metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m302-m303

Bis(1H-imidazole-κN3){2,2′-[propane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}iron(III) perchlorate

aDepartment of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan, and bDepartment of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
*Correspondence e-mail: hayami@sci.kumamoto-u.ac.jp

(Received 22 December 2009; accepted 1 February 2010; online 17 February 2010)

The title compound, [Fe(C17H16N2O2)(C3H4N2)2]ClO4, consists of monomeric [Fe(salmen)(HIm)2]+ cations {salmen is the 2,2′-[propane-1,2-diylbis(nitrilo­methyl­idyne)]diphen­olate dianion and HIm is 1H-imiazole} and perchlorate anions. In the cation, the Fe3+ ion is octahedrally coordinated by two N atoms and two O atoms from a tetra­dentate salmen anion and two N atoms from two Him mol­ecules. These ligands are coordinated to the iron ion in a direction perpendicular to the [Fe(salmen)]+ coordination plane. The benzene ring planes in the salmen ligands are oriented nearly parallel to one another inter­molecularly [dihedral angle = 6.36 (3)°]. The dihedral angle between the mean planes through the imidazole rings in the cation is 76.9 (2)°. In the crystal, N—H⋯O inter­actions link the mol­ecules into a one-dimensional double chain running along [101] and C—H⋯O inter­actions link the double chains into a two-dimensional network, running parallel to the ac plane.

Related literature

For salen–metal complexes with spin crossover properties, see: Brendan et al. (1984[Brendan, J. K., Gary, D. F., Bryan, M. K., Brian, M. K. C. G. & Keith, S. M. (1984). Inorg. Chem. 23, 580-588.], 1987[Brendan, J. K., Anthony, C. M., Keith, S. M., Brian, W. S. & Allan, H. W. (1987). Inorg. Chem. 26, 483-495.]); Hernández-Molina et al. (1998[Hernández-Molina, R., Moderos, A., Dominguez, S., Gili, P., Ruiz-Pérez, C., Castiñeiras, A., Solans, X., Lloret, F. & Real, J. A. (1998). Inorg. Chem. 37, 5102-5108.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C17H16N2O2)(C3H4N2)2]ClO4

  • Mr = 571.78

  • Monoclinic, P 21 /c

  • a = 10.4898 (8) Å

  • b = 16.4312 (9) Å

  • c = 14.7729 (8) Å

  • β = 105.5081 (17)°

  • V = 2453.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 113 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID Imaging Plate diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 2001[Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.860, Tmax = 0.860

  • 20794 measured reflections

  • 5615 independent reflections

  • 3529 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.179

  • S = 0.99

  • 5615 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—O1 1.879 (2)
Fe1—O2 1.914 (3)
Fe1—N1 2.119 (3)
Fe1—N2 2.108 (3)
Fe1—N3 2.161 (3)
Fe1—N5 2.161 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O6i 0.95 2.53 3.436 (6) 161
C16—H16⋯O5 0.95 2.53 3.325 (6) 142
N4—H4A⋯O2ii 0.88 2.48 3.063 (4) 125
N4—H4A⋯O6ii 0.88 2.36 3.031 (4) 133
N6—H6A⋯O4iii 0.88 2.03 2.892 (4) 167
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y, -z+2; (iii) -x+1, -y, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalClear (Molecular Structure Corporation and Rigaku, 2002[Molecular Structure Corporation and Rigaku (2002). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari-XG (Wakita, 2000[Wakita, K. (2000). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A number of spin-crossover compounds have been studied. The salen molecule (salen = N,N'-ethylenebis(salicylideneiminato) dianion) has often been used as ligand in spin-crossover complexes (Brendan et al., 1984, Hernández-Molina et al., 1998). Brendan et al. reported Fe(III)-salen complexes [Fe(salen)(L)2](Y) (L = imidazole series, Y = counter anion) and showed that the spin state can be tuned by using different imidazole series and counter anions (Brendan et al., 1987). They also showed that [Fe(salen)(HIm)2](ClO4)2 has spin-crossover properties. In this study, the crystal stucture of the derivative [Fe(salmen)(HIm)2](ClO4)2 is reported.

The title compound consists of a cation whose iron ion is coordinated by a salmen anion and two imidazole ligands. The structure further contains a perchlorate anion. The molecular planes of the benzene rings of all salmen ligands in the crystal are oriented essentially parallel to one another. The two imidazoles coordinated to the Fe3+ ion aren't coplanar; the dihedral angle between their mean planes is 76.9 (2)°. Imidazole ligands are coordinated to iron ion in a direction perpendicular to [Fe(salmen)]+, with the angle around iron ion O1— Fe1— N3 = 88.40 (12)°, O2—Fe1—N3 = 90.95 (12)°, O1—Fe1—N5 = 93.19 (12)° and O2—Fe1—N5 = 87.99 (12)°. The two benzene rings in a salmen ligand are nearly coplanar, but the bridging carbon atoms are not located in this plane. C2 is displaced 0.1057 (2)Å from the C5–C12 benzene plane and C3 is displaced 0.1785 (2)Å from the C12–C17 benzene plane. The torsion angle N1—C2—C3—N2 is 41.1 (5)°.

In addition, many intermolecular interactions are observed in the crystal structure. Intermolecular C—H···O hydrogen bonds link the benzene hydrogens H7 and H16 with the anion oxygens O6 and O5, respectively. N—H···O hydrogen bonds link the imidazole hydrogen H6A to anionic oxygen O4 and link the imidazole H4A in a bifurcated bond to the ring oxygen O2 and the anion oxygen O6. The N—H···O interactions link the molecules into a one-dimensional double chain (step ladder) running in the [1 0 1] direction, with N4—H4A···O2 acting as the rungs in the ladder. The C—H···O interactions link the double chains into a two-dimensional network, running parallel to the ac plane.

Related literature top

For salen–metal complexes with spin crossover properties, see: Brendan et al. (1984, 1987); Hernández-Molina et al. (1998).

Experimental top

The salmen ligand was prepared by the reaction of 1, 2-diaminopropane (2 mmol) and salicylaldehyde (4 mmol) in ethanol. The title compound was synthesized in accordance with the procedure reported in the literature (Brendan et al., 1987).

Refinement top

All H-atoms were positioned geometrically (N—H = 0.88 Å and C—H = 0.95 – 0.99Å ) and refined a riding model with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalClear (Molecular Structure Corporation and Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG (Wakita, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound drawn with 50% probability displacement ellipsoids.
Bis(1H-imidazole-κN3){2,2'-[propane-1,2- diylbis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}iron(III) perchlorate top
Crystal data top
[Fe(C17H16N2O2)(C3H4N2)2]ClO4F(000) = 1180
Mr = 571.78Dx = 1.548 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 10.4898 (8) ÅCell parameters from 18352 reflections
b = 16.4312 (9) Åθ = 2.5–27.5°
c = 14.7729 (8) ŵ = 0.78 mm1
β = 105.5081 (17)°T = 113 K
V = 2453.6 (3) Å3Block, black
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
5615 independent reflections
Radiation source: fine-focus sealed tube3529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
h = 1311
Tmin = 0.860, Tmax = 0.860k = 2121
20794 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
5615 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Fe(C17H16N2O2)(C3H4N2)2]ClO4V = 2453.6 (3) Å3
Mr = 571.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4898 (8) ŵ = 0.78 mm1
b = 16.4312 (9) ÅT = 113 K
c = 14.7729 (8) Å0.20 × 0.20 × 0.20 mm
β = 105.5081 (17)°
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
5615 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
3529 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.860Rint = 0.086
20794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 0.99Δρmax = 0.77 e Å3
5615 reflectionsΔρmin = 0.65 e Å3
335 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.79757 (6)0.13608 (3)0.88002 (3)0.02225 (18)
Cl10.69936 (10)0.13827 (6)0.61401 (6)0.0306 (2)
O10.7346 (3)0.06289 (15)0.95574 (17)0.0267 (6)
O20.8686 (3)0.06897 (16)0.79939 (17)0.0268 (6)
O30.6186 (3)0.20419 (19)0.5683 (2)0.0464 (9)
O40.6768 (4)0.06891 (19)0.5516 (2)0.0506 (9)
O50.8363 (3)0.1597 (2)0.6359 (3)0.0530 (10)
O60.6683 (4)0.1151 (3)0.6984 (2)0.0633 (11)
N10.7220 (3)0.23386 (19)0.9436 (2)0.0283 (8)
N20.8607 (3)0.23941 (19)0.8192 (2)0.0258 (7)
N30.9857 (3)0.13642 (19)0.9853 (2)0.0266 (7)
N41.1404 (4)0.0971 (2)1.1086 (2)0.0386 (9)
H4A1.17950.07231.16150.046*
N50.6125 (3)0.1369 (2)0.7717 (2)0.0276 (8)
N60.4654 (4)0.1116 (2)0.6386 (2)0.0400 (10)
H6A0.42920.09160.58230.048*
C10.7007 (5)0.3882 (3)0.9504 (3)0.0436 (12)
H1A0.61090.38750.95840.065*
H1B0.71230.43700.91530.065*
H1C0.76510.38871.01220.065*
C20.7217 (5)0.3135 (3)0.8970 (3)0.0437 (12)
H20.64440.31160.84010.052*
C30.8397 (5)0.3177 (3)0.8607 (4)0.0465 (13)
H3A0.82760.36100.81250.056*
H3B0.91830.33140.91250.056*
C40.6667 (4)0.2260 (2)1.0119 (3)0.0292 (9)
H40.63750.27441.03540.035*
C50.6456 (4)0.1508 (3)1.0550 (3)0.0289 (9)
C60.5831 (5)0.1545 (3)1.1286 (3)0.0368 (11)
H60.55820.20621.14720.044*
C70.5574 (5)0.0875 (3)1.1733 (3)0.0429 (12)
H70.51320.09201.22140.051*
C80.5962 (5)0.0116 (3)1.1484 (3)0.0420 (12)
H80.58110.03571.18110.050*
C90.6569 (5)0.0047 (3)1.0759 (3)0.0347 (10)
H90.68290.04741.05950.042*
C100.6801 (4)0.0724 (2)1.0274 (2)0.0270 (9)
C110.9182 (4)0.2386 (3)0.7521 (3)0.0283 (9)
H110.93690.28980.72850.034*
C120.9565 (4)0.1668 (3)0.7100 (3)0.0278 (9)
C131.0235 (4)0.1789 (3)0.6396 (3)0.0335 (10)
H131.04000.23290.62260.040*
C141.0649 (5)0.1152 (3)0.5955 (3)0.0375 (11)
H141.11020.12470.54870.045*
C151.0401 (4)0.0360 (3)0.6199 (3)0.0363 (11)
H151.06770.00870.58900.044*
C160.9763 (4)0.0220 (3)0.6880 (3)0.0340 (10)
H160.96110.03250.70390.041*
C170.9327 (4)0.0864 (3)0.7351 (3)0.0277 (9)
C181.0139 (5)0.0901 (3)1.0620 (3)0.0320 (10)
H180.95180.05661.08080.038*
C191.1997 (5)0.1494 (3)1.0607 (3)0.0355 (10)
H191.28990.16581.07740.043*
C201.1030 (4)0.1732 (2)0.9839 (3)0.0286 (9)
H201.11470.20950.93680.034*
C210.5883 (4)0.0979 (3)0.6904 (3)0.0327 (10)
H210.65060.06450.67150.039*
C220.4052 (5)0.1619 (3)0.6876 (3)0.0414 (12)
H220.31710.18190.66780.050*
C230.4955 (4)0.1780 (3)0.7700 (3)0.0336 (10)
H230.48140.21170.81860.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0297 (3)0.0202 (3)0.0168 (3)0.0031 (3)0.0062 (2)0.0003 (2)
Cl10.0300 (6)0.0369 (6)0.0223 (5)0.0017 (5)0.0027 (4)0.0049 (4)
O10.0457 (18)0.0202 (14)0.0196 (13)0.0033 (12)0.0179 (12)0.0002 (11)
O20.0360 (17)0.0266 (15)0.0207 (13)0.0046 (12)0.0125 (12)0.0028 (11)
O30.046 (2)0.0410 (19)0.0427 (18)0.0176 (16)0.0051 (15)0.0030 (15)
O40.068 (3)0.0364 (19)0.0353 (17)0.0089 (17)0.0065 (16)0.0077 (15)
O50.032 (2)0.0399 (19)0.081 (3)0.0024 (16)0.0046 (18)0.0156 (18)
O60.062 (3)0.102 (3)0.0309 (17)0.008 (2)0.0201 (17)0.0083 (19)
N10.038 (2)0.0223 (18)0.0258 (17)0.0004 (15)0.0100 (15)0.0028 (14)
N20.033 (2)0.0216 (17)0.0227 (16)0.0018 (14)0.0071 (15)0.0003 (14)
N30.034 (2)0.0221 (17)0.0214 (16)0.0028 (15)0.0039 (14)0.0011 (14)
N40.044 (2)0.041 (2)0.0259 (18)0.0210 (19)0.0008 (17)0.0019 (17)
N50.029 (2)0.0269 (18)0.0247 (16)0.0055 (16)0.0032 (14)0.0011 (15)
N60.045 (3)0.040 (2)0.0264 (18)0.0146 (19)0.0063 (17)0.0028 (17)
C10.042 (3)0.036 (3)0.054 (3)0.001 (2)0.015 (2)0.001 (2)
C20.066 (4)0.023 (2)0.048 (3)0.000 (2)0.026 (3)0.001 (2)
C30.067 (4)0.025 (2)0.057 (3)0.001 (2)0.032 (3)0.006 (2)
C40.034 (3)0.029 (2)0.024 (2)0.0023 (18)0.0075 (18)0.0048 (18)
C50.032 (2)0.032 (2)0.0224 (19)0.0017 (18)0.0078 (17)0.0033 (17)
C60.050 (3)0.039 (3)0.029 (2)0.002 (2)0.021 (2)0.0055 (19)
C70.054 (3)0.047 (3)0.037 (2)0.007 (2)0.028 (2)0.008 (2)
C80.063 (3)0.037 (3)0.033 (2)0.013 (2)0.024 (2)0.001 (2)
C90.050 (3)0.025 (2)0.033 (2)0.007 (2)0.017 (2)0.0014 (18)
C100.032 (2)0.029 (2)0.0188 (18)0.0061 (18)0.0054 (17)0.0024 (17)
C110.032 (2)0.028 (2)0.0238 (19)0.0055 (18)0.0044 (17)0.0065 (17)
C120.027 (2)0.034 (2)0.0217 (19)0.0025 (18)0.0056 (17)0.0007 (17)
C130.033 (3)0.041 (3)0.027 (2)0.008 (2)0.0077 (19)0.0062 (19)
C140.036 (3)0.057 (3)0.020 (2)0.004 (2)0.0084 (19)0.002 (2)
C150.031 (3)0.052 (3)0.025 (2)0.003 (2)0.0057 (19)0.006 (2)
C160.040 (3)0.038 (3)0.027 (2)0.006 (2)0.0136 (19)0.0025 (19)
C170.027 (2)0.035 (2)0.0208 (19)0.0059 (18)0.0045 (17)0.0019 (17)
C180.045 (3)0.028 (2)0.023 (2)0.010 (2)0.0078 (19)0.0044 (17)
C190.032 (3)0.039 (3)0.034 (2)0.008 (2)0.008 (2)0.005 (2)
C200.030 (2)0.025 (2)0.028 (2)0.0017 (18)0.0046 (18)0.0047 (17)
C210.039 (3)0.031 (2)0.024 (2)0.007 (2)0.0010 (19)0.0026 (18)
C220.030 (3)0.041 (3)0.045 (3)0.011 (2)0.003 (2)0.014 (2)
C230.031 (3)0.028 (2)0.041 (2)0.0066 (19)0.009 (2)0.0048 (19)
Geometric parameters (Å, º) top
Fe1—O11.879 (2)C3—H3B0.9900
Fe1—O21.914 (3)C4—C51.434 (6)
Fe1—N12.119 (3)C4—H40.9500
Fe1—N22.108 (3)C5—C61.412 (5)
Fe1—N32.161 (3)C5—C101.428 (6)
Fe1—N52.161 (3)C6—C71.348 (6)
Cl1—O31.428 (3)C6—H60.9500
Cl1—O41.445 (3)C7—C81.392 (6)
Cl1—O51.429 (3)C7—H70.9500
Cl1—O61.422 (3)C8—C91.389 (6)
O1—C101.339 (4)C8—H80.9500
O2—C171.333 (4)C9—C101.380 (6)
N1—C21.478 (5)C9—H90.9500
N1—C41.297 (5)C11—C121.441 (6)
N2—C31.466 (5)C11—H110.9500
N2—C111.291 (5)C12—C131.416 (5)
N3—C181.331 (5)C12—C171.413 (6)
N3—C201.376 (5)C13—C141.364 (6)
N4—C181.327 (5)C13—H130.9500
N4—C191.364 (6)C14—C151.394 (6)
N4—H4A0.8800C14—H140.9500
N5—C211.325 (5)C15—C161.368 (6)
N5—C231.395 (5)C15—H150.9500
N6—C211.331 (5)C16—C171.408 (6)
N6—C221.360 (6)C16—H160.9500
N6—H6A0.8800C18—H180.9500
C1—C21.507 (6)C19—C201.361 (6)
C1—H1A0.9800C19—H190.9500
C1—H1B0.9800C20—H200.9500
C1—H1C0.9800C21—H210.9500
C2—C31.476 (7)C22—C231.353 (6)
C2—H21.0000C22—H220.9500
C3—H3A0.9900C23—H230.9500
O1—Fe1—O2105.02 (11)N1—C4—H4117.1
O1—Fe1—N189.34 (12)C5—C4—H4117.1
O1—Fe1—N2165.83 (12)C4—C5—C6117.6 (4)
O1—Fe1—N388.40 (12)C4—C5—C10124.7 (3)
O1—Fe1—N593.19 (12)C6—C5—C10117.7 (4)
O2—Fe1—N1165.15 (12)C5—C6—C7122.4 (4)
O2—Fe1—N288.86 (12)C5—C6—H6118.8
O2—Fe1—N390.95 (12)C7—C6—H6118.8
O2—Fe1—N587.99 (12)C6—C7—C8119.5 (4)
N1—Fe1—N277.04 (12)C6—C7—H7120.3
N1—Fe1—N393.25 (13)C8—C7—H7120.3
N1—Fe1—N587.44 (13)C7—C8—C9120.2 (4)
N2—Fe1—N388.51 (12)C7—C8—H8119.9
N2—Fe1—N590.10 (12)C9—C8—H8119.9
N3—Fe1—N5178.27 (12)C8—C9—C10121.1 (4)
O3—Cl1—O4108.75 (19)C8—C9—H9119.5
O3—Cl1—O5110.6 (2)C10—C9—H9119.5
O3—Cl1—O6111.8 (2)O1—C10—C9119.3 (4)
O4—Cl1—O5108.8 (2)O1—C10—C5121.7 (3)
O4—Cl1—O6108.2 (2)C5—C10—C9119.0 (4)
O5—Cl1—O6108.6 (2)N2—C11—C12125.6 (4)
Fe1—O1—C10133.5 (2)N2—C11—H11117.2
Fe1—O2—C17132.4 (3)C12—C11—H11117.2
Fe1—N1—C2114.7 (2)C11—C12—C13116.9 (4)
Fe1—N1—C4124.6 (3)C11—C12—C17124.3 (3)
C2—N1—C4120.3 (3)C13—C12—C17118.8 (4)
Fe1—N2—C3115.4 (3)C12—C13—C14121.8 (4)
Fe1—N2—C11125.7 (3)C12—C13—H13119.1
C3—N2—C11118.9 (3)C14—C13—H13119.1
Fe1—N3—C18124.3 (3)C13—C14—C15119.2 (4)
Fe1—N3—C20129.7 (3)C13—C14—H14120.4
C18—N3—C20105.5 (4)C15—C14—H14120.4
C18—N4—C19108.5 (4)C14—C15—C16120.6 (4)
C18—N4—H4A125.8C14—C15—H15119.7
C19—N4—H4A125.8C16—C15—H15119.7
Fe1—N5—C21125.8 (3)C15—C16—C17121.6 (4)
Fe1—N5—C23128.9 (3)C15—C16—H16119.2
C21—N5—C23105.3 (4)C17—C16—H16119.2
C21—N6—C22108.3 (4)O2—C17—C12123.1 (4)
C21—N6—H6A125.9O2—C17—C16118.9 (4)
C22—N6—H6A125.9C12—C17—C16118.0 (3)
C2—C1—H1A109.5N3—C18—N4110.9 (4)
C2—C1—H1B109.5N3—C18—H18124.6
C2—C1—H1C109.5N4—C18—H18124.6
H1A—C1—H1B109.5N4—C19—C20105.7 (4)
H1A—C1—H1C109.5N4—C19—H19127.1
H1B—C1—H1C109.5C20—C19—H19127.1
N1—C2—C1117.3 (4)N3—C20—C19109.4 (4)
N1—C2—C3108.2 (4)N3—C20—H20125.3
N1—C2—H2105.4C19—C20—H20125.3
C1—C2—C3114.0 (4)N5—C21—N6111.1 (4)
C1—C2—H2105.4N5—C21—H21124.4
C3—C2—H2105.4N6—C21—H21124.4
N2—C3—C2110.2 (4)N6—C22—C23106.5 (4)
N2—C3—H3A109.6N6—C22—H22126.7
N2—C3—H3B109.6C23—C22—H22126.7
C2—C3—H3A109.6N5—C23—C23108.8 (4)
C2—C3—H3B109.6N5—C23—H23125.6
H3A—C3—H3B108.1C22—C23—H23125.6
N1—C4—C5125.8 (4)
O2—Fe1—O1—C10176.7 (3)Fe1—N1—C2—C335.1 (5)
N1—Fe1—O1—C107.2 (4)C4—N1—C2—C121.0 (6)
N2—Fe1—O1—C108.6 (8)C4—N1—C2—C3151.7 (4)
N3—Fe1—O1—C1086.1 (4)Fe1—N1—C4—C50.8 (6)
N5—Fe1—O1—C1094.6 (4)C2—N1—C4—C5171.8 (4)
O1—Fe1—O2—C17175.8 (3)Fe1—N2—C3—C230.6 (5)
N1—Fe1—O2—C1719.3 (7)C11—N2—C3—C2151.3 (4)
N2—Fe1—O2—C171.3 (3)Fe1—N2—C11—C123.7 (6)
N3—Fe1—O2—C1787.2 (3)C3—N2—C11—C12174.2 (4)
N5—Fe1—O2—C1791.4 (3)Fe1—N3—C18—N4173.6 (3)
O1—Fe1—N1—C2169.1 (3)C20—N3—C18—N41.0 (4)
O1—Fe1—N1—C43.9 (3)Fe1—N3—C20—C19173.0 (3)
O2—Fe1—N1—C23.6 (7)C18—N3—C20—C190.9 (4)
O2—Fe1—N1—C4169.3 (4)Fe1—N5—C23—C22179.1 (3)
N2—Fe1—N1—C214.9 (3)C19—N4—C18—N30.8 (5)
N2—Fe1—N1—C4172.2 (4)C18—N4—C19—C200.2 (5)
N3—Fe1—N1—C2102.6 (3)C21—N5—C23—C220.1 (5)
N3—Fe1—N1—C484.5 (3)Fe1—N5—C21—N6179.1 (3)
N5—Fe1—N1—C497.1 (3)C23—N5—C21—N60.0 (4)
N5—Fe1—N1—C275.8 (3)C22—N6—C21—N50.0 (5)
O1—Fe1—N2—C37.4 (7)C21—N6—C22—C230.1 (5)
O1—Fe1—N2—C11170.5 (4)N1—C2—C3—N241.1 (5)
O2—Fe1—N2—C3175.8 (3)C1—C2—C3—N2173.6 (4)
O2—Fe1—N2—C112.1 (3)N1—C4—C5—C6179.8 (4)
N1—Fe1—N2—C38.8 (3)N1—C4—C5—C101.6 (7)
N1—Fe1—N2—C11173.2 (4)C4—C5—C6—C7179.4 (4)
N3—Fe1—N2—C384.9 (3)C10—C5—C6—C71.0 (7)
N3—Fe1—N2—C1193.1 (3)C4—C5—C10—O11.1 (6)
N5—Fe1—N2—C396.2 (3)C4—C5—C10—C9178.8 (4)
N5—Fe1—N2—C1185.9 (3)C6—C5—C10—O1177.1 (4)
O1—Fe1—N3—C184.1 (3)C6—C5—C10—C93.0 (6)
O1—Fe1—N3—C20174.8 (3)C5—C6—C7—C81.6 (8)
O2—Fe1—N3—C18100.9 (3)C6—C7—C8—C92.1 (8)
O2—Fe1—N3—C2069.8 (3)C7—C8—C9—C100.0 (7)
N1—Fe1—N3—C1893.3 (3)C8—C9—C10—O1177.6 (4)
N1—Fe1—N3—C2095.9 (3)C8—C9—C10—C52.5 (7)
N2—Fe1—N3—C18170.3 (3)N2—C11—C12—C13177.5 (4)
N2—Fe1—N3—C2019.0 (3)N2—C11—C12—C171.8 (6)
O1—Fe1—N5—C21103.2 (3)C11—C12—C13—C14179.6 (4)
O1—Fe1—N5—C2377.9 (3)C17—C12—C13—C140.2 (6)
O2—Fe1—N5—C211.8 (3)C11—C12—C17—O21.8 (6)
O2—Fe1—N5—C23177.1 (3)C11—C12—C17—C16179.7 (4)
N1—Fe1—N5—C21167.6 (3)C13—C12—C17—O2178.9 (4)
N1—Fe1—N5—C2311.3 (3)C13—C12—C17—C160.4 (6)
N2—Fe1—N5—C2190.6 (3)C12—C13—C14—C150.4 (7)
N2—Fe1—N5—C2388.3 (3)C13—C14—C15—C160.7 (7)
Fe1—O1—C10—C57.0 (6)C14—C15—C16—C170.5 (7)
Fe1—O1—C10—C9172.9 (3)C15—C16—C17—O2178.6 (4)
Fe1—O2—C17—C123.2 (6)C15—C16—C17—C120.1 (6)
Fe1—O2—C17—C16178.4 (3)N4—C19—C20—N30.5 (5)
Fe1—N1—C2—C1165.7 (3)N6—C22—C23—N50.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O6i0.952.533.436 (6)161
C16—H16···O50.952.533.325 (6)142
N4—H4A···O2ii0.882.483.063 (4)125
N4—H4A···O6ii0.882.363.031 (4)133
N6—H6A···O4iii0.882.032.892 (4)167
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C17H16N2O2)(C3H4N2)2]ClO4
Mr571.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)10.4898 (8), 16.4312 (9), 14.7729 (8)
β (°) 105.5081 (17)
V3)2453.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID Imaging Plate
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 2001)
Tmin, Tmax0.860, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
20794, 5615, 3529
Rint0.086
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.179, 0.99
No. of reflections5615
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.65

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalClear (Molecular Structure Corporation and Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Yadokari-XG (Wakita, 2000).

Selected bond lengths (Å) top
Fe1—O11.879 (2)Fe1—N22.108 (3)
Fe1—O21.914 (3)Fe1—N32.161 (3)
Fe1—N12.119 (3)Fe1—N52.161 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O6i0.952.5263.436 (6)161
C16—H16···O50.952.5273.325 (6)142
N4—H4A···O2ii0.882.4763.063 (4)125
N4—H4A···O6ii0.882.3593.031 (4)133
N6—H6A···O4iii0.882.0282.892 (4)167
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2; (iii) x+1, y, z+1.
 

Acknowledgements

This work was supported by `Development of Mol­ecular Devices in Ferroelectric Metallomesogens' in 2006 of the New Energy and Industrial Technology Development Organization (NEDO) of Japan, and by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government (No. 20350028).

References

First citationBrendan, J. K., Anthony, C. M., Keith, S. M., Brian, W. S. & Allan, H. W. (1987). Inorg. Chem. 26, 483–495.  Google Scholar
First citationBrendan, J. K., Gary, D. F., Bryan, M. K., Brian, M. K. C. G. & Keith, S. M. (1984). Inorg. Chem. 23, 580–588.  Google Scholar
First citationHernández-Molina, R., Moderos, A., Dominguez, S., Gili, P., Ruiz-Pérez, C., Castiñeiras, A., Solans, X., Lloret, F. & Real, J. A. (1998). Inorg. Chem. 37, 5102–5108.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation and Rigaku (2002). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2000). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m302-m303
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds