organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Eth­­oxy-6-[(4-eth­oxy­phen­yl)imino­meth­yl]phenol

aDepartment of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and bFaculty of Education, Sinop University, Sinop, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 16 February 2010; accepted 18 February 2010; online 24 February 2010)

In the asymmetric unit of the title compound, C17H19NO3, there are three independent mol­ecules, which are align nearly parallel to each other and adopt the phenol-imine tautomeric form. In each mol­ecule, an intra­molecular O—H⋯N hydrogen bond results in the formation of an S(6) ring motif. The dihedral angles between the aromatic rings in the three independent mol­ecules are 13.55 (2), 21.24 (2) and 46.26 (1)°. C—H⋯π inter­actions are also observed in the crystal structure.

Related literature

For related structures, see: Odabaşoğlu, Arslan et al. (2007[Odabaşoğlu, M., Arslan, F., Ölmez, H. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3654.]); Odabaşoğlu, Büyükgüngör et al. (2007[Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916-o1918.]); Özek et al. (2009[Özek, A., Albayrak, Ç. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2705.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO3

  • Mr = 285.33

  • Triclinic, [P \overline 1]

  • a = 11.565 (5) Å

  • b = 14.010 (4) Å

  • c = 15.062 (4) Å

  • α = 77.229 (4)°

  • β = 84.398 (5)°

  • γ = 73.892 (5)°

  • V = 2284.9 (13) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.72 × 0.34 × 0.12 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.957, Tmax = 0.992

  • 25618 measured reflections

  • 8981 independent reflections

  • 4754 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.185

  • S = 1.03

  • 8981 reflections

  • 578 parameters

  • 28 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1B–C6B, C1C–C6C, C10A–C15A and C10C–C15C rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N1A 0.89 (4) 1.76 (4) 2.601 (3) 156 (4)
O1B—H1B⋯N1B 0.88 (4) 1.80 (4) 2.611 (3) 152 (4)
O1C—H1C⋯N1C 0.92 (4) 1.79 (4) 2.643 (3) 153 (3)
C7C—H71CCg1 0.97 2.72 3.5692 (1) 146
C7A—H72ACg2i 0.97 2.75 3.6644 (1) 157
C16B—H16GCg3ii 0.97 2.89 3.7935 (1) 156
C16B—H16FCg4 0.97 2.78 3.6694 (1) 153
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The present work is part of a structural study of Schiff bases (Özek et al., 2009; Odabaşoğlu, Arslan et al., 2007; Odabaşoğlu, Büyükgüngör et al., 2007) and we report here the structure of (E)-2-ethoxy-6-[(4-ethoxyphenylimino)methyl]phenol, (I).

In general, O-hydroxy Schiff bases exhibit two possible tautomeric forms, the phenol-imine (or benzenoid) and keto-amine (or quinoid) forms. Depending on the tautomers, two types of intra-molecular hydrogen bonds are possible: O—H···N in benzenoid and N—H···O in quinoid tautomers. The H atom in title compound (I) is located on atom O1, thus the phenol-imine tautomer is favored over the keto-amine form, as indicated by the C9—N1, C9—C10, C11—O1 and C10—C11 bond lengths. The O1—C11 bond lengths in molecule A, B and C [1.347 (3), 1.346 (3) and 1.349 (3) Å, respectively] indicate single-bond character, whereas the N1—C9 bond lengths [1.277 (4), 1.274 (4) and 1.279 (3) Å, respectively] indicate a high degree of double-bond character. A similar work was observed for (E)-2-[(4-Ethoxyphenyl)iminomethyl]-4-methoxyphenol [C—O = 1.351 (2) Å and C—N = 1.285 (2) Å; Özek et al., 2009].

There are three crystallographic independent molecules A, B and C in the asymmetric unit (Fig. 1) with their ethoxy groups pointing in same directions. The molecular structure of (I), is not planar and this non-planarity increase gradually with the sequence of molecule A, B and C. The dihedral angles between the C1–C6 and C10–C15 benzene rings are 13.55 (2), 21.24 (2) and 46.26 (1)° with this A, B, C sequence. It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect photochromic properties in (I) caused by non-planarity of the molecules. Intramolecular O—H···N hydrogen bonds result in the formation of a nearly planar six-membered ring motif S(6) (Bernstein et al., 1995), which is oriented with respect to the fused aromatic rings at dihedral angles of 1.22 (1) and 12.38 (1)° for molecule A, 3.28 (1) and 20.28 (1)° for molecule B and 3.26 (1) and 45.49 (1)° for molecule C.

The crystal packing is also stabilized by C—H···π interactions [C7C—H71C···Cg1, C7A—H72A···Cg2, C16B—H16G···Cg3 and C16B—H16F···Cg4; Fig. 2 and Table 1). Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1B–C6B, C1C–C6C, C10A–C15A and C10C–C15C rings, respectively.

Related literature top

For related structures, see: Odabaşoğlu, Arslan et al. (2007); Odabaşoğlu, Büyükgüngör et al. (2007); Özek et al. (2009). For details of hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

For the preparation of (E)-2-ethoxy-6-[(4-ethoxyphenylimino)methyl]phenol compound, the mixture of 3-ethoxy-2-hydroxybenzaldehyde (0.5 g, 3 mmol) in ethanol (20 ml) and 4-ethoxyaniline (0.41 g, 3 mmol) in ethanol (20 ml) was stirred for 1 h under reflux. The crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield 85%; m.p. 363-365 K).

Refinement top

Atoms H1A, H1B and H1C were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically [C—H = 0.93 Å (aromatic) and C—H = 0.96 Å (methyl)] and constrained to ride on their parent atom, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for other H atoms. To recover the slightly deformed shape of the ring C1A–C6A, the SHELXL97 similar Uij and rigid bond restraints (SIMU and DELU) were applied.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-RED32 (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Dashed line indicates intramolecular hydrogen bond.
[Figure 2] Fig. 2. A partial packing view of (I), showing C—H···π interactions. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) 1-x, 1-y, 2-z.]
(E)-2-Ethoxy-6-[(4-ethoxyphenyl)iminomethyl]phenol top
Crystal data top
C17H19NO3Z = 6
Mr = 285.33F(000) = 912
Triclinic, P1Dx = 1.244 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.565 (5) ÅCell parameters from 25618 reflections
b = 14.010 (4) Åθ = 1.8–27.6°
c = 15.062 (4) ŵ = 0.09 mm1
α = 77.229 (4)°T = 296 K
β = 84.398 (5)°Plate, yellow
γ = 73.892 (5)°0.72 × 0.34 × 0.12 mm
V = 2284.9 (13) Å3
Data collection top
Stoe IPDSII
diffractometer
8981 independent reflections
Radiation source: fine-focus sealed tube4754 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.042
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.5°
ω scansh = 1414
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1717
Tmin = 0.957, Tmax = 0.992l = 1817
25618 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.0889P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8981 reflectionsΔρmax = 0.45 e Å3
578 parametersΔρmin = 0.50 e Å3
28 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (8)
Crystal data top
C17H19NO3γ = 73.892 (5)°
Mr = 285.33V = 2284.9 (13) Å3
Triclinic, P1Z = 6
a = 11.565 (5) ÅMo Kα radiation
b = 14.010 (4) ŵ = 0.09 mm1
c = 15.062 (4) ÅT = 296 K
α = 77.229 (4)°0.72 × 0.34 × 0.12 mm
β = 84.398 (5)°
Data collection top
Stoe IPDSII
diffractometer
8981 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
4754 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.992Rint = 0.042
25618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06228 restraints
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.45 e Å3
8981 reflectionsΔρmin = 0.50 e Å3
578 parameters
Special details top

Experimental. 288 frames, detector distance = 100 mm

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.5986 (3)0.5390 (2)0.1914 (2)0.0739 (7)
C1B0.7268 (2)0.55194 (19)0.5063 (2)0.0554 (7)
C1C0.8834 (2)0.53869 (18)0.85417 (19)0.0543 (7)
C2A0.5104 (3)0.5079 (3)0.1644 (3)0.0886 (8)
H2A0.43100.53490.18250.106*
C2B0.6716 (2)0.47435 (19)0.5147 (2)0.0585 (7)
H2B0.60210.47520.55160.070*
C2C0.8125 (3)0.5360 (2)0.7868 (2)0.0622 (7)
H2C0.74350.58850.77210.075*
C3A0.5357 (3)0.4367 (3)0.1102 (3)0.1025 (9)
H3A0.47280.41670.09240.123*
C3B0.7178 (2)0.3959 (2)0.4692 (2)0.0599 (7)
H3B0.68040.34360.47690.072*
C3C0.8417 (2)0.4568 (2)0.7406 (2)0.0618 (7)
H3C0.79360.45700.69450.074*
C4A0.6511 (3)0.3947 (3)0.0818 (3)0.0847 (8)
C4B0.8193 (2)0.3943 (2)0.4124 (2)0.0574 (7)
C4C0.9435 (2)0.37715 (19)0.76353 (19)0.0535 (7)
C5A0.7385 (3)0.4257 (3)0.1086 (3)0.0851 (8)
H5A0.81780.39980.08960.102*
C5B0.8760 (3)0.4707 (2)0.4033 (2)0.0701 (8)
H5B0.94460.47030.36550.084*
C5C1.0144 (2)0.3798 (2)0.83097 (19)0.0590 (7)
H5C1.08250.32670.84680.071*
C6A0.7132 (3)0.4959 (2)0.1644 (3)0.0821 (8)
H6A0.77640.51410.18400.099*
C6B0.8299 (3)0.5482 (2)0.4510 (2)0.0676 (8)
H6B0.86940.59880.44560.081*
C6C0.9857 (2)0.4600 (2)0.8752 (2)0.0593 (7)
H6C1.03550.46120.91950.071*
C7A0.7786 (3)0.2916 (2)0.0147 (3)0.0843 (10)
H71A0.83790.25350.03020.101*
H72A0.80490.34960.04890.101*
C7B0.9671 (3)0.3015 (3)0.3177 (3)0.0918 (11)
H71B1.03270.29750.35510.110*
H72B0.96170.35930.26750.110*
C7C0.9124 (3)0.2908 (2)0.6506 (2)0.0759 (9)
H71C0.90300.35190.60360.091*
H72C0.83300.28490.67420.091*
C8A0.7666 (4)0.2261 (3)0.0774 (3)0.1043 (13)
H81A0.84290.20330.10800.156*
H82A0.70780.26430.12160.156*
H83A0.74150.16840.04290.156*
C8B0.9897 (4)0.2067 (3)0.2822 (3)0.1280 (18)
H81B1.06360.19750.24610.192*
H82B0.92440.21140.24520.192*
H83B0.99560.14990.33230.192*
C8C0.9778 (4)0.1998 (3)0.6119 (3)0.1083 (14)
H81C0.93280.19470.56360.162*
H82C0.98650.13980.65890.162*
H83C1.05600.20650.58840.162*
C9A0.6362 (3)0.6629 (2)0.2591 (2)0.0634 (8)
H9A0.71330.64850.23240.076*
C9B0.5829 (3)0.6563 (2)0.5894 (2)0.0667 (8)
H9B0.52750.62340.57870.080*
C9C0.7487 (3)0.6580 (2)0.9270 (2)0.0641 (8)
H9C0.68920.63100.91340.077*
C10A0.6030 (2)0.74064 (19)0.3135 (2)0.0572 (7)
C10B0.5447 (3)0.7328 (2)0.6455 (2)0.0634 (8)
C10C0.7133 (3)0.74098 (19)0.9755 (2)0.0594 (7)
C11A0.4868 (2)0.76687 (18)0.35280 (19)0.0552 (7)
C11B0.6238 (3)0.78544 (19)0.6623 (2)0.0582 (7)
C11C0.7967 (3)0.78991 (19)0.99204 (19)0.0582 (7)
C12A0.4578 (3)0.84182 (19)0.4053 (2)0.0595 (7)
C12B0.5872 (3)0.85486 (19)0.7208 (2)0.0630 (8)
C12C0.7606 (3)0.8675 (2)1.0424 (2)0.0643 (8)
C13A0.5422 (3)0.8900 (2)0.4160 (2)0.0685 (8)
H13A0.52230.94050.45020.082*
C13B0.4725 (3)0.8708 (2)0.7595 (2)0.0776 (9)
H13B0.44760.91690.79800.093*
C13C0.6418 (3)0.8957 (2)1.0720 (2)0.0747 (9)
H13C0.61700.94781.10440.090*
C14A0.6569 (3)0.8645 (2)0.3763 (2)0.0770 (9)
H14A0.71360.89740.38440.092*
C14B0.3935 (3)0.8197 (3)0.7422 (3)0.0922 (11)
H14B0.31620.83180.76880.111*
C14C0.5590 (3)0.8483 (2)1.0546 (3)0.0814 (10)
H14C0.47930.86861.07540.098*
C15A0.6866 (3)0.7913 (2)0.3256 (2)0.0704 (8)
H15A0.76340.77500.29860.084*
C15B0.4284 (3)0.7512 (3)0.6860 (3)0.0877 (11)
H15B0.37490.71690.67470.105*
C15C0.5929 (3)0.7720 (2)1.0072 (2)0.0738 (9)
H15C0.53660.74050.99580.089*
C16A0.3035 (3)0.9448 (2)0.4879 (3)0.0798 (10)
H16D0.31421.00670.44820.096*
H16E0.34980.93130.54170.096*
C16B0.6400 (3)0.9729 (2)0.7923 (2)0.0712 (9)
H16F0.61990.94060.85350.085*
H16G0.57081.02750.76950.085*
C16C0.8224 (3)0.9747 (3)1.1205 (3)0.0880 (11)
H16I0.79230.94171.17810.106*
H16H0.76121.03591.09690.106*
C17A0.1739 (4)0.9550 (3)0.5138 (4)0.1238 (18)
H17D0.16470.89340.55330.186*
H17E0.12930.96780.45990.186*
H17F0.14401.01040.54480.186*
C17B0.7467 (3)1.0134 (3)0.7927 (3)0.0948 (11)
H17I0.72881.06190.83150.142*
H17G0.76531.04560.73180.142*
H17H0.81460.95860.81490.142*
C17C0.9351 (4)1.0004 (3)1.1338 (3)0.1092 (14)
H17K0.91901.04561.17570.164*
H17L0.96431.03271.07640.164*
H17M0.99480.93951.15790.164*
N1A0.5638 (2)0.61332 (16)0.24631 (17)0.0616 (6)
N1B0.6892 (2)0.63265 (15)0.55443 (16)0.0597 (6)
N1C0.8578 (2)0.62015 (16)0.90201 (16)0.0600 (6)
O1A0.40193 (19)0.72146 (16)0.34247 (17)0.0770 (7)
H1A0.439 (3)0.681 (3)0.304 (3)0.116*
O1B0.73590 (19)0.77207 (15)0.62429 (16)0.0741 (6)
H1B0.745 (3)0.722 (3)0.596 (3)0.111*
O1C0.91309 (17)0.76443 (15)0.96280 (15)0.0680 (6)
H1C0.920 (3)0.708 (3)0.939 (3)0.102*
O2A0.34239 (19)0.86173 (15)0.44148 (16)0.0773 (6)
O2B0.6720 (2)0.90079 (15)0.73405 (16)0.0777 (6)
O2C0.8492 (2)0.90863 (16)1.05770 (16)0.0818 (7)
O3A0.6664 (2)0.32439 (19)0.02880 (18)0.0941 (8)
O3B0.85657 (18)0.31313 (14)0.37065 (15)0.0708 (6)
O3C0.98225 (17)0.29559 (14)0.72252 (14)0.0676 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0555 (13)0.0795 (14)0.1026 (18)0.0235 (11)0.0102 (12)0.0499 (14)
C1B0.0575 (16)0.0539 (14)0.0578 (18)0.0138 (12)0.0069 (13)0.0169 (13)
C1C0.0546 (16)0.0519 (14)0.0589 (18)0.0170 (12)0.0025 (13)0.0128 (13)
C2A0.0602 (15)0.1061 (18)0.118 (2)0.0278 (14)0.0152 (15)0.0624 (17)
C2B0.0525 (15)0.0630 (15)0.0641 (19)0.0161 (12)0.0028 (13)0.0229 (14)
C2C0.0617 (17)0.0576 (15)0.0618 (19)0.0026 (13)0.0130 (14)0.0128 (14)
C3A0.0692 (16)0.131 (2)0.138 (2)0.0391 (15)0.0168 (16)0.0835 (19)
C3B0.0570 (17)0.0631 (15)0.070 (2)0.0242 (13)0.0006 (14)0.0251 (14)
C3C0.0596 (17)0.0666 (16)0.0581 (18)0.0069 (13)0.0157 (13)0.0168 (14)
C4A0.0628 (14)0.0972 (16)0.120 (2)0.0325 (12)0.0159 (14)0.0687 (16)
C4B0.0580 (16)0.0613 (15)0.0554 (18)0.0167 (13)0.0011 (13)0.0173 (13)
C4C0.0531 (15)0.0567 (14)0.0507 (17)0.0122 (12)0.0014 (13)0.0150 (13)
C5A0.0579 (15)0.0948 (17)0.122 (2)0.0237 (13)0.0144 (15)0.0652 (17)
C5B0.0719 (19)0.0650 (17)0.076 (2)0.0281 (15)0.0196 (16)0.0174 (16)
C5C0.0491 (15)0.0663 (16)0.0575 (18)0.0029 (12)0.0048 (13)0.0185 (14)
C6A0.0573 (14)0.0926 (17)0.114 (2)0.0230 (13)0.0047 (14)0.0568 (16)
C6B0.0679 (19)0.0622 (16)0.080 (2)0.0281 (14)0.0043 (16)0.0194 (15)
C6C0.0492 (15)0.0717 (17)0.0601 (19)0.0137 (13)0.0076 (13)0.0204 (14)
C7A0.084 (2)0.079 (2)0.100 (3)0.0289 (17)0.025 (2)0.044 (2)
C7B0.089 (2)0.091 (2)0.096 (3)0.0246 (19)0.038 (2)0.038 (2)
C7C0.077 (2)0.0804 (19)0.078 (2)0.0150 (16)0.0135 (17)0.0350 (17)
C8A0.125 (3)0.092 (2)0.110 (3)0.034 (2)0.027 (3)0.058 (2)
C8B0.154 (4)0.100 (3)0.135 (4)0.036 (3)0.069 (3)0.063 (3)
C8C0.129 (3)0.092 (2)0.113 (3)0.009 (2)0.028 (3)0.056 (2)
C9A0.0603 (18)0.0605 (16)0.070 (2)0.0138 (14)0.0043 (14)0.0195 (15)
C9B0.0636 (19)0.0622 (16)0.080 (2)0.0107 (14)0.0149 (16)0.0284 (15)
C9C0.0609 (18)0.0610 (16)0.073 (2)0.0163 (13)0.0048 (15)0.0180 (15)
C10A0.0605 (17)0.0529 (14)0.0601 (19)0.0169 (12)0.0024 (13)0.0130 (13)
C10B0.0606 (18)0.0589 (15)0.072 (2)0.0080 (13)0.0100 (15)0.0214 (14)
C10C0.0578 (17)0.0564 (15)0.0632 (19)0.0107 (12)0.0028 (13)0.0158 (14)
C11A0.0608 (17)0.0483 (13)0.0582 (18)0.0193 (12)0.0024 (13)0.0101 (13)
C11B0.0617 (17)0.0514 (14)0.0580 (18)0.0066 (12)0.0048 (14)0.0132 (13)
C11C0.0587 (17)0.0582 (15)0.0558 (18)0.0115 (13)0.0029 (13)0.0120 (13)
C12A0.0670 (18)0.0514 (14)0.0592 (19)0.0138 (13)0.0024 (14)0.0136 (13)
C12B0.0682 (19)0.0529 (15)0.069 (2)0.0117 (13)0.0044 (15)0.0198 (14)
C12C0.073 (2)0.0589 (15)0.063 (2)0.0143 (14)0.0036 (15)0.0194 (14)
C13A0.076 (2)0.0626 (16)0.076 (2)0.0222 (15)0.0007 (16)0.0293 (16)
C13B0.079 (2)0.0725 (19)0.085 (2)0.0134 (17)0.0087 (18)0.0372 (18)
C13C0.076 (2)0.0720 (18)0.077 (2)0.0128 (16)0.0094 (17)0.0324 (17)
C14A0.073 (2)0.0788 (19)0.093 (3)0.0284 (16)0.0009 (18)0.0381 (19)
C14B0.067 (2)0.103 (2)0.117 (3)0.0223 (19)0.017 (2)0.053 (2)
C14C0.066 (2)0.084 (2)0.095 (3)0.0134 (17)0.0122 (18)0.033 (2)
C15A0.0613 (18)0.0724 (18)0.083 (2)0.0212 (14)0.0032 (16)0.0256 (17)
C15B0.066 (2)0.091 (2)0.120 (3)0.0201 (17)0.000 (2)0.053 (2)
C15C0.0645 (19)0.0778 (19)0.083 (2)0.0194 (15)0.0051 (16)0.0270 (18)
C16A0.086 (2)0.0717 (18)0.093 (3)0.0252 (16)0.0197 (19)0.0437 (18)
C16B0.091 (2)0.0589 (16)0.067 (2)0.0121 (15)0.0059 (17)0.0274 (15)
C16C0.107 (3)0.084 (2)0.089 (3)0.0366 (19)0.012 (2)0.040 (2)
C17A0.091 (3)0.126 (3)0.183 (5)0.036 (2)0.047 (3)0.103 (3)
C17B0.108 (3)0.084 (2)0.109 (3)0.031 (2)0.003 (2)0.049 (2)
C17C0.114 (3)0.115 (3)0.127 (4)0.042 (2)0.000 (3)0.068 (3)
N1A0.0679 (15)0.0510 (12)0.0664 (16)0.0144 (11)0.0041 (12)0.0176 (11)
N1B0.0659 (15)0.0514 (12)0.0618 (16)0.0100 (11)0.0074 (12)0.0164 (11)
N1C0.0619 (15)0.0575 (12)0.0635 (16)0.0165 (11)0.0010 (12)0.0180 (11)
O1A0.0693 (14)0.0777 (13)0.1005 (19)0.0336 (11)0.0217 (12)0.0451 (12)
O1B0.0715 (14)0.0712 (13)0.0911 (17)0.0221 (10)0.0078 (11)0.0404 (12)
O1C0.0580 (12)0.0723 (12)0.0797 (15)0.0164 (10)0.0023 (10)0.0309 (11)
O2A0.0761 (14)0.0748 (12)0.0942 (17)0.0282 (10)0.0229 (12)0.0452 (12)
O2B0.0844 (15)0.0733 (12)0.0889 (17)0.0244 (11)0.0071 (12)0.0445 (12)
O2C0.0815 (15)0.0887 (14)0.0908 (17)0.0278 (12)0.0070 (12)0.0481 (13)
O3A0.0826 (16)0.1172 (18)0.113 (2)0.0461 (13)0.0254 (14)0.0739 (16)
O3B0.0683 (13)0.0693 (11)0.0820 (15)0.0202 (10)0.0153 (11)0.0354 (11)
O3C0.0641 (12)0.0707 (12)0.0700 (14)0.0054 (9)0.0109 (10)0.0307 (11)
Geometric parameters (Å, º) top
C1A—C2A1.342 (4)C9B—H9B0.9300
C1A—C6A1.358 (4)C9C—N1C1.279 (3)
C1A—N1A1.419 (3)C9C—C10C1.451 (4)
C1B—C6B1.382 (4)C9C—H9C0.9300
C1B—C2B1.384 (4)C10A—C15A1.394 (4)
C1B—N1B1.422 (3)C10A—C11A1.399 (4)
C1C—C2C1.378 (4)C10B—C11B1.396 (4)
C1C—C6C1.382 (4)C10B—C15B1.401 (4)
C1C—N1C1.430 (3)C10C—C11C1.397 (4)
C2A—C3A1.378 (4)C10C—C15C1.408 (4)
C2A—H2A0.9300C11A—O1A1.347 (3)
C2B—C3B1.378 (3)C11A—C12A1.401 (4)
C2B—H2B0.9300C11B—O1B1.346 (3)
C2C—C3C1.385 (4)C11B—C12B1.407 (4)
C2C—H2C0.9300C11C—O1C1.349 (3)
C3A—C4A1.368 (4)C11C—C12C1.408 (4)
C3A—H3A0.9300C12A—O2A1.369 (3)
C3B—C4B1.381 (4)C12A—C13A1.371 (4)
C3B—H3B0.9300C12B—O2B1.364 (4)
C3C—C4C1.389 (4)C12B—C13B1.376 (4)
C3C—H3C0.9300C12C—O2C1.367 (4)
C4A—C5A1.333 (4)C12C—C13C1.378 (4)
C4A—O3A1.364 (4)C13A—C14A1.386 (4)
C4B—O3B1.365 (3)C13A—H13A0.9300
C4B—C5B1.379 (4)C13B—C14B1.381 (5)
C4C—O3C1.364 (3)C13B—H13B0.9300
C4C—C5C1.379 (4)C13C—C14C1.381 (5)
C5A—C6A1.385 (4)C13C—H13C0.9300
C5A—H5A0.9300C14A—C15A1.361 (4)
C5B—C6B1.389 (4)C14A—H14A0.9300
C5B—H5B0.9300C14B—C15B1.370 (4)
C5C—C6C1.377 (4)C14B—H14B0.9300
C5C—H5C0.9300C14C—C15C1.362 (4)
C6A—H6A0.9300C14C—H14C0.9300
C6B—H6B0.9300C15A—H15A0.9300
C6C—H6C0.9300C15B—H15B0.9300
C7A—O3A1.400 (4)C15C—H15C0.9300
C7A—C8A1.495 (5)C16A—O2A1.432 (3)
C7A—H71A0.9700C16A—C17A1.487 (5)
C7A—H72A0.9700C16A—H16D0.9700
C7B—O3B1.428 (4)C16A—H16E0.9700
C7B—C8B1.488 (5)C16B—O2B1.431 (3)
C7B—H71B0.9700C16B—C17B1.495 (5)
C7B—H72B0.9700C16B—H16F0.9700
C7C—O3C1.437 (4)C16B—H16G0.9700
C7C—C8C1.498 (4)C16C—O2C1.420 (4)
C7C—H71C0.9700C16C—C17C1.487 (5)
C7C—H72C0.9700C16C—H16I0.9700
C8A—H81A0.9600C16C—H16H0.9700
C8A—H82A0.9600C17A—H17D0.9600
C8A—H83A0.9600C17A—H17E0.9600
C8B—H81B0.9600C17A—H17F0.9600
C8B—H82B0.9600C17B—H17I0.9600
C8B—H83B0.9600C17B—H17G0.9600
C8C—H81C0.9600C17B—H17H0.9600
C8C—H82C0.9600C17C—H17K0.9600
C8C—H83C0.9600C17C—H17L0.9600
C9A—N1A1.277 (4)C17C—H17M0.9600
C9A—C10A1.452 (4)O1A—H1A0.89 (4)
C9A—H9A0.9300O1B—H1B0.88 (4)
C9B—N1B1.274 (4)O1C—H1C0.92 (4)
C9B—C10B1.456 (4)
C2A—C1A—C6A117.1 (3)C11A—C10A—C9A120.6 (3)
C2A—C1A—N1A117.0 (3)C11B—C10B—C15B119.4 (3)
C6A—C1A—N1A125.8 (3)C11B—C10B—C9B120.9 (3)
C6B—C1B—C2B117.9 (2)C15B—C10B—C9B119.7 (3)
C6B—C1B—N1B117.2 (3)C11C—C10C—C15C119.5 (3)
C2B—C1B—N1B124.8 (3)C11C—C10C—C9C121.2 (3)
C2C—C1C—C6C118.5 (2)C15C—C10C—C9C119.3 (3)
C2C—C1C—N1C123.2 (2)O1A—C11A—C10A122.0 (2)
C6C—C1C—N1C118.3 (2)O1A—C11A—C12A118.7 (2)
C1A—C2A—C3A121.0 (3)C10A—C11A—C12A119.3 (3)
C1A—C2A—H2A119.5O1B—C11B—C10B122.1 (2)
C3A—C2A—H2A119.5O1B—C11B—C12B117.9 (3)
C3B—C2B—C1B121.0 (3)C10B—C11B—C12B120.0 (3)
C3B—C2B—H2B119.5O1C—C11C—C10C122.4 (2)
C1B—C2B—H2B119.5O1C—C11C—C12C117.8 (3)
C1C—C2C—C3C121.5 (2)C10C—C11C—C12C119.8 (3)
C1C—C2C—H2C119.2O2A—C12A—C13A125.1 (2)
C3C—C2C—H2C119.2O2A—C12A—C11A115.0 (3)
C4A—C3A—C2A121.8 (3)C13A—C12A—C11A119.9 (3)
C4A—C3A—H3A119.1O2B—C12B—C13B125.7 (3)
C2A—C3A—H3A119.1O2B—C12B—C11B115.3 (3)
C2B—C3B—C4B120.5 (3)C13B—C12B—C11B119.0 (3)
C2B—C3B—H3B119.7O2C—C12C—C13C125.5 (3)
C4B—C3B—H3B119.7O2C—C12C—C11C115.7 (3)
C2C—C3C—C4C119.4 (3)C13C—C12C—C11C118.9 (3)
C2C—C3C—H3C120.3C12A—C13A—C14A120.7 (3)
C4C—C3C—H3C120.3C12A—C13A—H13A119.6
C5A—C4A—O3A125.8 (3)C14A—C13A—H13A119.6
C5A—C4A—C3A117.1 (3)C12B—C13B—C14B121.2 (3)
O3A—C4A—C3A117.1 (3)C12B—C13B—H13B119.4
O3B—C4B—C5B125.3 (3)C14B—C13B—H13B119.4
O3B—C4B—C3B115.4 (2)C12C—C13C—C14C121.3 (3)
C5B—C4B—C3B119.3 (3)C12C—C13C—H13C119.3
O3C—C4C—C5C116.0 (2)C14C—C13C—H13C119.3
O3C—C4C—C3C125.0 (3)C15A—C14A—C13A120.0 (3)
C5C—C4C—C3C119.0 (2)C15A—C14A—H14A120.0
C4A—C5A—C6A121.0 (3)C13A—C14A—H14A120.0
C4A—C5A—H5A119.5C15B—C14B—C13B120.3 (3)
C6A—C5A—H5A119.5C15B—C14B—H14B119.8
C4B—C5B—C6B119.6 (3)C13B—C14B—H14B119.8
C4B—C5B—H5B120.2C15C—C14C—C13C120.5 (3)
C6B—C5B—H5B120.2C15C—C14C—H14C119.7
C6C—C5C—C4C120.9 (2)C13C—C14C—H14C119.7
C6C—C5C—H5C119.5C14A—C15A—C10A120.7 (3)
C4C—C5C—H5C119.5C14A—C15A—H15A119.6
C1A—C6A—C5A121.9 (3)C10A—C15A—H15A119.6
C1A—C6A—H6A119.0C14B—C15B—C10B120.1 (3)
C5A—C6A—H6A119.0C14B—C15B—H15B119.9
C1B—C6B—C5B121.6 (3)C10B—C15B—H15B119.9
C1B—C6B—H6B119.2C14C—C15C—C10C120.0 (3)
C5B—C6B—H6B119.2C14C—C15C—H15C120.0
C5C—C6C—C1C120.5 (3)C10C—C15C—H15C120.0
C5C—C6C—H6C119.7O2A—C16A—C17A106.8 (3)
C1C—C6C—H6C119.7O2A—C16A—H16D110.4
O3A—C7A—C8A108.5 (3)C17A—C16A—H16D110.4
O3A—C7A—H71A110.0O2A—C16A—H16E110.4
C8A—C7A—H71A110.0C17A—C16A—H16E110.4
O3A—C7A—H72A110.0H16D—C16A—H16E108.6
C8A—C7A—H72A110.0O2B—C16B—C17B107.0 (3)
H71A—C7A—H72A108.4O2B—C16B—H16F110.3
O3B—C7B—C8B108.1 (3)C17B—C16B—H16F110.3
O3B—C7B—H71B110.1O2B—C16B—H16G110.3
C8B—C7B—H71B110.1C17B—C16B—H16G110.3
O3B—C7B—H72B110.1H16F—C16B—H16G108.6
C8B—C7B—H72B110.1O2C—C16C—C17C108.0 (3)
H71B—C7B—H72B108.4O2C—C16C—H16I110.1
O3C—C7C—C8C107.8 (3)C17C—C16C—H16I110.1
O3C—C7C—H71C110.1O2C—C16C—H16H110.1
C8C—C7C—H71C110.1C17C—C16C—H16H110.1
O3C—C7C—H72C110.1H16I—C16C—H16H108.4
C8C—C7C—H72C110.1C16A—C17A—H17D109.5
H71C—C7C—H72C108.5C16A—C17A—H17E109.5
C7A—C8A—H81A109.5H17D—C17A—H17E109.5
C7A—C8A—H82A109.5C16A—C17A—H17F109.5
H81A—C8A—H82A109.5H17D—C17A—H17F109.5
C7A—C8A—H83A109.5H17E—C17A—H17F109.5
H81A—C8A—H83A109.5C16B—C17B—H17I109.5
H82A—C8A—H83A109.5C16B—C17B—H17G109.5
C7B—C8B—H81B109.5H17I—C17B—H17G109.5
C7B—C8B—H82B109.5C16B—C17B—H17H109.5
H81B—C8B—H82B109.5H17I—C17B—H17H109.5
C7B—C8B—H83B109.5H17G—C17B—H17H109.5
H81B—C8B—H83B109.5C16C—C17C—H17K109.5
H82B—C8B—H83B109.5C16C—C17C—H17L109.5
C7C—C8C—H81C109.5H17K—C17C—H17L109.5
C7C—C8C—H82C109.5C16C—C17C—H17M109.5
H81C—C8C—H82C109.5H17K—C17C—H17M109.5
C7C—C8C—H83C109.5H17L—C17C—H17M109.5
H81C—C8C—H83C109.5C9A—N1A—C1A121.3 (2)
H82C—C8C—H83C109.5C9B—N1B—C1B121.3 (3)
N1A—C9A—C10A122.8 (3)C9C—N1C—C1C119.0 (2)
N1A—C9A—H9A118.6C11A—O1A—H1A102 (3)
C10A—C9A—H9A118.6C11B—O1B—H1B105 (3)
N1B—C9B—C10B122.6 (3)C11C—O1C—H1C104 (2)
N1B—C9B—H9B118.7C12A—O2A—C16A117.6 (2)
C10B—C9B—H9B118.7C12B—O2B—C16B118.0 (2)
N1C—C9C—C10C123.3 (3)C12C—O2C—C16C117.7 (3)
N1C—C9C—H9C118.4C4A—O3A—C7A119.4 (3)
C10C—C9C—H9C118.4C4B—O3B—C7B118.4 (2)
C15A—C10A—C11A119.4 (3)C4C—O3C—C7C117.9 (2)
C15A—C10A—C9A120.0 (3)
C6A—C1A—C2A—C3A1.1 (6)C10B—C11B—C12B—O2B178.8 (3)
N1A—C1A—C2A—C3A179.4 (4)O1B—C11B—C12B—C13B179.1 (3)
C6B—C1B—C2B—C3B0.1 (4)C10B—C11B—C12B—C13B1.1 (4)
N1B—C1B—C2B—C3B176.4 (3)O1C—C11C—C12C—O2C0.9 (4)
C6C—C1C—C2C—C3C0.0 (4)C10C—C11C—C12C—O2C177.9 (3)
N1C—C1C—C2C—C3C178.6 (3)O1C—C11C—C12C—C13C179.2 (3)
C1A—C2A—C3A—C4A0.1 (7)C10C—C11C—C12C—C13C2.1 (4)
C1B—C2B—C3B—C4B1.5 (4)O2A—C12A—C13A—C14A179.8 (3)
C1C—C2C—C3C—C4C1.2 (4)C11A—C12A—C13A—C14A0.9 (5)
C2A—C3A—C4A—C5A0.1 (7)O2B—C12B—C13B—C14B179.5 (3)
C2A—C3A—C4A—O3A179.6 (4)C11B—C12B—C13B—C14B0.3 (5)
C2B—C3B—C4B—O3B179.7 (3)O2C—C12C—C13C—C14C178.8 (3)
C2B—C3B—C4B—C5B1.7 (4)C11C—C12C—C13C—C14C1.2 (5)
C2C—C3C—C4C—O3C179.3 (3)C12A—C13A—C14A—C15A0.5 (5)
C2C—C3C—C4C—C5C1.1 (4)C12B—C13B—C14B—C15B0.3 (6)
O3A—C4A—C5A—C6A178.4 (4)C12C—C13C—C14C—C15C0.1 (5)
C3A—C4A—C5A—C6A1.3 (6)C13A—C14A—C15A—C10A0.6 (5)
O3B—C4B—C5B—C6B178.8 (3)C11A—C10A—C15A—C14A1.2 (5)
C3B—C4B—C5B—C6B0.3 (5)C9A—C10A—C15A—C14A179.9 (3)
O3C—C4C—C5C—C6C178.2 (2)C13B—C14B—C15B—C10B0.2 (6)
C3C—C4C—C5C—C6C0.2 (4)C11B—C10B—C15B—C14B0.6 (5)
C2A—C1A—C6A—C5A2.3 (6)C9B—C10B—C15B—C14B177.1 (3)
N1A—C1A—C6A—C5A178.2 (3)C13C—C14C—C15C—C10C0.0 (5)
C4A—C5A—C6A—C1A2.5 (6)C11C—C10C—C15C—C14C0.9 (5)
C2B—C1B—C6B—C5B1.5 (5)C9C—C10C—C15C—C14C178.6 (3)
N1B—C1B—C6B—C5B178.1 (3)C10A—C9A—N1A—C1A178.9 (3)
C4B—C5B—C6B—C1B1.3 (5)C2A—C1A—N1A—C9A164.9 (3)
C4C—C5C—C6C—C1C1.5 (4)C6A—C1A—N1A—C9A15.7 (5)
C2C—C1C—C6C—C5C1.4 (4)C10B—C9B—N1B—C1B174.7 (3)
N1C—C1C—C6C—C5C180.0 (2)C6B—C1B—N1B—C9B163.4 (3)
N1A—C9A—C10A—C15A179.4 (3)C2B—C1B—N1B—C9B20.2 (4)
N1A—C9A—C10A—C11A1.9 (4)C10C—C9C—N1C—C1C179.8 (3)
N1B—C9B—C10B—C11B1.1 (5)C2C—C1C—N1C—C9C41.6 (4)
N1B—C9B—C10B—C15B176.5 (3)C6C—C1C—N1C—C9C139.8 (3)
N1C—C9C—C10C—C11C4.9 (5)C13A—C12A—O2A—C16A5.3 (4)
N1C—C9C—C10C—C15C174.6 (3)C11A—C12A—O2A—C16A173.7 (3)
C15A—C10A—C11A—O1A179.1 (3)C17A—C16A—O2A—C12A175.7 (3)
C9A—C10A—C11A—O1A0.4 (4)C13B—C12B—O2B—C16B0.7 (5)
C15A—C10A—C11A—C12A1.6 (4)C11B—C12B—O2B—C16B179.5 (3)
C9A—C10A—C11A—C12A179.7 (3)C17B—C16B—O2B—C12B178.4 (3)
C15B—C10B—C11B—O1B179.0 (3)C13C—C12C—O2C—C16C10.2 (5)
C9B—C10B—C11B—O1B3.4 (4)C11C—C12C—O2C—C16C169.8 (3)
C15B—C10B—C11B—C12B1.2 (4)C17C—C16C—O2C—C12C173.7 (3)
C9B—C10B—C11B—C12B176.4 (3)C5A—C4A—O3A—C7A11.0 (6)
C15C—C10C—C11C—O1C179.4 (3)C3A—C4A—O3A—C7A169.3 (4)
C9C—C10C—C11C—O1C1.2 (4)C8A—C7A—O3A—C4A172.6 (3)
C15C—C10C—C11C—C12C1.9 (4)C5B—C4B—O3B—C7B4.3 (5)
C9C—C10C—C11C—C12C177.5 (3)C3B—C4B—O3B—C7B174.2 (3)
O1A—C11A—C12A—O2A0.2 (4)C8B—C7B—O3B—C4B178.2 (3)
C10A—C11A—C12A—O2A179.5 (2)C5C—C4C—O3C—C7C178.8 (3)
O1A—C11A—C12A—C13A179.2 (3)C3C—C4C—O3C—C7C0.5 (4)
C10A—C11A—C12A—C13A1.5 (4)C8C—C7C—O3C—C4C175.6 (3)
O1B—C11B—C12B—O2B1.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1B–C6B, C1C–C6C, C10A–C15A and C10C–C15C rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.89 (4)1.76 (4)2.601 (3)156 (4)
O1B—H1B···N1B0.88 (4)1.80 (4)2.611 (3)152 (4)
O1C—H1C···N1C0.92 (4)1.79 (4)2.643 (3)153 (3)
C7C—H71C···Cg10.972.723.5692 (1)146
C7A—H72A···Cg2i0.972.753.6644 (1)157
C16B—H16G···Cg3ii0.972.893.7935 (1)156
C16B—H16F···Cg40.972.783.6694 (1)153
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H19NO3
Mr285.33
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.565 (5), 14.010 (4), 15.062 (4)
α, β, γ (°)77.229 (4), 84.398 (5), 73.892 (5)
V3)2284.9 (13)
Z6
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.72 × 0.34 × 0.12
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.957, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
25618, 8981, 4754
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.185, 1.03
No. of reflections8981
No. of parameters578
No. of restraints28
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.50

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1B–C6B, C1C–C6C, C10A–C15A and C10C–C15C rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.89 (4)1.76 (4)2.601 (3)156 (4)
O1B—H1B···N1B0.88 (4)1.80 (4)2.611 (3)152 (4)
O1C—H1C···N1C0.92 (4)1.79 (4)2.643 (3)153 (3)
C7C—H71C···Cg10.972.723.5692 (1)146
C7A—H72A···Cg2i0.972.753.6644 (1)157
C16B—H16G···Cg3ii0.972.893.7935 (1)156
C16B—H16F···Cg40.972.783.6694 (1)153
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Arslan, F., Ölmez, H. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzek, A., Albayrak, Ç. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2705.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds