organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-5,6-methyl­enedi­­oxy-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 5 January 2010; accepted 6 February 2010; online 13 February 2010)

In the title compound, C16H11FO4S, the O atom and the methyl group of the methyl­sulfinyl substituent are located on opposite sides of the mean plane through the 5,6-(methyl­enedi­oxy)benzofuran fragment. The 4-fluoro­phenyl ring is rotated out of the 5,6-(methyl­enedi­oxy)benzofuran plane, making a dihedral angle of 29.90 (6)°. In the crystal structure, both inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. The combination of C—H⋯O hydrogen bonds result in chains running along [1[\overline{1}][\overline{1}]].

Related literature

For the structures of similar 5,6-methyl­enedi­oxy-1-benzofuran derivatives, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Lee, H. K., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o519-o520.], 2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2503.]). For the pharmacological properties of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Twyman & Allsop (1999[Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383-9384.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); von Reuss & König (2004[Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113-3118.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11FO4S

  • Mr = 318.31

  • Triclinic, [P \overline 1]

  • a = 8.0283 (7) Å

  • b = 8.4072 (7) Å

  • c = 10.6611 (9) Å

  • α = 85.735 (1)°

  • β = 86.319 (1)°

  • γ = 68.110 (1)°

  • V = 665.33 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 173 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 0.948

  • 4954 measured reflections

  • 2325 independent reflections

  • 2153 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.04

  • 2325 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.54 3.383 (2) 151
C14—H14⋯O4ii 0.93 2.57 3.368 (2) 144
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran ring systems have received considerable attention in view of their pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999) and their occurrence as natural products (Akgul & Anil, 2003; von Reuss & König, 2004). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 5,6-methylenedioxy-1-benzofuran analogues (Choi et al., 2007,2009), we report the crystal structure of the title compound (Fig.1).

The 5,6-(methylenedioxy)benzofuran unit is essentially planar, with a mean deviation of 0.060 (2) Å from the least-squares plane defined by the twelve constituent atoms. The dihedral angle formed by the plane of the 5,6-(methylenedioxy)benzofuran ring and the plane of 4-fluorophenyl ring is 29.90 (6).

In the crystal packing, both intermolecular C—H···O hydrogen bonds (C3—H3···O2 and C14—H14···O4) link the molecules into dimers (Table 1, Figure 2). Together, the C—H···O hydrogen-bond interactions link the molecules into a one-dimensional chain running in the [1,-1,-1] direction.

Related literature top

For the structures of similar 5,6-methylenedioxy-1-benzofuran derivatives, see: Choi et al. (2007, 2009). For the pharmacological properties of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999). For natural products with benzofuran rings, see: Akgul & Anil (2003); von Reuss & König (2004).

Experimental top

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 2-(4-fluorophenyl)-5,6-methylenedioxy-3-methylsulfanyl-1-benzofuran (302 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 2h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 488–489 K; Rf = 0.51 (hexane–ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform at room temperature.

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for aryl, 0.97 Å for methylene, and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level.
[Figure 2] Fig. 2. C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y + 1, - z + 2; (ii) - x + 2, - y, - z + 1.]
2-(4-Fluorophenyl)-5,6-methylenedioxy-3-methylsulfinyl-1-benzofuran top
Crystal data top
C16H11FO4SZ = 2
Mr = 318.31F(000) = 328
Triclinic, P1Dx = 1.589 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0283 (7) ÅCell parameters from 4336 reflections
b = 8.4072 (7) Åθ = 2.6–27.4°
c = 10.6611 (9) ŵ = 0.27 mm1
α = 85.735 (1)°T = 173 K
β = 86.319 (1)°Block, colourless
γ = 68.110 (1)°0.40 × 0.40 × 0.20 mm
V = 665.33 (10) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2325 independent reflections
Radiation source: Rotating Anode2153 reflections with I > 2σ(I)
HELIOS monochromatorRint = 0.036
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 1.9°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 99
Tmin = 0.899, Tmax = 0.948l = 1212
4954 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.4337P]
where P = (Fo2 + 2Fc2)/3
2325 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H11FO4Sγ = 68.110 (1)°
Mr = 318.31V = 665.33 (10) Å3
Triclinic, P1Z = 2
a = 8.0283 (7) ÅMo Kα radiation
b = 8.4072 (7) ŵ = 0.27 mm1
c = 10.6611 (9) ÅT = 173 K
α = 85.735 (1)°0.40 × 0.40 × 0.20 mm
β = 86.319 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2325 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2153 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.948Rint = 0.036
4954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.76 e Å3
2325 reflectionsΔρmin = 0.34 e Å3
200 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.80463 (5)0.18763 (6)0.60869 (4)0.02335 (16)
F0.68941 (16)0.01363 (16)0.02490 (11)0.0385 (3)
O10.29585 (16)0.35961 (16)0.51174 (11)0.0228 (3)
O20.25335 (17)0.57506 (17)0.98364 (12)0.0292 (3)
O30.01602 (17)0.65674 (17)0.88470 (12)0.0285 (3)
O40.84924 (18)0.30301 (18)0.68884 (15)0.0372 (4)
C10.5684 (2)0.2707 (2)0.59585 (16)0.0206 (4)
C20.4380 (2)0.3671 (2)0.68856 (16)0.0204 (4)
C30.4467 (2)0.4134 (2)0.81182 (16)0.0225 (4)
H30.55370.37920.85370.027*
C40.2853 (2)0.5124 (2)0.86443 (16)0.0229 (4)
C50.0711 (3)0.6920 (2)0.98677 (18)0.0289 (4)
H5A0.06610.80930.97760.035*
H5B0.01170.67691.06640.035*
C60.1218 (2)0.5638 (2)0.80438 (17)0.0222 (4)
C70.1075 (2)0.5200 (2)0.68512 (17)0.0237 (4)
H70.00060.55310.64490.028*
C80.2736 (2)0.4202 (2)0.63084 (16)0.0209 (4)
C90.4775 (2)0.2695 (2)0.49235 (16)0.0214 (4)
C100.5313 (2)0.1926 (2)0.37027 (16)0.0214 (4)
C110.4330 (2)0.2717 (2)0.26424 (16)0.0227 (4)
H110.33230.37210.27190.027*
C120.4845 (2)0.2015 (2)0.14773 (17)0.0251 (4)
H120.41920.25300.07690.030*
C130.6347 (2)0.0537 (2)0.13962 (17)0.0259 (4)
C140.7337 (2)0.0306 (2)0.24219 (17)0.0272 (4)
H140.83340.13150.23360.033*
C150.6797 (2)0.0397 (2)0.35841 (17)0.0258 (4)
H150.74300.01560.42920.031*
C160.8251 (3)0.0009 (3)0.70708 (19)0.0321 (4)
H16A0.94920.06290.72480.048*
H16B0.78030.07260.66460.048*
H16C0.75680.03200.78450.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0165 (2)0.0224 (3)0.0292 (3)0.00522 (18)0.00198 (17)0.00089 (18)
F0.0361 (7)0.0477 (7)0.0256 (6)0.0067 (6)0.0027 (5)0.0155 (5)
O10.0185 (6)0.0260 (7)0.0216 (6)0.0047 (5)0.0023 (5)0.0047 (5)
O20.0273 (7)0.0341 (7)0.0212 (6)0.0043 (6)0.0010 (5)0.0076 (5)
O30.0223 (7)0.0311 (7)0.0269 (7)0.0034 (5)0.0030 (5)0.0071 (5)
O40.0264 (7)0.0293 (8)0.0570 (10)0.0088 (6)0.0137 (6)0.0068 (7)
C10.0175 (8)0.0201 (8)0.0224 (9)0.0050 (7)0.0004 (7)0.0011 (7)
C20.0193 (8)0.0197 (8)0.0217 (8)0.0065 (7)0.0012 (7)0.0004 (7)
C30.0210 (9)0.0248 (9)0.0218 (9)0.0082 (7)0.0034 (7)0.0004 (7)
C40.0262 (9)0.0227 (9)0.0194 (8)0.0083 (7)0.0011 (7)0.0018 (7)
C50.0283 (10)0.0282 (10)0.0266 (9)0.0056 (8)0.0026 (8)0.0080 (8)
C60.0196 (9)0.0194 (9)0.0255 (9)0.0052 (7)0.0020 (7)0.0009 (7)
C70.0175 (8)0.0243 (9)0.0271 (9)0.0050 (7)0.0030 (7)0.0013 (7)
C80.0217 (9)0.0210 (9)0.0197 (8)0.0072 (7)0.0015 (7)0.0026 (7)
C90.0176 (8)0.0207 (9)0.0236 (9)0.0044 (7)0.0003 (7)0.0010 (7)
C100.0212 (9)0.0222 (9)0.0219 (9)0.0093 (7)0.0003 (7)0.0031 (7)
C110.0204 (9)0.0211 (9)0.0259 (9)0.0069 (7)0.0010 (7)0.0018 (7)
C120.0261 (9)0.0283 (10)0.0219 (9)0.0109 (8)0.0034 (7)0.0000 (7)
C130.0274 (10)0.0310 (10)0.0218 (9)0.0130 (8)0.0028 (7)0.0089 (7)
C140.0228 (9)0.0252 (10)0.0303 (10)0.0038 (7)0.0005 (7)0.0076 (8)
C150.0249 (9)0.0254 (9)0.0249 (9)0.0061 (8)0.0051 (7)0.0009 (7)
C160.0292 (10)0.0277 (10)0.0383 (11)0.0100 (8)0.0077 (8)0.0079 (8)
Geometric parameters (Å, º) top
S—O41.4903 (14)C5—H5B0.9700
S—C11.7707 (17)C6—C71.373 (3)
S—C161.7944 (19)C7—C81.398 (2)
F—C131.363 (2)C7—H70.9300
O1—C81.380 (2)C9—C101.464 (2)
O1—C91.380 (2)C10—C151.397 (3)
O2—C41.384 (2)C10—C111.398 (2)
O2—C51.426 (2)C11—C121.387 (3)
O3—C61.379 (2)C11—H110.9300
O3—C51.436 (2)C12—C131.375 (3)
C1—C91.364 (2)C12—H120.9300
C1—C21.443 (2)C13—C141.380 (3)
C2—C81.395 (2)C14—C151.386 (3)
C2—C31.411 (2)C14—H140.9300
C3—C41.363 (3)C15—H150.9300
C3—H30.9300C16—H16A0.9600
C4—C61.401 (3)C16—H16B0.9600
C5—H5A0.9700C16—H16C0.9600
O4—S—C1107.29 (8)O1—C8—C2110.69 (15)
O4—S—C16105.76 (9)O1—C8—C7123.97 (15)
C1—S—C1698.28 (9)C2—C8—C7125.34 (16)
C8—O1—C9106.48 (13)C1—C9—O1110.48 (15)
C4—O2—C5105.53 (13)C1—C9—C10133.97 (16)
C6—O3—C5105.04 (14)O1—C9—C10115.53 (14)
C9—C1—C2107.49 (15)C15—C10—C11119.35 (16)
C9—C1—S126.25 (13)C15—C10—C9120.68 (16)
C2—C1—S126.00 (13)C11—C10—C9119.97 (16)
C8—C2—C3120.39 (16)C12—C11—C10120.44 (16)
C8—C2—C1104.84 (15)C12—C11—H11119.8
C3—C2—C1134.76 (16)C10—C11—H11119.8
C4—C3—C2114.39 (16)C13—C12—C11118.26 (16)
C4—C3—H3122.8C13—C12—H12120.9
C2—C3—H3122.8C11—C12—H12120.9
C3—C4—O2126.99 (16)F—C13—C12118.70 (16)
C3—C4—C6124.06 (16)F—C13—C14118.04 (16)
O2—C4—C6108.93 (15)C12—C13—C14123.25 (17)
O2—C5—O3107.68 (14)C13—C14—C15117.97 (17)
O2—C5—H5A110.2C13—C14—H14121.0
O3—C5—H5A110.2C15—C14—H14121.0
O2—C5—H5B110.2C14—C15—C10120.68 (17)
O3—C5—H5B110.2C14—C15—H15119.7
H5A—C5—H5B108.5C10—C15—H15119.7
C7—C6—O3127.18 (16)S—C16—H16A109.5
C7—C6—C4123.29 (16)S—C16—H16B109.5
O3—C6—C4109.50 (15)H16A—C16—H16B109.5
C6—C7—C8112.52 (16)S—C16—H16C109.5
C6—C7—H7123.7H16A—C16—H16C109.5
C8—C7—H7123.7H16B—C16—H16C109.5
O4—S—C1—C9144.09 (16)C3—C2—C8—O1179.45 (15)
C16—S—C1—C9106.47 (17)C1—C2—C8—O11.26 (19)
O4—S—C1—C229.26 (18)C3—C2—C8—C70.1 (3)
C16—S—C1—C280.17 (17)C1—C2—C8—C7179.22 (17)
C9—C1—C2—C80.86 (19)C6—C7—C8—O1179.98 (16)
S—C1—C2—C8173.53 (13)C6—C7—C8—C20.5 (3)
C9—C1—C2—C3179.99 (19)C2—C1—C9—O10.2 (2)
S—C1—C2—C35.6 (3)S—C1—C9—O1174.20 (12)
C8—C2—C3—C40.8 (2)C2—C1—C9—C10178.74 (18)
C1—C2—C3—C4178.23 (18)S—C1—C9—C106.9 (3)
C2—C3—C4—O2179.41 (16)C8—O1—C9—C10.61 (19)
C2—C3—C4—C61.0 (3)C8—O1—C9—C10179.74 (14)
C5—O2—C4—C3171.11 (18)C1—C9—C10—C1530.2 (3)
C5—O2—C4—C610.26 (19)O1—C9—C10—C15148.66 (16)
C4—O2—C5—O317.49 (19)C1—C9—C10—C11150.3 (2)
C6—O3—C5—O218.03 (19)O1—C9—C10—C1130.9 (2)
C5—O3—C6—C7170.31 (18)C15—C10—C11—C121.5 (3)
C5—O3—C6—C411.72 (19)C9—C10—C11—C12178.93 (16)
C3—C4—C6—C70.4 (3)C10—C11—C12—C130.5 (3)
O2—C4—C6—C7179.07 (16)C11—C12—C13—F178.17 (16)
C3—C4—C6—O3177.68 (16)C11—C12—C13—C141.8 (3)
O2—C4—C6—O31.0 (2)F—C13—C14—C15178.87 (17)
O3—C6—C7—C8178.09 (16)C12—C13—C14—C151.1 (3)
C4—C6—C7—C80.4 (3)C13—C14—C15—C101.0 (3)
C9—O1—C8—C21.19 (19)C11—C10—C15—C142.3 (3)
C9—O1—C8—C7179.28 (16)C9—C10—C15—C14178.20 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.543.383 (2)151
C14—H14···O4ii0.932.573.368 (2)144
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H11FO4S
Mr318.31
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.0283 (7), 8.4072 (7), 10.6611 (9)
α, β, γ (°)85.735 (1), 86.319 (1), 68.110 (1)
V3)665.33 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.899, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
4954, 2325, 2153
Rint0.036
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.04
No. of reflections2325
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.543.383 (2)151.1
C14—H14···O4ii0.932.573.368 (2)144.1
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Lee, H. K., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o519–o520.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTwyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383–9384.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds