organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1-Methyl-3-imidazolio)propane­sulfonate: a precursor to a Brønsted acid ionic liquid

aDepartment of Chemistry, US Naval Academy, 572 M. Holloway Road, Annapolis, Maryland 21402, USA, and bAir Force Office of Scientific Research, 4015 Wilson Boulevard, Arlington, Virginia 22203, USA
*Correspondence e-mail: trulove@usna.edu

(Received 24 November 2009; accepted 3 February 2010; online 13 February 2010)

The title compound, C7H12N2O3S, is a zwitterion precursor to a Brønsted acid ionic liquid with potential as an acid catalyst. The C—N—C—C torsion angle of 100.05 (8)° allows the positively charged imidazolium head group and the negatively charged sulfonate group to inter­act with neighboring zwitterions, forming a C—H⋯O hydrogen-bonding network; the shortest among these inter­actions is 2.9512 (9) Å. The C—H⋯O inter­actions can be described by graph-set notation as two R22(16) and one R22(5) hydrogen-bonded rings.

Related literature

For the use of functionalized ionic liquids (ILs) as Brønsted acid catalysts for organic reactions, see: Cole et al. (2002[Cole, A. C., Jensen, J. L., Ntai, I., Tran, K. L. T., Weaver, K. J., Forbes, D. C. & Davis, J. H. J. (2002). J. Am. Chem. Soc. 124, 5962-5963.]); Yoshizawa et al. (2001[Yoshizawa, M., Hirao, M., Ito-Akita, K. & Ohno, H. (2001). J. Mater. Chem. 11, 1057-1062.]). The local structure of ILs is often conserved on transition from the solid state to the liquid state, see: Henderson et al. (2007[Henderson, W. A., Trulove, P. C., De Long, H. C. & Young, V. G. Jr (2007). ECS Trans. 3, 83-88.]); Reichert et al. (2007[Reichert, W. M., Holbrey, J. D., Swatloski, R. P., Gutowski, K. E., Visser, A. E., Nieuwenhuyzen, M., Seddon, K. R. & Rogers, R. D. (2007). Cryst. Growth Des. 7, 1106-1114.]); Triolo et al. (2006[Triolo, A., Mandanici, A., Russina, O., Rodriguez-Mora, V., Cutroni, M., Hardacre, C., Nieuwenhuyzen, M., Bleif, H.-J., Keller, L. & Ramos, M. A. (2006). J. Phys. Chem. B, 110, 21357-21364.]). For a related structure, see: Pringle et al. (2003[Pringle, J. M., Forsyth, C. M., Forsyth, M. & MacFarlane, D. R. (2003). Acta Cryst. E59, o1759-o1761.]). For polymorphs of ionic liquids, see: Holbrey et al. (2003[Holbrey, J. D., Reichert, W. M., Niuewenhuyzen, M., Johnston, S., Seddon, K. R. & Rogers, R. D. (2003). Chem. Commun. pp. 1636-1637.]) and for the applications of ionic liquids, see: Plechkova & Seddon (2008[Plechkova, N. V. & Seddon, K. R. (2008). Chem. Soc. Rev. 37, 123-150.]).

[Scheme 1]

Experimental

Crystal data
  • C7H12N2O3S

  • Mr = 204.25

  • Monoclinic, P 21 /c

  • a = 9.8164 (4) Å

  • b = 11.7421 (5) Å

  • c = 7.9769 (3) Å

  • β = 94.878 (2)°

  • V = 916.13 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.29 × 0.28 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: for a sphere (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.910, Tmax = 0.958

  • 21327 measured reflections

  • 8299 independent reflections

  • 5726 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.120

  • S = 1.03

  • 8299 reflections

  • 166 parameters

  • All H-atom parameters refined

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.923 (14) 2.197 (14) 2.9512 (9) 138.4 (12)
C5—H5A⋯O1ii 0.899 (14) 2.381 (15) 3.1573 (10) 144.6 (12)
C4—H4A⋯O1iii 0.961 (14) 2.528 (14) 3.3268 (11) 140.5 (11)
C4—H4A⋯O3iii 0.961 (14) 2.541 (14) 3.4364 (11) 155.0 (11)
C7—H7B⋯O3iv 0.961 (12) 2.613 (12) 3.1693 (10) 117.2 (9)
C8—H8B⋯O3iv 0.990 (14) 2.621 (13) 3.2086 (9) 118.1 (9)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ionic liquids (ILs) have proven to be highly versatile materials with an ever expanding suite of chemical applications. An application that has recently shown great promise is the use of functionalized ILs as Brønsted acid catalysts for organic reactions (Cole et al., 2002). These IL catalysts are most commonly prepared by the reaction of 1-methylimidazolium-3-alkyl sulfonate zwitterion with an acid that has a pKa low enough to protonate the sulfonate group (Yoshizawa et al., 2001; Cole et al., 2002). The activity of the IL (e.g. the effectiveness of proton transfer) is significantly impacted by the structure and interactions of the zwitterion. It has been shown that the local structure of ILs is often conserved on transition from the solid state to the liquid state (Triolo et al., 2006; Henderson et al., 2007; Reichert et al., 2007). Thus, a structural analysis of the zwitterion, 1-methylimidaolium-3-propanesulfonate (I) might provide valuable insight into the activity of the Brønsted acid IL catalyst.

The asymmetric unit of the title compound is presented in Figure 1. The dominant intermolecular interactions are Coulombic in nature and are through the charged centers of the zwitterion: the imidazolium ring and the sulfonate group (Fig. 2). The negative charged sulfonate group is surrounded by four imidazolium head groups forming six close contacts (Table 1). The interactions of the imidazolium ring hydrogen atoms with the sulfonate group establish two three-dimensional R22(16) rings. The packing along the b axis (Fig. 3) shows the zwitterions arranged in columns along the c axis. The head-to-tail orientation maximizes the polar interaction and minimizes cation-cation and anion-anion repulsions.

Related literature top

For the use of functionalized ionic liquids (ILs) as Brønsted acid catalysts for organic reactions, see: Cole et al. (2002); Yoshizawa et al. (2001). The local structure of ILs is often conserved on transition from the solid state to the liquid state, see: Henderson et al. (2007); Reichert et al. (2007); Triolo et al. (2006). For a related structure, see: Pringle et al. (2003). For related literature on what subject?, see: Holbrey et al. (2003); Plechkova et al. (2008).

Experimental top

Compound I was synthesized following the procedure for similar zwitterionic compounds published by (Yoshizawa et al., 2001). 1,3-Propane sultone (25 g, 0.122 mol) was added dropwise to a solution of 1-methylimidazole (10 g, 0.122 mol) in acetone (40 ml) and stirred, then cooled on an ice bath overnight. A white precipitate was recovered from the reaction solution through filtration and washing with acetone. The product was then dried under vacuum giving a white solid (m.p. 482 K). A colourless crystal suitable for single crystal X-ray diffraction was retrieved from the dried product.

Refinement top

(type here to add refinement details)

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The thermal ellipsiod plot of the asymmetric unit of (I). The displacement ellipsiods are shown at the 50% probability level.
[Figure 2] Fig. 2. Close contacts in compound I.
[Figure 3] Fig. 3. Packing diagram along the b axis.
[Figure 4] Fig. 4. Reaction scheme.
3-(1-Methyl-3-imidazolio)propanesulfonate top
Crystal data top
C7H12N2O3SF(000) = 432
Mr = 204.25Dx = 1.481 Mg m3
Monoclinic, P21/cMelting point: 482 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.8164 (4) ÅCell parameters from 4851 reflections
b = 11.7421 (5) Åθ = 3.1–41.1°
c = 7.9769 (3) ŵ = 0.33 mm1
β = 94.878 (2)°T = 296 K
V = 916.13 (6) Å3Plate, colourless
Z = 40.29 × 0.28 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
8299 independent reflections
Radiation source: fine-focus sealed tube5726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
phi and ω scansθmax = 47.1°, θmin = 3.1°
Absorption correction: for a sphere
(SADABS; Bruker, 2007)
h = 2013
Tmin = 0.910, Tmax = 0.958k = 1924
21327 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.0483P]
where P = (Fo2 + 2Fc2)/3
8299 reflections(Δ/σ)max = 0.002
166 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C7H12N2O3SV = 916.13 (6) Å3
Mr = 204.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8164 (4) ŵ = 0.33 mm1
b = 11.7421 (5) ÅT = 296 K
c = 7.9769 (3) Å0.29 × 0.28 × 0.13 mm
β = 94.878 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8299 independent reflections
Absorption correction: for a sphere
(SADABS; Bruker, 2007)
5726 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.958Rint = 0.033
21327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.120All H-atom parameters refined
S = 1.03Δρmax = 0.55 e Å3
8299 reflectionsΔρmin = 0.47 e Å3
166 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.288447 (16)0.459431 (14)0.711035 (19)0.01929 (4)
O10.18103 (7)0.54452 (5)0.71911 (8)0.02993 (12)
O20.42331 (6)0.50523 (8)0.76230 (9)0.03616 (15)
O30.25705 (8)0.35528 (5)0.79823 (8)0.03407 (14)
N30.17238 (6)0.51000 (5)0.16133 (7)0.01989 (9)
N10.28516 (6)0.65793 (5)0.08981 (8)0.02208 (9)
C20.29151 (7)0.54584 (6)0.11322 (8)0.02096 (10)
H2A0.3704 (14)0.5037 (13)0.1080 (19)0.037 (3)*
C40.08588 (8)0.60254 (6)0.16753 (10)0.02580 (12)
H4A0.0036 (14)0.5991 (11)0.2077 (16)0.034 (3)*
C50.15675 (8)0.69513 (7)0.12222 (11)0.02724 (13)
H5A0.1323 (14)0.7688 (12)0.1137 (17)0.037 (3)*
C60.39573 (9)0.72763 (8)0.03336 (12)0.03149 (15)
H6A0.3932 (15)0.8024 (14)0.0813 (19)0.044 (4)*
H6B0.4809 (19)0.6923 (15)0.063 (2)0.061 (5)*
H6C0.3820 (17)0.7417 (17)0.081 (2)0.067 (5)*
C70.14604 (8)0.39419 (6)0.21968 (8)0.02303 (11)
H7A0.0552 (13)0.3717 (11)0.1696 (15)0.027 (3)*
H7B0.2156 (12)0.3490 (11)0.1741 (15)0.026 (3)*
C80.15267 (7)0.38976 (6)0.41105 (8)0.02112 (10)
H8A0.0853 (14)0.4389 (12)0.4510 (18)0.033 (3)*
H8B0.1301 (13)0.3105 (12)0.4405 (17)0.036 (3)*
C90.29159 (7)0.42456 (8)0.49418 (9)0.02574 (12)
H9A0.3243 (16)0.4859 (13)0.444 (2)0.043 (4)*
H9B0.3600 (16)0.3658 (13)0.4885 (18)0.043 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01791 (6)0.02075 (7)0.01894 (6)0.00086 (5)0.00002 (4)0.00099 (4)
O10.0309 (3)0.0258 (2)0.0325 (3)0.0079 (2)0.0007 (2)0.00600 (19)
O20.0218 (2)0.0569 (4)0.0287 (3)0.0109 (3)0.0044 (2)0.0016 (3)
O30.0510 (4)0.0231 (2)0.0281 (2)0.0029 (2)0.0032 (2)0.00664 (19)
N30.0201 (2)0.01929 (19)0.02006 (19)0.00022 (16)0.00055 (16)0.00017 (15)
N10.0208 (2)0.0222 (2)0.0233 (2)0.00089 (18)0.00185 (17)0.00077 (17)
C20.0201 (2)0.0225 (2)0.0204 (2)0.00164 (19)0.00209 (18)0.00037 (18)
C40.0200 (3)0.0237 (3)0.0339 (3)0.0023 (2)0.0034 (2)0.0011 (2)
C50.0245 (3)0.0214 (3)0.0361 (3)0.0030 (2)0.0042 (2)0.0014 (2)
C60.0295 (4)0.0310 (3)0.0347 (4)0.0069 (3)0.0068 (3)0.0048 (3)
C70.0289 (3)0.0190 (2)0.0207 (2)0.0029 (2)0.0008 (2)0.00147 (18)
C80.0208 (2)0.0220 (2)0.0204 (2)0.00162 (19)0.00092 (18)0.00033 (18)
C90.0180 (2)0.0392 (4)0.0200 (2)0.0002 (2)0.00188 (18)0.0015 (2)
Geometric parameters (Å, º) top
S1—O31.4529 (6)C5—H5A0.899 (14)
S1—O21.4550 (6)C6—H6A0.959 (16)
S1—O11.4580 (6)C6—H6B0.945 (19)
S1—C91.7805 (7)C6—H6C0.924 (19)
N3—C21.3298 (9)C7—C81.5233 (9)
N3—C41.3825 (9)C7—H7A0.982 (13)
N3—C71.4673 (9)C7—H7B0.961 (12)
N1—C21.3301 (9)C8—C91.5207 (10)
N1—C51.3791 (10)C8—H8A0.952 (14)
N1—C61.4607 (10)C8—H8B0.990 (14)
C2—H2A0.923 (14)C9—H9A0.898 (16)
C4—C51.3562 (11)C9—H9B0.967 (16)
C4—H4A0.961 (14)
O3—S1—O2113.68 (5)H6A—C6—H6B110.8 (14)
O3—S1—O1111.84 (4)N1—C6—H6C110.7 (11)
O2—S1—O1112.24 (5)H6A—C6—H6C102.9 (15)
O3—S1—C9107.06 (4)H6B—C6—H6C112.0 (15)
O2—S1—C9105.52 (4)N3—C7—C8110.85 (5)
O1—S1—C9105.84 (4)N3—C7—H7A107.3 (7)
C2—N3—C4108.62 (6)C8—C7—H7A111.0 (7)
C2—N3—C7124.60 (6)N3—C7—H7B104.0 (7)
C4—N3—C7126.28 (6)C8—C7—H7B112.9 (7)
C2—N1—C5108.65 (6)H7A—C7—H7B110.4 (10)
C2—N1—C6124.78 (7)C9—C8—C7112.84 (6)
C5—N1—C6126.54 (7)C9—C8—H8A108.3 (8)
N3—C2—N1108.77 (6)C7—C8—H8A110.0 (8)
N3—C2—H2A127.3 (9)C9—C8—H8B111.1 (8)
N1—C2—H2A123.6 (9)C7—C8—H8B106.2 (8)
C5—C4—N3106.86 (7)H8A—C8—H8B108.4 (11)
C5—C4—H4A128.8 (8)C8—C9—S1113.36 (5)
N3—C4—H4A124.1 (8)C8—C9—H9A111.2 (10)
C4—C5—N1107.09 (7)S1—C9—H9A106.8 (10)
C4—C5—H5A130.7 (9)C8—C9—H9B112.9 (9)
N1—C5—H5A122.2 (9)S1—C9—H9B106.2 (9)
N1—C6—H6A110.2 (9)H9A—C9—H9B105.9 (13)
N1—C6—H6B110.1 (11)
C2—N3—C7—C8100.05 (8)C4—N3—C7—C870.97 (8)
N3—C7—C8—C960.48 (8)N3—C7—C8—C960.48 (8)
C7—C8—C9—S1163.00 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.923 (14)2.197 (14)2.9512 (9)138.4 (12)
C5—H5A···O1ii0.899 (14)2.381 (15)3.1573 (10)144.6 (12)
C4—H4A···O1iii0.961 (14)2.528 (14)3.3268 (11)140.5 (11)
C4—H4A···O3iii0.961 (14)2.541 (14)3.4364 (11)155.0 (11)
C7—H7B···O3iv0.961 (12)2.613 (12)3.1693 (10)117.2 (9)
C8—H8B···O3iv0.990 (14)2.621 (13)3.2086 (9)118.1 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+1, z+1; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H12N2O3S
Mr204.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.8164 (4), 11.7421 (5), 7.9769 (3)
β (°) 94.878 (2)
V3)916.13 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.29 × 0.28 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionFor a sphere
(SADABS; Bruker, 2007)
Tmin, Tmax0.910, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
21327, 8299, 5726
Rint0.033
(sin θ/λ)max1)1.030
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.03
No. of reflections8299
No. of parameters166
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.55, 0.47

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.923 (14)2.197 (14)2.9512 (9)138.4 (12)
C5—H5A···O1ii0.899 (14)2.381 (15)3.1573 (10)144.6 (12)
C4—H4A···O1iii0.961 (14)2.528 (14)3.3268 (11)140.5 (11)
C4—H4A···O3iii0.961 (14)2.541 (14)3.4364 (11)155.0 (11)
C7—H7B···O3iv0.961 (12)2.613 (12)3.1693 (10)117.2 (9)
C8—H8B···O3iv0.990 (14)2.621 (13)3.2086 (9)118.1 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+1, z+1; (iv) x, y+1/2, z1/2.
 

Acknowledgements

Portions of this work were funded by the Office of Naval Research and the US Naval Academy Research Foundation. Any opinions, findings, and conclusion or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the US Navy.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCole, A. C., Jensen, J. L., Ntai, I., Tran, K. L. T., Weaver, K. J., Forbes, D. C. & Davis, J. H. J. (2002). J. Am. Chem. Soc. 124, 5962–5963.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHenderson, W. A., Trulove, P. C., De Long, H. C. & Young, V. G. Jr (2007). ECS Trans. 3, 83–88.  CrossRef CAS Google Scholar
First citationHolbrey, J. D., Reichert, W. M., Niuewenhuyzen, M., Johnston, S., Seddon, K. R. & Rogers, R. D. (2003). Chem. Commun. pp. 1636–1637.  Web of Science CSD CrossRef Google Scholar
First citationPlechkova, N. V. & Seddon, K. R. (2008). Chem. Soc. Rev. 37, 123–150.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPringle, J. M., Forsyth, C. M., Forsyth, M. & MacFarlane, D. R. (2003). Acta Cryst. E59, o1759–o1761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReichert, W. M., Holbrey, J. D., Swatloski, R. P., Gutowski, K. E., Visser, A. E., Nieuwenhuyzen, M., Seddon, K. R. & Rogers, R. D. (2007). Cryst. Growth Des. 7, 1106–1114.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTriolo, A., Mandanici, A., Russina, O., Rodriguez-Mora, V., Cutroni, M., Hardacre, C., Nieuwenhuyzen, M., Bleif, H.-J., Keller, L. & Ramos, M. A. (2006). J. Phys. Chem. B, 110, 21357–21364.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYoshizawa, M., Hirao, M., Ito-Akita, K. & Ohno, H. (2001). J. Mater. Chem. 11, 1057–1062.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds