metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m277-m278

Di­aquabis­[3-(hy­droxy­imino)­butanoato]nickel(II)

aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska str. 64, 01601 Kiev, Ukraine, bDepartment of General Chemistry, O.O. Bohomolets National Medical University, Shevchenko blvd. 13, 01601 Kiev, Ukraine, cDepartment of Chemistry, Karakalpakian University, Universitet Keshesi 1, 742012 Nukus, Uzbekistan, and dFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland
*Correspondence e-mail: turgiskend@freemail.ru

(Received 2 February 2010; accepted 5 February 2010; online 10 February 2010)

In the neutral, mononuclear title complex, [Ni(C4H6NO3)2(H2O)2], the Ni atom lies on a crystallographic inversion centre within a distorted octa­hedral N2O4 environment. Two trans-disposed anions of 3-hydroxy­imino­butanoic acid occupy four equatorial sites, coordinated by the deprotonated carboxyl­ate and protonated oxime groups and forming six-membered chelate rings, while the two axial positions are occupied by the water O atoms. The O atom of the oxime group forms an intra­molecular hydrogen bond with the coordinated carboxyl­ate O atom. The complex mol­ecules are linked into chains along b by hydrogen bonds between the water O atom and the carboxyl­ate O of a neighbouring mol­ecule. The chains are linked by further hydrogen bonds into a layer structure.

Related literature

For the coordination chemistry of 2-hydroxy­imino­propanoic acid and its amide derivatives, see: Onindo et al. (1995[Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911-3915.]); Duda et al. (1997[Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853-3859.]); Moroz et al. (2008[Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656-5665.]). For 2-hydroxy­imino­carboxylic acids as efficient metal chelators, see: Onindo et al. (1995[Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911-3915.]); Sliva et al. (1997a[Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273-276.],b[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287-294.]); Gumienna-Kontecka et al. (2000[Gumienna-Kontecka, E., Berthon, G., Fritsky, I. O., Wieczorek, R., Latajka, Z. & Kozłowski, H. (2000). J. Chem. Soc. Dalton Trans. pp. 4201-4208.]). For the use of 2-hydroxy­imino­carboxylic acid derivatives as efficient ligands for the stabilization of high oxidation states of transitional metals, see: Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]). For the structures of hydroxy­imino­carboxylic acid derivatives, see: Onindo et al. (1995[Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911-3915.]); Sliva et al. (1997a[Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273-276.],b[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287-294.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]). For structures with monodentately coordinated carboxylic groups, see: Wörl et al. (2005a[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem. pp. 759-765.],b[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans. pp. 27-29.]). For the synthesis, see: Khromov (1950[Khromov, N. V. (1950). Zh. Obshch. Khim. 20, 1858-1867.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C4H6NO3)2(H2O)2]

  • Mr = 326.94

  • Monoclinic, P 21 /n

  • a = 9.6071 (9) Å

  • b = 7.1721 (7) Å

  • c = 9.6805 (9) Å

  • β = 107.557 (5)°

  • V = 635.94 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 120 K

  • 0.23 × 0.15 × 0.11 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS, Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.622, Tmax = 0.796

  • 4576 measured reflections

  • 1626 independent reflections

  • 1286 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.060

  • S = 1.05

  • 1626 reflections

  • 101 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H2O4⋯O2i 0.79 (2) 1.94 (2) 2.7293 (17) 175 (2)
O3—H1O3⋯O1ii 0.72 (2) 2.10 (2) 2.7404 (17) 148 (2)
O4—H1O4⋯O2iii 0.87 (3) 1.90 (3) 2.7576 (16) 167 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y, -z; (iii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-hydroxyiminopropanoic acid and its amide derivatives have been intensively studied during the past 15 years as efficient chelate ligands forming stable complexes with various transition metal ions (Onindo et al., 1995; Duda et al., 1997; Moroz et al., 2008). The presence of an additional strong donor oxime function in the vicinity to the carboxylic group results in important increase of chelating efficiency as compare to structurally related amino acids. For example, 2-hydroxyiminopropanoic acid and other 2-hydroxyiminocarboxylic acids were shown to act as highly efficient chelators with respect to copper(II), nickel(II) and aluminium(III) (Onindo et al., 1995; Sliva et al., 1997a; Sliva et al., 1997b; Gumienna-Kontecka et al., 2000). Also, the amide derivatives of 2-hydroxyiminopropanoic acid possess strong σ-donor capacity and thus have been successfully used for preparation of metal complexes with efficient stabilization of Cu3+ and Ni3+ oxidation states (Fritsky et al., 1998; Fritsky et al., 2006). Surprisingly, that the complex formation properties of the nearest homologue of 2-hydroxyiminopropanoic acid - 2-hydroxyiminobutanoic acid - have not been studied at all up to date, and no crystal structures of the corresponding coordination compounds have been reported. Herein we present the first crystal structure of a metal complex of 3-hydroxyiminobutanoic acid.

A distorted octahedral coordination geometry is found in (I) with the Ni atom lying on a center of inversion, Fig. 1. Two four N atoms of two chelating oxime ligands define the equatorial plane, each defining a six-membered rings with a nearly planar conformation, and the two trans-coordinated water molecules complete the octahedral coordination geometry. The Ni-O bond lengths in the equatorial plane, Table 1, are somewhat shorter than the Ni-N (1.999 (1) Å and 2.043 (1) Å, respectively). The O atoms of the protonated oxime group form intramolecular hydrogen bonds with the coordinated carboxylate O atoms forming five-membered rings and thus fusing two six-membered chelate rings in a pseudomacrocyclic structure. The difference in C—O bond lengths for the coordinated and non-coordinated oxygen atoms (1.271 (2) Å and 1.250 (2)) Å is typical for monodentately coordinated carboxylic groups (Wörl et al., 2005a,b). The C=N, C=O, N—O, bond lengths are typical for 2-hydroxyiminopropanoic acid and its derivatives (Onindo et al., 1995; Sliva et al. (1997a,b); Mokhir et al., 2002).

The octahedral complex molecules are organized in the chains disposed along b direction of the crystal due to H-bonds formed by the axial water molecules and non-coordinated carboxylate O atom O4 belonging to the translational molecule (Table 1). The chains are united in layers with the help of the H-bonds of different type (also formed by the water molecules and non-coordinated carboxylate O atom O4 belonging to another translational molecule). The layers disposed parallel to b direction of the crystal are united in three-dimensional structure only with the help of van der Waals contacts (Fig. 2).

Related literature top

For the coordination chemistry of 2-hydroxyiminopropanoic acid and its amide derivatives, see: Onindo et al. (1995); Duda et al. (1997); Moroz et al. (2008). For 2-hydroxyiminocarboxylic acids as efficient metal chelators, see: Onindo et al. (1995); Sliva et al. (1997a,b); Gumienna-Kontecka et al. (2000). For the use of 2-hydroxyiminocarboxylic acid derivatives as efficient ligands for the stabilization of high oxidation states of transitional metals, see: Fritsky et al. (1998, 2006). For the structures hydroxyiminocarboxylic acid derivatives, see: Onindo et al. (1995); Sliva et al. (1997a,b); Mokhir et al. (2002). For structures with monodentately coordinated carboxylic groups, see: Wörl et al. (2005a,b). For the synthesis, see: Khromov (1950).

Experimental top

Compound (I) was synthesized by adding the solution of nickel(II) nitrate hexahydrate (0.1 mmol, 0.029 g) in water (5 ml) to a solution of 3-hydroxyiminobutanoic acid (0.2 mmol, 0.023 g) in water (5 ml) with consequent heating at 60°C boiling over 15 min. The resultant solution was filtered and the dark pink filtrate was left to stand at room temperature. Slow evaporation of the solvent yielded lilac filtrate of (I) Yield 73%. 3-hydroxyiminobutanoic acid was prepared according to the reported procedure (Khromov, 1950).

Refinement top

The O—H hydrogen atoms were located from the difference Fourier map, and their coordinates and isotropic thermal parameters refined freely. The hydrogen atoms of the methyl and methylene groups were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.96 Å, and Uiso = 1.5 Ueq(parent atom) for the methyl groups, and with C—H = 0.97 Å, and Uiso = 1.2 Ueq(parent atom) for the methylene groups.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of compound (I), with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines. Symmetry code A: - x, - y, - z.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Diaquabis[3-(hydroxyimino)butanoato]nickel(II) top
Crystal data top
[Ni(C4H6NO3)2(H2O)2]F(000) = 340
Mr = 326.94Dx = 1.707 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3254 reflections
a = 9.6071 (9) Åθ = 3.6–27.5°
b = 7.1721 (7) ŵ = 1.56 mm1
c = 9.6805 (9) ÅT = 120 K
β = 107.557 (5)°Block, lilac
V = 635.94 (10) Å30.23 × 0.15 × 0.11 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1626 independent reflections
Radiation source: fine-focus sealed tube1286 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.032
Detector resolution: 9 pixels mm-1θmax = 36.4°, θmin = 3.6°
ϕ scans and ω scans with κ offseth = 1616
Absorption correction: multi-scan
(SADABS, Sheldrick, 2001)
k = 1111
Tmin = 0.622, Tmax = 0.796l = 1616
4576 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0307P)2]
where P = (Fo2 + 2Fc2)/3
1626 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C4H6NO3)2(H2O)2]V = 635.94 (10) Å3
Mr = 326.94Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.6071 (9) ŵ = 1.56 mm1
b = 7.1721 (7) ÅT = 120 K
c = 9.6805 (9) Å0.23 × 0.15 × 0.11 mm
β = 107.557 (5)°
Data collection top
Nonius KappaCCD
diffractometer
1626 independent reflections
Absorption correction: multi-scan
(SADABS, Sheldrick, 2001)
1286 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 0.796Rint = 0.032
4576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.35 e Å3
1626 reflectionsΔρmin = 0.32 e Å3
101 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.00914 (9)
O10.07925 (12)0.23226 (15)0.10969 (11)0.0129 (2)
O20.16372 (12)0.51946 (16)0.14813 (12)0.0144 (3)
O30.00013 (14)0.01018 (19)0.30386 (13)0.0163 (3)
O40.20766 (13)0.12137 (18)0.07790 (13)0.0129 (3)
N10.05011 (15)0.09879 (19)0.17719 (13)0.0114 (3)
C10.13309 (17)0.3773 (2)0.07010 (16)0.0110 (3)
C20.1685 (2)0.3862 (2)0.07312 (17)0.0150 (3)
H2A0.14480.51160.11020.018*
H2B0.27360.37370.04950.018*
C30.10320 (18)0.2559 (2)0.19819 (17)0.0122 (3)
C40.1086 (2)0.3230 (3)0.34280 (18)0.0226 (4)
H4A0.08240.22290.41160.034*
H4B0.20560.36490.33500.034*
H4C0.04120.42430.37460.034*
H1O30.038 (3)0.085 (3)0.281 (2)0.026 (7)*
H1O40.253 (3)0.063 (3)0.158 (3)0.036 (6)*
H2O40.201 (2)0.227 (3)0.099 (2)0.028 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01179 (16)0.00714 (14)0.00827 (13)0.00080 (13)0.00266 (10)0.00010 (12)
O10.0177 (7)0.0086 (6)0.0119 (5)0.0016 (5)0.0037 (5)0.0000 (4)
O20.0171 (6)0.0095 (6)0.0139 (5)0.0014 (5)0.0004 (5)0.0008 (4)
O30.0226 (7)0.0163 (6)0.0109 (5)0.0079 (6)0.0066 (5)0.0046 (5)
O40.0156 (7)0.0096 (6)0.0126 (6)0.0009 (5)0.0029 (5)0.0003 (5)
N10.0119 (7)0.0131 (7)0.0085 (6)0.0000 (6)0.0021 (5)0.0022 (5)
C10.0082 (8)0.0095 (8)0.0120 (7)0.0021 (6)0.0021 (6)0.0014 (6)
C20.0173 (9)0.0119 (8)0.0167 (8)0.0029 (7)0.0064 (7)0.0011 (6)
C30.0104 (8)0.0138 (8)0.0130 (7)0.0012 (7)0.0042 (6)0.0016 (6)
C40.0324 (12)0.0199 (10)0.0177 (9)0.0072 (8)0.0110 (8)0.0031 (7)
Geometric parameters (Å, º) top
Ni1—O1i1.9986 (10)O4—H2O40.79 (2)
Ni1—O11.9986 (10)N1—C31.278 (2)
Ni1—N12.0431 (13)C1—C21.525 (2)
Ni1—N1i2.0431 (13)C2—C31.508 (2)
Ni1—O4i2.0973 (12)C2—H2A0.9700
Ni1—O42.0973 (12)C2—H2B0.9700
O1—C11.2714 (18)C3—C41.496 (2)
O2—C11.2499 (19)C4—H4A0.9600
O3—N11.4108 (17)C4—H4B0.9600
O3—H1O30.72 (2)C4—H4C0.9600
O4—H1O40.87 (3)
O1i—Ni1—O1180.00 (7)C3—N1—Ni1130.22 (11)
O1i—Ni1—N189.51 (5)O3—N1—Ni1115.60 (10)
O1—Ni1—N190.49 (5)O2—C1—O1121.88 (14)
O1i—Ni1—N1i90.49 (5)O2—C1—C2116.05 (14)
O1—Ni1—N1i89.51 (5)O1—C1—C2122.04 (14)
N1—Ni1—N1i180.00 (7)C3—C2—C1123.47 (14)
O1i—Ni1—O4i89.21 (5)C3—C2—H2A106.5
O1—Ni1—O4i90.79 (5)C1—C2—H2A106.5
N1—Ni1—O4i89.63 (5)C3—C2—H2B106.5
N1i—Ni1—O4i90.37 (5)C1—C2—H2B106.5
O1i—Ni1—O490.79 (5)H2A—C2—H2B106.5
O1—Ni1—O489.21 (5)N1—C3—C4124.10 (15)
N1—Ni1—O490.37 (5)N1—C3—C2120.51 (14)
N1i—Ni1—O489.63 (5)C4—C3—C2115.38 (14)
O4i—Ni1—O4180.00 (4)C3—C4—H4A109.5
C1—O1—Ni1130.26 (10)C3—C4—H4B109.5
N1—O3—H1O3102.5 (18)H4A—C4—H4B109.5
Ni1—O4—H1O4106.8 (16)C3—C4—H4C109.5
Ni1—O4—H2O4110.0 (15)H4A—C4—H4C109.5
H1O4—O4—H2O4107 (2)H4B—C4—H4C109.5
C3—N1—O3113.48 (13)
N1i—Ni1—O1—C1178.29 (14)Ni1—O1—C1—O2172.23 (11)
O4i—Ni1—O1—C187.93 (13)Ni1—O1—C1—C29.7 (2)
O4—Ni1—O1—C192.07 (13)O2—C1—C2—C3162.17 (15)
O1i—Ni1—N1—C3176.44 (15)O1—C1—C2—C319.6 (2)
O1—Ni1—N1—C33.56 (15)O3—N1—C3—C41.8 (2)
O4i—Ni1—N1—C387.23 (15)Ni1—N1—C3—C4168.07 (13)
O4—Ni1—N1—C392.77 (15)O3—N1—C3—C2177.11 (14)
O1i—Ni1—N1—O36.79 (10)Ni1—N1—C3—C213.1 (2)
O1—Ni1—N1—O3173.21 (10)C1—C2—C3—N121.1 (2)
O4i—Ni1—N1—O382.43 (10)C1—C2—C3—C4159.90 (16)
O4—Ni1—N1—O397.57 (10)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H2O4···O2ii0.79 (2)1.94 (2)2.7293 (17)175 (2)
O3—H1O3···O1i0.72 (2)2.10 (2)2.7404 (17)148 (2)
O4—H1O4···O2iii0.87 (3)1.90 (3)2.7576 (16)167 (2)
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C4H6NO3)2(H2O)2]
Mr326.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)9.6071 (9), 7.1721 (7), 9.6805 (9)
β (°) 107.557 (5)
V3)635.94 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.23 × 0.15 × 0.11
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS, Sheldrick, 2001)
Tmin, Tmax0.622, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
4576, 1626, 1286
Rint0.032
(sin θ/λ)max1)0.835
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.060, 1.05
No. of reflections1626
No. of parameters101
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.32

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H2O4···O2i0.79 (2)1.94 (2)2.7293 (17)175 (2)
O3—H1O3···O1ii0.72 (2)2.10 (2)2.7404 (17)148 (2)
O4—H1O4···O2iii0.87 (3)1.90 (3)2.7576 (16)167 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y, z; (iii) x1/2, y1/2, z1/2.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263–2008).

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationGumienna-Kontecka, E., Berthon, G., Fritsky, I. O., Wieczorek, R., Latajka, Z. & Kozłowski, H. (2000). J. Chem. Soc. Dalton Trans. pp. 4201–4208.  Web of Science CrossRef Google Scholar
First citationKhromov, N. V. (1950). Zh. Obshch. Khim. 20, 1858–1867.  CAS Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOnindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276.  CSD CrossRef Web of Science Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans. pp. 27–29.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m277-m278
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds