organic compounds
2-Amino-5-bromopyridinium hydrogen succinate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C5H6BrN2+·C4H5O4−, the pyridine N atom of the 2-amino-5-bromopyridine molecule is protonated. The protonated N atom and the amino group are linked via N—H⋯O hydrogen bonds to the carboxylate O atoms of the singly deprotonated succinate anion. The hydrogen succinate anions are linked via O—H⋯O hydrogen bonds. A weak intermolecular C—H⋯O hydrogen bond is also observed.
Related literature
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Goubitz et al. (2001); Vaday & Foxman (1999). For applications of succinic acid, see: Sauer et al. (2008). For bond-length data, see: Allen et al. (1987). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810006495/is2526sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810006495/is2526Isup2.hkl
A hot methanol solution (10 ml) of 2-amino-5-bromopyridine (87 mg, Aldrich) and a hot aqueous solution (10 ml) of succinic acid (59 mg, Merck) were mixed and warmed over a water bath for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. Single crystals of the title compound appeared from the mother liquor after a few days.
Atom H1N1 was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.97 Å, O—H = 0.82 Å and N—H = 0.86 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). 995 Friedel pairs were used to determine the absolute configuration.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C5H6N2Br+·C4H5O4− | F(000) = 584 |
Mr = 291.11 | Dx = 1.756 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4688 reflections |
a = 5.3275 (2) Å | θ = 3.0–26.7° |
b = 13.6226 (5) Å | µ = 3.74 mm−1 |
c = 15.1687 (5) Å | T = 296 K |
V = 1100.86 (7) Å3 | Needle, yellow |
Z = 4 | 0.80 × 0.15 × 0.13 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2472 independent reflections |
Radiation source: fine-focus sealed tube | 2138 reflections with I > 2s(I) |
Graphite monochromator | Rint = 0.029 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −6→6 |
Tmin = 0.155, Tmax = 0.650 | k = −17→16 |
10042 measured reflections | l = −19→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.057 | w = 1/[σ2(Fo2) + (0.0248P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.002 |
2472 reflections | Δρmax = 0.21 e Å−3 |
150 parameters | Δρmin = −0.31 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 995 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.013 (8) |
C5H6N2Br+·C4H5O4− | V = 1100.86 (7) Å3 |
Mr = 291.11 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.3275 (2) Å | µ = 3.74 mm−1 |
b = 13.6226 (5) Å | T = 296 K |
c = 15.1687 (5) Å | 0.80 × 0.15 × 0.13 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2472 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2138 reflections with I > 2s(I) |
Tmin = 0.155, Tmax = 0.650 | Rint = 0.029 |
10042 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.057 | Δρmax = 0.21 e Å−3 |
S = 0.99 | Δρmin = −0.31 e Å−3 |
2472 reflections | Absolute structure: Flack (1983), 995 Friedel pairs |
150 parameters | Absolute structure parameter: 0.013 (8) |
0 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0791 (3) | 0.66915 (12) | 0.38303 (10) | 0.0490 (4) | |
O2 | 0.2588 (3) | 0.53970 (10) | 0.32236 (11) | 0.0441 (4) | |
O3 | 0.0528 (4) | 0.80559 (14) | 0.20813 (14) | 0.0633 (6) | |
O4 | −0.3210 (4) | 0.86482 (12) | 0.24424 (12) | 0.0561 (5) | |
H4 | −0.2572 | 0.9169 | 0.2290 | 0.084* | |
C6 | 0.0954 (4) | 0.60694 (15) | 0.32351 (14) | 0.0341 (5) | |
C7 | −0.0907 (5) | 0.61018 (17) | 0.24855 (15) | 0.0450 (6) | |
H7A | −0.1850 | 0.5493 | 0.2485 | 0.054* | |
H7B | 0.0017 | 0.6134 | 0.1935 | 0.054* | |
C8 | −0.2747 (5) | 0.69486 (17) | 0.25115 (16) | 0.0437 (6) | |
H8A | −0.4068 | 0.6826 | 0.2085 | 0.052* | |
H8B | −0.3515 | 0.6971 | 0.3091 | 0.052* | |
C9 | −0.1593 (5) | 0.79274 (16) | 0.23193 (13) | 0.0377 (5) | |
Br1 | 1.17196 (5) | 0.336238 (18) | 0.513704 (18) | 0.05230 (10) | |
N1 | 0.6002 (4) | 0.52635 (13) | 0.45518 (13) | 0.0345 (4) | |
N2 | 0.4388 (4) | 0.66737 (14) | 0.51595 (13) | 0.0459 (5) | |
H2A | 0.3300 | 0.6690 | 0.4741 | 0.055* | |
H2B | 0.4388 | 0.7123 | 0.5558 | 0.055* | |
C1 | 0.7639 (4) | 0.45042 (15) | 0.45213 (15) | 0.0377 (5) | |
H1 | 0.7547 | 0.4047 | 0.4067 | 0.045* | |
C2 | 0.9404 (4) | 0.44144 (16) | 0.51537 (15) | 0.0380 (5) | |
C3 | 0.9540 (5) | 0.51139 (18) | 0.58345 (16) | 0.0414 (6) | |
H3 | 1.0756 | 0.5056 | 0.6271 | 0.050* | |
C4 | 0.7899 (5) | 0.58693 (16) | 0.58521 (14) | 0.0405 (5) | |
H4A | 0.7984 | 0.6332 | 0.6302 | 0.049* | |
C5 | 0.6060 (4) | 0.59588 (15) | 0.51909 (14) | 0.0343 (5) | |
H1N1 | 0.482 (5) | 0.5320 (17) | 0.4180 (16) | 0.047 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0616 (11) | 0.0425 (9) | 0.0428 (8) | 0.0111 (9) | −0.0104 (8) | −0.0157 (8) |
O2 | 0.0495 (10) | 0.0309 (8) | 0.0520 (9) | 0.0067 (7) | −0.0090 (8) | −0.0090 (7) |
O3 | 0.0470 (12) | 0.0576 (12) | 0.0852 (14) | −0.0024 (9) | 0.0118 (11) | 0.0229 (10) |
O4 | 0.0603 (11) | 0.0347 (9) | 0.0733 (12) | 0.0024 (10) | 0.0199 (11) | 0.0111 (8) |
C6 | 0.0412 (13) | 0.0265 (10) | 0.0347 (11) | −0.0057 (9) | 0.0013 (9) | −0.0001 (9) |
C7 | 0.0572 (17) | 0.0345 (12) | 0.0432 (13) | −0.0017 (11) | −0.0075 (12) | −0.0049 (10) |
C8 | 0.0426 (15) | 0.0392 (12) | 0.0493 (13) | −0.0033 (10) | −0.0088 (11) | 0.0050 (10) |
C9 | 0.0418 (13) | 0.0385 (12) | 0.0330 (10) | −0.0026 (12) | −0.0029 (12) | 0.0039 (9) |
Br1 | 0.04413 (14) | 0.04024 (13) | 0.07255 (17) | 0.00556 (11) | −0.00191 (13) | 0.00411 (12) |
N1 | 0.0360 (11) | 0.0308 (10) | 0.0367 (10) | −0.0035 (8) | −0.0032 (9) | −0.0029 (8) |
N2 | 0.0480 (11) | 0.0377 (10) | 0.0520 (10) | 0.0049 (9) | −0.0099 (10) | −0.0151 (10) |
C1 | 0.0415 (13) | 0.0291 (11) | 0.0426 (11) | −0.0051 (10) | 0.0030 (10) | −0.0034 (9) |
C2 | 0.0364 (12) | 0.0334 (11) | 0.0442 (11) | −0.0016 (9) | 0.0024 (11) | 0.0036 (10) |
C3 | 0.0397 (13) | 0.0436 (13) | 0.0410 (12) | −0.0064 (12) | −0.0046 (11) | 0.0035 (11) |
C4 | 0.0443 (14) | 0.0411 (12) | 0.0362 (11) | −0.0048 (12) | −0.0015 (11) | −0.0057 (10) |
C5 | 0.0355 (11) | 0.0303 (10) | 0.0370 (10) | −0.0069 (9) | 0.0046 (10) | −0.0002 (9) |
O1—C6 | 1.241 (2) | N1—C1 | 1.354 (3) |
O2—C6 | 1.264 (3) | N1—C5 | 1.356 (3) |
O3—C9 | 1.199 (3) | N1—H1N1 | 0.85 (3) |
O4—C9 | 1.319 (3) | N2—C5 | 1.321 (3) |
O4—H4 | 0.8200 | N2—H2A | 0.8600 |
C6—C7 | 1.509 (3) | N2—H2B | 0.8600 |
C7—C8 | 1.514 (3) | C1—C2 | 1.349 (3) |
C7—H7A | 0.9700 | C1—H1 | 0.9300 |
C7—H7B | 0.9700 | C2—C3 | 1.407 (3) |
C8—C9 | 1.497 (3) | C3—C4 | 1.351 (3) |
C8—H8A | 0.9700 | C3—H3 | 0.9300 |
C8—H8B | 0.9700 | C4—C5 | 1.407 (3) |
Br1—C2 | 1.891 (2) | C4—H4A | 0.9300 |
C9—O4—H4 | 109.5 | C1—N1—H1N1 | 121.6 (17) |
O1—C6—O2 | 123.6 (2) | C5—N1—H1N1 | 115.4 (17) |
O1—C6—C7 | 118.8 (2) | C5—N2—H2A | 120.0 |
O2—C6—C7 | 117.60 (18) | C5—N2—H2B | 120.0 |
C6—C7—C8 | 115.32 (18) | H2A—N2—H2B | 120.0 |
C6—C7—H7A | 108.4 | C2—C1—N1 | 119.6 (2) |
C8—C7—H7A | 108.4 | C2—C1—H1 | 120.2 |
C6—C7—H7B | 108.4 | N1—C1—H1 | 120.2 |
C8—C7—H7B | 108.4 | C1—C2—C3 | 119.8 (2) |
H7A—C7—H7B | 107.5 | C1—C2—Br1 | 120.93 (17) |
C9—C8—C7 | 114.1 (2) | C3—C2—Br1 | 119.31 (18) |
C9—C8—H8A | 108.7 | C4—C3—C2 | 119.8 (2) |
C7—C8—H8A | 108.7 | C4—C3—H3 | 120.1 |
C9—C8—H8B | 108.7 | C2—C3—H3 | 120.1 |
C7—C8—H8B | 108.7 | C3—C4—C5 | 120.2 (2) |
H8A—C8—H8B | 107.6 | C3—C4—H4A | 119.9 |
O3—C9—O4 | 123.3 (2) | C5—C4—H4A | 119.9 |
O3—C9—C8 | 125.1 (2) | N2—C5—N1 | 118.3 (2) |
O4—C9—C8 | 111.5 (2) | N2—C5—C4 | 123.99 (19) |
C1—N1—C5 | 122.9 (2) | N1—C5—C4 | 117.7 (2) |
O1—C6—C7—C8 | 3.3 (3) | C1—C2—C3—C4 | 0.2 (3) |
O2—C6—C7—C8 | −177.4 (2) | Br1—C2—C3—C4 | 179.88 (18) |
C6—C7—C8—C9 | 70.8 (3) | C2—C3—C4—C5 | −0.1 (3) |
C7—C8—C9—O3 | 6.8 (3) | C1—N1—C5—N2 | 179.6 (2) |
C7—C8—C9—O4 | −173.26 (18) | C1—N1—C5—C4 | −0.7 (3) |
C5—N1—C1—C2 | 0.8 (3) | C3—C4—C5—N2 | −180.0 (2) |
N1—C1—C2—C3 | −0.5 (3) | C3—C4—C5—N1 | 0.4 (3) |
N1—C1—C2—Br1 | 179.82 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O2 | 0.85 (3) | 1.88 (3) | 2.720 (3) | 171 (3) |
N2—H2A···O1 | 0.86 | 1.92 | 2.782 (3) | 178 |
N2—H2B···O1i | 0.86 | 2.01 | 2.805 (3) | 154 |
O4—H4···O2ii | 0.82 | 1.85 | 2.609 (2) | 154 |
C1—H1···O3iii | 0.93 | 2.43 | 3.280 (3) | 152 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H6N2Br+·C4H5O4− |
Mr | 291.11 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 296 |
a, b, c (Å) | 5.3275 (2), 13.6226 (5), 15.1687 (5) |
V (Å3) | 1100.86 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.74 |
Crystal size (mm) | 0.80 × 0.15 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.155, 0.650 |
No. of measured, independent and observed [I > 2s(I)] reflections | 10042, 2472, 2138 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.057, 0.99 |
No. of reflections | 2472 |
No. of parameters | 150 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.31 |
Absolute structure | Flack (1983), 995 Friedel pairs |
Absolute structure parameter | 0.013 (8) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O2 | 0.85 (3) | 1.88 (3) | 2.720 (3) | 171 (3) |
N2—H2A···O1 | 0.8600 | 1.9200 | 2.782 (3) | 178.00 |
N2—H2B···O1i | 0.8600 | 2.0100 | 2.805 (3) | 154.00 |
O4—H4···O2ii | 0.8200 | 1.8500 | 2.609 (2) | 154.00 |
C1—H1···O3iii | 0.9300 | 2.4300 | 3.280 (3) | 152.00 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Goubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176–181. Web of Science CSD CrossRef CAS Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley. Google Scholar
Sauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100–108. Web of Science CrossRef PubMed CAS Google Scholar
Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. New York: Oxford University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vaday, S. & Foxman, M. B. (1999). Cryst. Eng. 2, 145–151. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structures of 2-amino-5-bromopyridine (Goubitz et al., 2001) and 2-amino-5-bromopyridinium propynoate (Vaday & Foxman, 1999) have been reported. In this paper, we present the X-ray single-crystal structure of 2-amino-5-bromopyridinium hydrogen succinate (I).
The asymmetric unit of (I) (Fig. 1) contains a 2-amino-5-bromopyridinium cation and a hydrogen succinate anion, indicating that proton transfer has occurred during the co-crystallization experiment. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [122.9 (2)°] is subtended at the protonated N1 atom. The bond lengths (Allen et al., 1987) and angles are normal.
In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds, forming a R22(8) ring motif (Bernstein et al., 1995). The hydrogen succinate anions self-assemble via O4—H4···O2 (Table 1) hydrogen bonds. Furthermore, the crystal structure is stabilized by weak C—H···O hydrogen bonds, forming a 3D-network.