metal-organic compounds
Diaquabis[3-(hydroxyimino)butanoato]nickel(II)
aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska str. 64, 01601 Kiev, Ukraine, bDepartment of General Chemistry, O.O. Bohomolets National Medical University, Shevchenko blvd. 13, 01601 Kiev, Ukraine, cDepartment of Chemistry, Karakalpakian University, Universitet Keshesi 1, 742012 Nukus, Uzbekistan, and dFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland
*Correspondence e-mail: turgiskend@freemail.ru
In the neutral, mononuclear title complex, [Ni(C4H6NO3)2(H2O)2], the Ni atom lies on a crystallographic inversion centre within a distorted octahedral N2O4 environment. Two trans-disposed anions of 3-hydroxyiminobutanoic acid occupy four equatorial sites, coordinated by the deprotonated carboxylate and protonated oxime groups and forming six-membered chelate rings, while the two axial positions are occupied by the water O atoms. The O atom of the oxime group forms an intramolecular hydrogen bond with the coordinated carboxylate O atom. The complex molecules are linked into chains along b by hydrogen bonds between the water O atom and the carboxylate O of a neighbouring molecule. The chains are linked by further hydrogen bonds into a layer structure.
Related literature
For the coordination chemistry of 2-hydroxyiminopropanoic acid and its amide derivatives, see: Onindo et al. (1995); Duda et al. (1997); Moroz et al. (2008). For 2-hydroxyiminocarboxylic acids as efficient metal chelators, see: Onindo et al. (1995); Sliva et al. (1997a,b); Gumienna-Kontecka et al. (2000). For the use of 2-hydroxyiminocarboxylic acid derivatives as efficient ligands for the stabilization of high oxidation states of transitional metals, see: Fritsky et al. (1998, 2006). For the structures of hydroxyiminocarboxylic acid derivatives, see: Onindo et al. (1995); Sliva et al. (1997a,b); Mokhir et al. (2002). For structures with monodentately coordinated carboxylic groups, see: Wörl et al. (2005a,b). For the synthesis, see: Khromov (1950).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810004605/jh2130sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810004605/jh2130Isup2.hkl
Compound (I) was synthesized by adding the solution of nickel(II) nitrate hexahydrate (0.1 mmol, 0.029 g) in water (5 ml) to a solution of 3-hydroxyiminobutanoic acid (0.2 mmol, 0.023 g) in water (5 ml) with consequent heating at 60°C boiling over 15 min. The resultant solution was filtered and the dark pink filtrate was left to stand at room temperature. Slow evaporation of the solvent yielded lilac filtrate of (I) Yield 73%. 3-hydroxyiminobutanoic acid was prepared according to the reported procedure (Khromov, 1950).
The O—H hydrogen atoms were located from the difference Fourier map, and their coordinates and isotropic thermal parameters refined freely. The hydrogen atoms of the methyl and methylene groups were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.96 Å, and Uiso = 1.5 Ueq(parent atom) for the methyl groups, and with C—H = 0.97 Å, and Uiso = 1.2 Ueq(parent atom) for the methylene groups.
Data collection: COLLECT (Nonius, 2000); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(C4H6NO3)2(H2O)2] | F(000) = 340 |
Mr = 326.94 | Dx = 1.707 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3254 reflections |
a = 9.6071 (9) Å | θ = 3.6–27.5° |
b = 7.1721 (7) Å | µ = 1.56 mm−1 |
c = 9.6805 (9) Å | T = 120 K |
β = 107.557 (5)° | Block, lilac |
V = 635.94 (10) Å3 | 0.23 × 0.15 × 0.11 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 1626 independent reflections |
Radiation source: fine-focus sealed tube | 1286 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.032 |
Detector resolution: 9 pixels mm-1 | θmax = 36.4°, θmin = 3.6° |
ϕ scans and ω scans with κ offset | h = −16→16 |
Absorption correction: multi-scan (SADABS, Sheldrick, 2001) | k = −11→11 |
Tmin = 0.622, Tmax = 0.796 | l = −16→16 |
4576 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.060 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0307P)2] where P = (Fo2 + 2Fc2)/3 |
1626 reflections | (Δ/σ)max < 0.001 |
101 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
[Ni(C4H6NO3)2(H2O)2] | V = 635.94 (10) Å3 |
Mr = 326.94 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.6071 (9) Å | µ = 1.56 mm−1 |
b = 7.1721 (7) Å | T = 120 K |
c = 9.6805 (9) Å | 0.23 × 0.15 × 0.11 mm |
β = 107.557 (5)° |
Nonius KappaCCD diffractometer | 1626 independent reflections |
Absorption correction: multi-scan (SADABS, Sheldrick, 2001) | 1286 reflections with I > 2σ(I) |
Tmin = 0.622, Tmax = 0.796 | Rint = 0.032 |
4576 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.060 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.35 e Å−3 |
1626 reflections | Δρmin = −0.32 e Å−3 |
101 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.0000 | 0.0000 | 0.00914 (9) | |
O1 | −0.07925 (12) | 0.23226 (15) | −0.10969 (11) | 0.0129 (2) | |
O2 | −0.16372 (12) | 0.51946 (16) | −0.14813 (12) | 0.0144 (3) | |
O3 | 0.00013 (14) | −0.01018 (19) | 0.30386 (13) | 0.0163 (3) | |
O4 | −0.20766 (13) | −0.12137 (18) | −0.07790 (13) | 0.0129 (3) | |
N1 | −0.05011 (15) | 0.09879 (19) | 0.17719 (13) | 0.0114 (3) | |
C1 | −0.13309 (17) | 0.3773 (2) | −0.07010 (16) | 0.0110 (3) | |
C2 | −0.1685 (2) | 0.3862 (2) | 0.07312 (17) | 0.0150 (3) | |
H2A | −0.1448 | 0.5116 | 0.1102 | 0.018* | |
H2B | −0.2736 | 0.3737 | 0.0495 | 0.018* | |
C3 | −0.10320 (18) | 0.2559 (2) | 0.19819 (17) | 0.0122 (3) | |
C4 | −0.1086 (2) | 0.3230 (3) | 0.34280 (18) | 0.0226 (4) | |
H4A | −0.0824 | 0.2229 | 0.4116 | 0.034* | |
H4B | −0.2056 | 0.3649 | 0.3350 | 0.034* | |
H4C | −0.0412 | 0.4243 | 0.3746 | 0.034* | |
H1O3 | 0.038 (3) | −0.085 (3) | 0.281 (2) | 0.026 (7)* | |
H1O4 | −0.253 (3) | −0.063 (3) | −0.158 (3) | 0.036 (6)* | |
H2O4 | −0.201 (2) | −0.227 (3) | −0.099 (2) | 0.028 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01179 (16) | 0.00714 (14) | 0.00827 (13) | 0.00080 (13) | 0.00266 (10) | −0.00010 (12) |
O1 | 0.0177 (7) | 0.0086 (6) | 0.0119 (5) | 0.0016 (5) | 0.0037 (5) | 0.0000 (4) |
O2 | 0.0171 (6) | 0.0095 (6) | 0.0139 (5) | 0.0014 (5) | 0.0004 (5) | 0.0008 (4) |
O3 | 0.0226 (7) | 0.0163 (6) | 0.0109 (5) | 0.0079 (6) | 0.0066 (5) | 0.0046 (5) |
O4 | 0.0156 (7) | 0.0096 (6) | 0.0126 (6) | 0.0009 (5) | 0.0029 (5) | −0.0003 (5) |
N1 | 0.0119 (7) | 0.0131 (7) | 0.0085 (6) | 0.0000 (6) | 0.0021 (5) | 0.0022 (5) |
C1 | 0.0082 (8) | 0.0095 (8) | 0.0120 (7) | −0.0021 (6) | −0.0021 (6) | −0.0014 (6) |
C2 | 0.0173 (9) | 0.0119 (8) | 0.0167 (8) | 0.0029 (7) | 0.0064 (7) | −0.0011 (6) |
C3 | 0.0104 (8) | 0.0138 (8) | 0.0130 (7) | −0.0012 (7) | 0.0042 (6) | −0.0016 (6) |
C4 | 0.0324 (12) | 0.0199 (10) | 0.0177 (9) | 0.0072 (8) | 0.0110 (8) | −0.0031 (7) |
Ni1—O1i | 1.9986 (10) | O4—H2O4 | 0.79 (2) |
Ni1—O1 | 1.9986 (10) | N1—C3 | 1.278 (2) |
Ni1—N1 | 2.0431 (13) | C1—C2 | 1.525 (2) |
Ni1—N1i | 2.0431 (13) | C2—C3 | 1.508 (2) |
Ni1—O4i | 2.0973 (12) | C2—H2A | 0.9700 |
Ni1—O4 | 2.0973 (12) | C2—H2B | 0.9700 |
O1—C1 | 1.2714 (18) | C3—C4 | 1.496 (2) |
O2—C1 | 1.2499 (19) | C4—H4A | 0.9600 |
O3—N1 | 1.4108 (17) | C4—H4B | 0.9600 |
O3—H1O3 | 0.72 (2) | C4—H4C | 0.9600 |
O4—H1O4 | 0.87 (3) | ||
O1i—Ni1—O1 | 180.00 (7) | C3—N1—Ni1 | 130.22 (11) |
O1i—Ni1—N1 | 89.51 (5) | O3—N1—Ni1 | 115.60 (10) |
O1—Ni1—N1 | 90.49 (5) | O2—C1—O1 | 121.88 (14) |
O1i—Ni1—N1i | 90.49 (5) | O2—C1—C2 | 116.05 (14) |
O1—Ni1—N1i | 89.51 (5) | O1—C1—C2 | 122.04 (14) |
N1—Ni1—N1i | 180.00 (7) | C3—C2—C1 | 123.47 (14) |
O1i—Ni1—O4i | 89.21 (5) | C3—C2—H2A | 106.5 |
O1—Ni1—O4i | 90.79 (5) | C1—C2—H2A | 106.5 |
N1—Ni1—O4i | 89.63 (5) | C3—C2—H2B | 106.5 |
N1i—Ni1—O4i | 90.37 (5) | C1—C2—H2B | 106.5 |
O1i—Ni1—O4 | 90.79 (5) | H2A—C2—H2B | 106.5 |
O1—Ni1—O4 | 89.21 (5) | N1—C3—C4 | 124.10 (15) |
N1—Ni1—O4 | 90.37 (5) | N1—C3—C2 | 120.51 (14) |
N1i—Ni1—O4 | 89.63 (5) | C4—C3—C2 | 115.38 (14) |
O4i—Ni1—O4 | 180.00 (4) | C3—C4—H4A | 109.5 |
C1—O1—Ni1 | 130.26 (10) | C3—C4—H4B | 109.5 |
N1—O3—H1O3 | 102.5 (18) | H4A—C4—H4B | 109.5 |
Ni1—O4—H1O4 | 106.8 (16) | C3—C4—H4C | 109.5 |
Ni1—O4—H2O4 | 110.0 (15) | H4A—C4—H4C | 109.5 |
H1O4—O4—H2O4 | 107 (2) | H4B—C4—H4C | 109.5 |
C3—N1—O3 | 113.48 (13) | ||
N1i—Ni1—O1—C1 | −178.29 (14) | Ni1—O1—C1—O2 | 172.23 (11) |
O4i—Ni1—O1—C1 | −87.93 (13) | Ni1—O1—C1—C2 | −9.7 (2) |
O4—Ni1—O1—C1 | 92.07 (13) | O2—C1—C2—C3 | −162.17 (15) |
O1i—Ni1—N1—C3 | 176.44 (15) | O1—C1—C2—C3 | 19.6 (2) |
O1—Ni1—N1—C3 | −3.56 (15) | O3—N1—C3—C4 | 1.8 (2) |
O4i—Ni1—N1—C3 | 87.23 (15) | Ni1—N1—C3—C4 | −168.07 (13) |
O4—Ni1—N1—C3 | −92.77 (15) | O3—N1—C3—C2 | −177.11 (14) |
O1i—Ni1—N1—O3 | 6.79 (10) | Ni1—N1—C3—C2 | 13.1 (2) |
O1—Ni1—N1—O3 | −173.21 (10) | C1—C2—C3—N1 | −21.1 (2) |
O4i—Ni1—N1—O3 | −82.43 (10) | C1—C2—C3—C4 | 159.90 (16) |
O4—Ni1—N1—O3 | 97.57 (10) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H2O4···O2ii | 0.79 (2) | 1.94 (2) | 2.7293 (17) | 175 (2) |
O3—H1O3···O1i | 0.72 (2) | 2.10 (2) | 2.7404 (17) | 148 (2) |
O4—H1O4···O2iii | 0.87 (3) | 1.90 (3) | 2.7576 (16) | 167 (2) |
Symmetry codes: (i) −x, −y, −z; (ii) x, y−1, z; (iii) −x−1/2, y−1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C4H6NO3)2(H2O)2] |
Mr | 326.94 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 9.6071 (9), 7.1721 (7), 9.6805 (9) |
β (°) | 107.557 (5) |
V (Å3) | 635.94 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.56 |
Crystal size (mm) | 0.23 × 0.15 × 0.11 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS, Sheldrick, 2001) |
Tmin, Tmax | 0.622, 0.796 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4576, 1626, 1286 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.835 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.060, 1.05 |
No. of reflections | 1626 |
No. of parameters | 101 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.35, −0.32 |
Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H2O4···O2i | 0.79 (2) | 1.94 (2) | 2.7293 (17) | 175 (2) |
O3—H1O3···O1ii | 0.72 (2) | 2.10 (2) | 2.7404 (17) | 148 (2) |
O4—H1O4···O2iii | 0.87 (3) | 1.90 (3) | 2.7576 (16) | 167 (2) |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y, −z; (iii) −x−1/2, y−1/2, −z−1/2. |
Acknowledgements
The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263–2008).
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859. CSD CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274. Web of Science CSD CrossRef Google Scholar
Gumienna-Kontecka, E., Berthon, G., Fritsky, I. O., Wieczorek, R., Latajka, Z. & Kozłowski, H. (2000). J. Chem. Soc. Dalton Trans. pp. 4201–4208. Web of Science CrossRef Google Scholar
Khromov, N. V. (1950). Zh. Obshch. Khim. 20, 1858–1867. CAS Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915. CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276. CSD CrossRef Web of Science Google Scholar
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287–294. CSD CrossRef CAS Web of Science Google Scholar
Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem. pp. 759–765. Google Scholar
Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans. pp. 27–29. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-hydroxyiminopropanoic acid and its amide derivatives have been intensively studied during the past 15 years as efficient chelate ligands forming stable complexes with various transition metal ions (Onindo et al., 1995; Duda et al., 1997; Moroz et al., 2008). The presence of an additional strong donor oxime function in the vicinity to the carboxylic group results in important increase of chelating efficiency as compare to structurally related amino acids. For example, 2-hydroxyiminopropanoic acid and other 2-hydroxyiminocarboxylic acids were shown to act as highly efficient chelators with respect to copper(II), nickel(II) and aluminium(III) (Onindo et al., 1995; Sliva et al., 1997a; Sliva et al., 1997b; Gumienna-Kontecka et al., 2000). Also, the amide derivatives of 2-hydroxyiminopropanoic acid possess strong σ-donor capacity and thus have been successfully used for preparation of metal complexes with efficient stabilization of Cu3+ and Ni3+ oxidation states (Fritsky et al., 1998; Fritsky et al., 2006). Surprisingly, that the complex formation properties of the nearest homologue of 2-hydroxyiminopropanoic acid - 2-hydroxyiminobutanoic acid - have not been studied at all up to date, and no crystal structures of the corresponding coordination compounds have been reported. Herein we present the first crystal structure of a metal complex of 3-hydroxyiminobutanoic acid.
A distorted octahedral coordination geometry is found in (I) with the Ni atom lying on a center of inversion, Fig. 1. Two four N atoms of two chelating oxime ligands define the equatorial plane, each defining a six-membered rings with a nearly planar conformation, and the two trans-coordinated water molecules complete the octahedral coordination geometry. The Ni-O bond lengths in the equatorial plane, Table 1, are somewhat shorter than the Ni-N (1.999 (1) Å and 2.043 (1) Å, respectively). The O atoms of the protonated oxime group form intramolecular hydrogen bonds with the coordinated carboxylate O atoms forming five-membered rings and thus fusing two six-membered chelate rings in a pseudomacrocyclic structure. The difference in C—O bond lengths for the coordinated and non-coordinated oxygen atoms (1.271 (2) Å and 1.250 (2)) Å is typical for monodentately coordinated carboxylic groups (Wörl et al., 2005a,b). The C=N, C=O, N—O, bond lengths are typical for 2-hydroxyiminopropanoic acid and its derivatives (Onindo et al., 1995; Sliva et al. (1997a,b); Mokhir et al., 2002).
The octahedral complex molecules are organized in the chains disposed along b direction of the crystal due to H-bonds formed by the axial water molecules and non-coordinated carboxylate O atom O4 belonging to the translational molecule (Table 1). The chains are united in layers with the help of the H-bonds of different type (also formed by the water molecules and non-coordinated carboxylate O atom O4 belonging to another translational molecule). The layers disposed parallel to b direction of the crystal are united in three-dimensional structure only with the help of van der Waals contacts (Fig. 2).