organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o689-o690

2-Amino-5-bromo­pyridinium hydrogen succinate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 17 February 2010; accepted 19 February 2010; online 27 February 2010)

In the title compound, C5H6BrN2+·C4H5O4, the pyridine N atom of the 2-amino-5-bromo­pyridine mol­ecule is protonated. The protonated N atom and the amino group are linked via N—H⋯O hydrogen bonds to the carboxyl­ate O atoms of the singly deprotonated succinate anion. The hydrogen succinate anions are linked via O—H⋯O hydrogen bonds. A weak inter­molecular C—H⋯O hydrogen bond is also observed.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Goubitz et al. (2001[Goubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176-181.]); Vaday & Foxman (1999[Vaday, S. & Foxman, M. B. (1999). Cryst. Eng. 2, 145-151.]). For applications of succinic acid, see: Sauer et al. (2008[Sauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100-108.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. New York: Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N2Br+·C4H5O4

  • Mr = 291.11

  • Orthorhombic, P 21 21 21

  • a = 5.3275 (2) Å

  • b = 13.6226 (5) Å

  • c = 15.1687 (5) Å

  • V = 1100.86 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.74 mm−1

  • T = 296 K

  • 0.80 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.155, Tmax = 0.650

  • 10042 measured reflections

  • 2472 independent reflections

  • 2138 reflections with I > 2s(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.057

  • S = 0.99

  • 2472 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 995 Friedel pairs

  • Flack parameter: 0.013 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 0.85 (3) 1.88 (3) 2.720 (3) 171 (3)
N2—H2A⋯O1 0.86 1.92 2.782 (3) 178
N2—H2B⋯O1i 0.86 2.01 2.805 (3) 154
O4—H4⋯O2ii 0.82 1.85 2.609 (2) 154
C1—H1⋯O3iii 0.93 2.43 3.280 (3) 152
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structures of 2-amino-5-bromopyridine (Goubitz et al., 2001) and 2-amino-5-bromopyridinium propynoate (Vaday & Foxman, 1999) have been reported. In this paper, we present the X-ray single-crystal structure of 2-amino-5-bromopyridinium hydrogen succinate (I).

The asymmetric unit of (I) (Fig. 1) contains a 2-amino-5-bromopyridinium cation and a hydrogen succinate anion, indicating that proton transfer has occurred during the co-crystallization experiment. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [122.9 (2)°] is subtended at the protonated N1 atom. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds, forming a R22(8) ring motif (Bernstein et al., 1995). The hydrogen succinate anions self-assemble via O4—H4···O2 (Table 1) hydrogen bonds. Furthermore, the crystal structure is stabilized by weak C—H···O hydrogen bonds, forming a 3D-network.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Goubitz et al. (2001); Vaday & Foxman (1999). For applications of succinic acid, see: Sauer et al. (2008). For bond-length data, see: Allen et al. (1987). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A hot methanol solution (10 ml) of 2-amino-5-bromopyridine (87 mg, Aldrich) and a hot aqueous solution (10 ml) of succinic acid (59 mg, Merck) were mixed and warmed over a water bath for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. Single crystals of the title compound appeared from the mother liquor after a few days.

Refinement top

Atom H1N1 was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.97 Å, O—H = 0.82 Å and N—H = 0.86 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). 995 Friedel pairs were used to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.
2-Amino-5-bromopyridinium hydrogen succinate top
Crystal data top
C5H6N2Br+·C4H5O4F(000) = 584
Mr = 291.11Dx = 1.756 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4688 reflections
a = 5.3275 (2) Åθ = 3.0–26.7°
b = 13.6226 (5) ŵ = 3.74 mm1
c = 15.1687 (5) ÅT = 296 K
V = 1100.86 (7) Å3Needle, yellow
Z = 40.80 × 0.15 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2472 independent reflections
Radiation source: fine-focus sealed tube2138 reflections with I > 2s(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.155, Tmax = 0.650k = 1716
10042 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0248P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.002
2472 reflectionsΔρmax = 0.21 e Å3
150 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 995 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (8)
Crystal data top
C5H6N2Br+·C4H5O4V = 1100.86 (7) Å3
Mr = 291.11Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.3275 (2) ŵ = 3.74 mm1
b = 13.6226 (5) ÅT = 296 K
c = 15.1687 (5) Å0.80 × 0.15 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2472 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2138 reflections with I > 2s(I)
Tmin = 0.155, Tmax = 0.650Rint = 0.029
10042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057Δρmax = 0.21 e Å3
S = 0.99Δρmin = 0.31 e Å3
2472 reflectionsAbsolute structure: Flack (1983), 995 Friedel pairs
150 parametersAbsolute structure parameter: 0.013 (8)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0791 (3)0.66915 (12)0.38303 (10)0.0490 (4)
O20.2588 (3)0.53970 (10)0.32236 (11)0.0441 (4)
O30.0528 (4)0.80559 (14)0.20813 (14)0.0633 (6)
O40.3210 (4)0.86482 (12)0.24424 (12)0.0561 (5)
H40.25720.91690.22900.084*
C60.0954 (4)0.60694 (15)0.32351 (14)0.0341 (5)
C70.0907 (5)0.61018 (17)0.24855 (15)0.0450 (6)
H7A0.18500.54930.24850.054*
H7B0.00170.61340.19350.054*
C80.2747 (5)0.69486 (17)0.25115 (16)0.0437 (6)
H8A0.40680.68260.20850.052*
H8B0.35150.69710.30910.052*
C90.1593 (5)0.79274 (16)0.23193 (13)0.0377 (5)
Br11.17196 (5)0.336238 (18)0.513704 (18)0.05230 (10)
N10.6002 (4)0.52635 (13)0.45518 (13)0.0345 (4)
N20.4388 (4)0.66737 (14)0.51595 (13)0.0459 (5)
H2A0.33000.66900.47410.055*
H2B0.43880.71230.55580.055*
C10.7639 (4)0.45042 (15)0.45213 (15)0.0377 (5)
H10.75470.40470.40670.045*
C20.9404 (4)0.44144 (16)0.51537 (15)0.0380 (5)
C30.9540 (5)0.51139 (18)0.58345 (16)0.0414 (6)
H31.07560.50560.62710.050*
C40.7899 (5)0.58693 (16)0.58521 (14)0.0405 (5)
H4A0.79840.63320.63020.049*
C50.6060 (4)0.59588 (15)0.51909 (14)0.0343 (5)
H1N10.482 (5)0.5320 (17)0.4180 (16)0.047 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0616 (11)0.0425 (9)0.0428 (8)0.0111 (9)0.0104 (8)0.0157 (8)
O20.0495 (10)0.0309 (8)0.0520 (9)0.0067 (7)0.0090 (8)0.0090 (7)
O30.0470 (12)0.0576 (12)0.0852 (14)0.0024 (9)0.0118 (11)0.0229 (10)
O40.0603 (11)0.0347 (9)0.0733 (12)0.0024 (10)0.0199 (11)0.0111 (8)
C60.0412 (13)0.0265 (10)0.0347 (11)0.0057 (9)0.0013 (9)0.0001 (9)
C70.0572 (17)0.0345 (12)0.0432 (13)0.0017 (11)0.0075 (12)0.0049 (10)
C80.0426 (15)0.0392 (12)0.0493 (13)0.0033 (10)0.0088 (11)0.0050 (10)
C90.0418 (13)0.0385 (12)0.0330 (10)0.0026 (12)0.0029 (12)0.0039 (9)
Br10.04413 (14)0.04024 (13)0.07255 (17)0.00556 (11)0.00191 (13)0.00411 (12)
N10.0360 (11)0.0308 (10)0.0367 (10)0.0035 (8)0.0032 (9)0.0029 (8)
N20.0480 (11)0.0377 (10)0.0520 (10)0.0049 (9)0.0099 (10)0.0151 (10)
C10.0415 (13)0.0291 (11)0.0426 (11)0.0051 (10)0.0030 (10)0.0034 (9)
C20.0364 (12)0.0334 (11)0.0442 (11)0.0016 (9)0.0024 (11)0.0036 (10)
C30.0397 (13)0.0436 (13)0.0410 (12)0.0064 (12)0.0046 (11)0.0035 (11)
C40.0443 (14)0.0411 (12)0.0362 (11)0.0048 (12)0.0015 (11)0.0057 (10)
C50.0355 (11)0.0303 (10)0.0370 (10)0.0069 (9)0.0046 (10)0.0002 (9)
Geometric parameters (Å, º) top
O1—C61.241 (2)N1—C11.354 (3)
O2—C61.264 (3)N1—C51.356 (3)
O3—C91.199 (3)N1—H1N10.85 (3)
O4—C91.319 (3)N2—C51.321 (3)
O4—H40.8200N2—H2A0.8600
C6—C71.509 (3)N2—H2B0.8600
C7—C81.514 (3)C1—C21.349 (3)
C7—H7A0.9700C1—H10.9300
C7—H7B0.9700C2—C31.407 (3)
C8—C91.497 (3)C3—C41.351 (3)
C8—H8A0.9700C3—H30.9300
C8—H8B0.9700C4—C51.407 (3)
Br1—C21.891 (2)C4—H4A0.9300
C9—O4—H4109.5C1—N1—H1N1121.6 (17)
O1—C6—O2123.6 (2)C5—N1—H1N1115.4 (17)
O1—C6—C7118.8 (2)C5—N2—H2A120.0
O2—C6—C7117.60 (18)C5—N2—H2B120.0
C6—C7—C8115.32 (18)H2A—N2—H2B120.0
C6—C7—H7A108.4C2—C1—N1119.6 (2)
C8—C7—H7A108.4C2—C1—H1120.2
C6—C7—H7B108.4N1—C1—H1120.2
C8—C7—H7B108.4C1—C2—C3119.8 (2)
H7A—C7—H7B107.5C1—C2—Br1120.93 (17)
C9—C8—C7114.1 (2)C3—C2—Br1119.31 (18)
C9—C8—H8A108.7C4—C3—C2119.8 (2)
C7—C8—H8A108.7C4—C3—H3120.1
C9—C8—H8B108.7C2—C3—H3120.1
C7—C8—H8B108.7C3—C4—C5120.2 (2)
H8A—C8—H8B107.6C3—C4—H4A119.9
O3—C9—O4123.3 (2)C5—C4—H4A119.9
O3—C9—C8125.1 (2)N2—C5—N1118.3 (2)
O4—C9—C8111.5 (2)N2—C5—C4123.99 (19)
C1—N1—C5122.9 (2)N1—C5—C4117.7 (2)
O1—C6—C7—C83.3 (3)C1—C2—C3—C40.2 (3)
O2—C6—C7—C8177.4 (2)Br1—C2—C3—C4179.88 (18)
C6—C7—C8—C970.8 (3)C2—C3—C4—C50.1 (3)
C7—C8—C9—O36.8 (3)C1—N1—C5—N2179.6 (2)
C7—C8—C9—O4173.26 (18)C1—N1—C5—C40.7 (3)
C5—N1—C1—C20.8 (3)C3—C4—C5—N2180.0 (2)
N1—C1—C2—C30.5 (3)C3—C4—C5—N10.4 (3)
N1—C1—C2—Br1179.82 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.85 (3)1.88 (3)2.720 (3)171 (3)
N2—H2A···O10.861.922.782 (3)178
N2—H2B···O1i0.862.012.805 (3)154
O4—H4···O2ii0.821.852.609 (2)154
C1—H1···O3iii0.932.433.280 (3)152
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H6N2Br+·C4H5O4
Mr291.11
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.3275 (2), 13.6226 (5), 15.1687 (5)
V3)1100.86 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.74
Crystal size (mm)0.80 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.155, 0.650
No. of measured, independent and
observed [I > 2s(I)] reflections
10042, 2472, 2138
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 0.99
No. of reflections2472
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.31
Absolute structureFlack (1983), 995 Friedel pairs
Absolute structure parameter0.013 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.85 (3)1.88 (3)2.720 (3)171 (3)
N2—H2A···O10.86001.92002.782 (3)178.00
N2—H2B···O1i0.86002.01002.805 (3)154.00
O4—H4···O2ii0.82001.85002.609 (2)154.00
C1—H1···O3iii0.93002.43003.280 (3)152.00
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176–181.  Web of Science CSD CrossRef CAS Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationSauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100–108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. New York: Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaday, S. & Foxman, M. B. (1999). Cryst. Eng. 2, 145–151.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o689-o690
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds