2)C17—C12—C13119.0 (2)
O2—C2—C3121.3 (2)C17—C12—C11120.7 (2)
C1—C2—C3121.9 (2)C13—C12—C11120.3 (2)
C4—C3—C2119.2 (2)C14—C13—C12120.5 (2)
C4—C3—H3120.4C14—C13—H13119.7
C2—C3—H3120.4C12—C13—H13119.7
C3—C4—C5121.5 (2)C13—C14—C15118.9 (2)
C3—C4—H4119.2C13—C14—H14120.6
C5—C4—H4119.2C15—C14—H14120.6
C6—C5—C4120.4 (2)C16—C15—C14121.8 (2)
C6—C5—C10119.8 (2)C16—C15—Cl1118.3 (2)
C4—C5—C10119.8 (2)C14—C15—Cl1119.93 (19)
C7—C6—C5122.2 (2)C15—C16—C17118.7 (2)
C7—C6—H6118.9C15—C16—H16120.7
C5—C6—H6118.9C17—C16—H16120.7
C6—C7—C8119.4 (2)C16—C17—C12121.1 (2)
C6—C7—H7120.3C16—C17—H17119.5
C8—C7—H7120.3C12—C17—H17119.5
O3—C8—C9116.2 (2)O3—C18—H18A109.5
O3—C8—C7123.5 (2)O3—C18—H18B109.5
C9—C8—C7120.2 (2)H18A—C18—H18B109.5
C8—C9—C10122.2 (2)O3—C18—H18C109.5
C8—C9—Br1116.00 (17)H18A—C18—H18C109.5
C10—C9—Br1121.80 (17)H18B—C18—H18C109.5
C9—C10—C5116.2 (2)
C10—C1—C2—O2179.4 (2)C4—C5—C10—C9178.4 (2)
C11—C1—C2—O21.0 (3)C6—C5—C10—C1178.6 (2)
C10—C1—C2—C30.5 (3)C4—C5—C10—C11.0 (3)
C11—C1—C2—C3179.2 (2)C2—C1—C10—C9178.4 (2)
O2—C2—C3—C4179.9 (2)C11—C1—C10—C92.0 (4)
C1—C2—C3—C40.0 (4)C2—C1—C10—C51.0 (3)
C2—C3—C4—C50.1 (4)C11—C1—C10—C5178.6 (2)
C3—C4—C5—C6179.0 (2)C2—C1—C11—O187.5 (3)
C3—C4—C5—C100.6 (4)C10—C1—C11—O192.1 (3)
C4—C5—C6—C7180.0 (3)C2—C1—C11—C1287.5 (2)
C10—C5—C6—C70.4 (4)C10—C1—C11—C1292.9 (3)
C5—C6—C7—C81.0 (4)O1—C11—C12—C17163.4 (2)
C18—O3—C8—C9176.5 (2)C1—C11—C12—C1711.6 (3)
C18—O3—C8—C74.0 (4)O1—C11—C12—C1316.8 (3)
C6—C7—C8—O3179.7 (2)C1—C11—C12—C13168.26 (19)
C6—C7—C8—C90.8 (4)C17—C12—C13—C140.8 (3)
O3—C8—C9—C10178.7 (2)C11—C12—C13—C14179.0 (2)
C7—C8—C9—C100.9 (4)C12—C13—C14—C150.1 (4)
O3—C8—C9—Br10.6 (3)C13—C14—C15—C161.1 (4)
C7—C8—C9—Br1179.81 (19)C13—C14—C15—Cl1177.56 (19)
C8—C9—C10—C52.2 (3)C14—C15—C16—C171.4 (4)
Br1—C9—C10—C5178.52 (16)Cl1—C15—C16—C17177.2 (2)
C8—C9—C10—C1178.4 (2)C15—C16—C17—C120.6 (4)
Br1—C9—C10—C10.9 (3)C13—C12—C17—C160.5 (3)
C6—C5—C10—C92.0 (3)C11—C12—C17—C16179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.81 (2)1.93 (2)2.728 (2)172 (2)
C3—H3···O1i0.952.583.205 (3)124
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H12BrClO3
Mr391.64
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)23.1440 (4), 7.61524 (14), 20.2652 (4)
β (°) 112.733 (1)
V3)3294.22 (10)
Z8
Radiation typeCu Kα
µ (mm1)5.00
Crystal size (mm)0.35 × 0.10 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.353, 0.779
No. of measured, independent and
observed [I > 2σ(I)] reflections
12588, 3004, 2777
Rint0.032
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.30
No. of reflections3004
No. of parameters213
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 0.74

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.81 (2)1.93 (2)2.728 (2)172 (2)
C3—H3···O1i0.952.583.205 (3)124
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds