organic compounds
2-Amino-4,6-dimethylpyrimidine–anthranilic acid (1/1)
aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
*Correspondence e-mail: tommtrichy@yahoo.co.in
In the title 1:1 adduct, C6H9N3·C7H7NO2, the is stabilized by hydrogen bonds involving two different R22(8) motifs. One of them is formed by the interaction of 2-amino-4,6-dimethylpyrimidine (AMPY) with the carboxyl group of anthranilic acid (AA) through N—H⋯O and O—H⋯N hydrogen bonds, whereas the other is formed through the interaction of two centrosymmetrically related pyrimidines involving N—H⋯N hydrogen bonds. These two combined motifs form a heterotetramer. The heterotetramer sheets are stacked into three-dimensional network.
Related literature
For the importance the reaction of aminopyrimidine derivatives and et al. (1980); Baker & Santi (1965). For pyrimidine–carboxylic acid interactions, see: Allen et al. (1999). For co-crystals of AMPY, see: Balasubramani et al. (2005, 2006); Devi & Muthiah (2007). For hydrogen-bonded synthons, see: Thakur & Desiraju (2008). For packing patterns in 2-amino-4,6-dimethylpyrimidine-salicylate, see: Muthiah et al. (2006). For typical geometric parameters in aromatic stacking, see: Hunter (1994).
in protein–nucleic acid recognition and drug binding, see: HuntExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536810003661/kp2248sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810003661/kp2248Isup2.hkl
A hot methanolic solution (20 ml) of 2-amino-4,6-dimethylpyrimidine (Aldrich) and anthranilic acid (Loba Chemie)in the ratio 1:1 was warmed for 0.5 h over a water bath. The mixture was cooled slowly and kept at room temperature and after a few days, colourless crystals were obtained.
The hydrogen atoms of the N4 (H4A, H4B) were located in difference Fourier map and refined freely. The other hydrogen atoms were positioned geometrically and were refined using a riding mode. The C—H and O—H bond lengths are 0.93–0.96 and 0.82Å respectively [Uiso(H)= 1.2Ueq (C, O)].
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).C6H9N3·C7H7NO2 | Z = 2 |
Mr = 260.30 | F(000) = 276 |
Triclinic, P1 | Dx = 1.298 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1922 (2) Å | Cell parameters from 4279 reflections |
b = 7.4269 (2) Å | θ = 1.6–31.3° |
c = 13.0675 (3) Å | µ = 0.09 mm−1 |
α = 77.583 (1)° | T = 293 K |
β = 78.990 (1)° | Prism, brown |
γ = 82.473 (1)° | 0.28 × 0.22 × 0.20 mm |
V = 666.19 (3) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 4279 independent reflections |
Radiation source: fine-focus sealed tube | 3021 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ϕ and ω scans | θmax = 31.3°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −10→10 |
Tmin = 0.975, Tmax = 0.982 | k = −10→10 |
16171 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.174 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0991P)2 + 0.0554P] where P = (Fo2 + 2Fc2)/3 |
4279 reflections | (Δ/σ)max < 0.001 |
182 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C6H9N3·C7H7NO2 | γ = 82.473 (1)° |
Mr = 260.30 | V = 666.19 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1922 (2) Å | Mo Kα radiation |
b = 7.4269 (2) Å | µ = 0.09 mm−1 |
c = 13.0675 (3) Å | T = 293 K |
α = 77.583 (1)° | 0.28 × 0.22 × 0.20 mm |
β = 78.990 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 4279 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3021 reflections with I > 2σ(I) |
Tmin = 0.975, Tmax = 0.982 | Rint = 0.024 |
16171 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.174 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.27 e Å−3 |
4279 reflections | Δρmin = −0.24 e Å−3 |
182 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.27302 (13) | 0.63647 (13) | 0.24381 (7) | 0.0389 (3) | |
N2 | 0.24994 (14) | 0.50645 (17) | 0.42161 (8) | 0.0546 (4) | |
N3 | −0.01789 (13) | 0.67010 (14) | 0.36590 (8) | 0.0438 (3) | |
C2 | 0.16646 (15) | 0.60562 (16) | 0.34206 (9) | 0.0398 (3) | |
C4 | −0.09918 (16) | 0.77159 (16) | 0.28620 (10) | 0.0428 (3) | |
C5 | −0.00014 (17) | 0.80839 (17) | 0.18345 (10) | 0.0465 (4) | |
C6 | 0.18851 (16) | 0.73870 (15) | 0.16483 (9) | 0.0406 (3) | |
C7 | 0.3091 (2) | 0.7734 (2) | 0.05754 (10) | 0.0551 (4) | |
C8 | −0.30286 (18) | 0.8452 (2) | 0.31434 (13) | 0.0589 (4) | |
O1 | 0.62794 (12) | 0.47921 (13) | 0.18713 (7) | 0.0520 (3) | |
O2 | 0.62400 (13) | 0.35172 (16) | 0.35704 (7) | 0.0646 (3) | |
N4 | 0.94272 (18) | 0.17934 (18) | 0.41965 (9) | 0.0555 (3) | |
C9 | 0.70902 (15) | 0.38005 (16) | 0.26562 (9) | 0.0402 (3) | |
C10 | 0.90843 (15) | 0.30730 (14) | 0.23577 (8) | 0.0364 (3) | |
C11 | 0.99344 (17) | 0.33560 (16) | 0.12857 (9) | 0.0438 (3) | |
C12 | 1.18091 (18) | 0.27621 (19) | 0.09731 (11) | 0.0517 (4) | |
C13 | 1.28729 (18) | 0.18659 (19) | 0.17468 (12) | 0.0536 (4) | |
C14 | 1.20848 (18) | 0.15583 (18) | 0.27979 (11) | 0.0503 (4) | |
C15 | 1.01624 (16) | 0.21446 (15) | 0.31397 (9) | 0.0408 (3) | |
H2A | 0.18650 | 0.48560 | 0.48510 | 0.0650* | |
H2B | 0.36720 | 0.46320 | 0.40940 | 0.0650* | |
H5 | −0.05890 | 0.87820 | 0.12830 | 0.0560* | |
H7A | 0.23640 | 0.85160 | 0.00780 | 0.0830* | |
H7B | 0.35080 | 0.65770 | 0.03500 | 0.0830* | |
H7C | 0.41780 | 0.83320 | 0.06070 | 0.0830* | |
H8A | −0.36050 | 0.87650 | 0.25150 | 0.0710* | |
H8B | −0.30820 | 0.95370 | 0.34400 | 0.0710* | |
H8C | −0.37030 | 0.75250 | 0.36550 | 0.0710* | |
H1 | 0.51810 | 0.51100 | 0.20940 | 0.0780* | |
H4A | 0.820 (3) | 0.238 (3) | 0.4358 (16) | 0.088 (6)* | |
H4B | 1.032 (3) | 0.151 (3) | 0.4607 (16) | 0.093 (6)* | |
H11 | 0.92120 | 0.39610 | 0.07720 | 0.0530* | |
H12 | 1.23520 | 0.29570 | 0.02580 | 0.0620* | |
H13 | 1.41450 | 0.14680 | 0.15460 | 0.0640* | |
H14 | 1.28300 | 0.09490 | 0.32990 | 0.0600* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0312 (4) | 0.0465 (5) | 0.0358 (5) | 0.0002 (4) | −0.0026 (3) | −0.0059 (4) |
N2 | 0.0341 (5) | 0.0840 (8) | 0.0344 (5) | 0.0112 (5) | −0.0005 (4) | −0.0018 (5) |
N3 | 0.0305 (4) | 0.0512 (5) | 0.0450 (5) | 0.0019 (4) | −0.0010 (4) | −0.0073 (4) |
C2 | 0.0306 (5) | 0.0491 (6) | 0.0368 (5) | 0.0006 (4) | −0.0025 (4) | −0.0073 (4) |
C4 | 0.0325 (5) | 0.0406 (5) | 0.0537 (7) | 0.0012 (4) | −0.0077 (5) | −0.0084 (5) |
C5 | 0.0404 (6) | 0.0455 (6) | 0.0501 (7) | 0.0025 (5) | −0.0125 (5) | −0.0016 (5) |
C6 | 0.0387 (5) | 0.0410 (5) | 0.0403 (6) | −0.0029 (4) | −0.0069 (4) | −0.0043 (4) |
C7 | 0.0544 (7) | 0.0623 (8) | 0.0406 (6) | −0.0004 (6) | −0.0029 (5) | 0.0001 (5) |
C8 | 0.0343 (6) | 0.0600 (8) | 0.0762 (9) | 0.0086 (5) | −0.0082 (6) | −0.0089 (7) |
O1 | 0.0348 (4) | 0.0706 (6) | 0.0412 (5) | 0.0105 (4) | −0.0062 (3) | 0.0000 (4) |
O2 | 0.0427 (5) | 0.0916 (7) | 0.0414 (5) | 0.0189 (5) | 0.0008 (4) | 0.0043 (4) |
N4 | 0.0513 (6) | 0.0679 (7) | 0.0395 (5) | 0.0100 (5) | −0.0121 (5) | 0.0012 (5) |
C9 | 0.0341 (5) | 0.0442 (6) | 0.0384 (5) | 0.0016 (4) | −0.0052 (4) | −0.0037 (4) |
C10 | 0.0319 (5) | 0.0371 (5) | 0.0372 (5) | 0.0010 (4) | −0.0053 (4) | −0.0040 (4) |
C11 | 0.0395 (6) | 0.0476 (6) | 0.0392 (6) | 0.0032 (5) | −0.0053 (5) | −0.0032 (4) |
C12 | 0.0421 (6) | 0.0576 (7) | 0.0483 (7) | 0.0027 (5) | 0.0037 (5) | −0.0094 (5) |
C13 | 0.0353 (6) | 0.0558 (7) | 0.0657 (8) | 0.0078 (5) | −0.0039 (5) | −0.0142 (6) |
C14 | 0.0400 (6) | 0.0522 (7) | 0.0571 (7) | 0.0081 (5) | −0.0152 (5) | −0.0082 (5) |
C15 | 0.0392 (5) | 0.0387 (5) | 0.0428 (6) | 0.0024 (4) | −0.0100 (4) | −0.0054 (4) |
O1—C9 | 1.3136 (15) | C7—H7A | 0.9600 |
O2—C9 | 1.2214 (14) | C7—H7C | 0.9600 |
O1—H1 | 0.8100 | C7—H7B | 0.9600 |
N1—C6 | 1.3390 (15) | C8—H8C | 0.9600 |
N1—C2 | 1.3535 (14) | C8—H8B | 0.9600 |
N2—C2 | 1.3330 (16) | C8—H8A | 0.9600 |
N3—C4 | 1.3320 (16) | C9—C10 | 1.4748 (16) |
N3—C2 | 1.3507 (15) | C10—C15 | 1.4073 (16) |
N2—H2B | 0.8600 | C10—C11 | 1.4001 (15) |
N2—H2A | 0.8600 | C11—C12 | 1.3750 (18) |
N4—C15 | 1.3627 (16) | C12—C13 | 1.387 (2) |
N4—H4A | 0.94 (2) | C13—C14 | 1.364 (2) |
N4—H4B | 0.89 (2) | C14—C15 | 1.4110 (18) |
C4—C8 | 1.5003 (18) | C11—H11 | 0.9300 |
C4—C5 | 1.3830 (18) | C12—H12 | 0.9300 |
C5—C6 | 1.3828 (17) | C13—H13 | 0.9300 |
C6—C7 | 1.4910 (17) | C14—H14 | 0.9300 |
C5—H5 | 0.9300 | ||
O1···C7 | 3.3882 (17) | C9···H2B | 2.8800 |
O1···N1 | 2.7014 (13) | C11···H11viii | 2.9900 |
O2···N4 | 2.6571 (17) | C12···H11viii | 3.0700 |
O2···N2 | 2.8303 (15) | H1···C7 | 2.9500 |
O1···H11 | 2.4000 | H1···H2B | 2.6000 |
O2···H2B | 1.9800 | H1···C6 | 2.8100 |
O2···H4A | 1.91 (2) | H1···N1 | 1.9000 |
N1···O1 | 2.7014 (13) | H1···C2 | 2.8800 |
N2···N3i | 3.0745 (14) | H2A···H4Aiii | 2.4800 |
N2···O2 | 2.8303 (15) | H2A···N3i | 2.2600 |
N3···N2i | 3.0745 (14) | H2A···C2i | 3.1000 |
N4···N4ii | 3.1409 (18) | H2B···C9 | 2.8800 |
N4···O2 | 2.6571 (17) | H2B···H1 | 2.6000 |
N1···H1 | 1.9000 | H2B···O2 | 1.9800 |
N2···H4Aiii | 2.87 (2) | H4A···H2Aiii | 2.4800 |
N3···H2Ai | 2.2600 | H4A···O2 | 1.91 (2) |
N3···H4Biii | 2.84 (2) | H4A···C9 | 2.48 (2) |
N4···H4Bii | 2.62 (2) | H4A···N2iii | 2.87 (2) |
C2···C15iv | 3.3428 (16) | H4B···N4ii | 2.62 (2) |
C2···C14iv | 3.5670 (18) | H4B···H4Bii | 2.32 (3) |
C4···C9iv | 3.4584 (17) | H4B···N3iii | 2.84 (2) |
C6···C13v | 3.5249 (18) | H4B···H14 | 2.3000 |
C7···O1 | 3.3882 (17) | H5···H7A | 2.4000 |
C9···C4vi | 3.4584 (17) | H5···H8A | 2.4400 |
C13···C6vii | 3.5249 (18) | H7A···H5 | 2.4000 |
C14···C2vi | 3.5670 (18) | H8A···H5 | 2.4400 |
C15···C2vi | 3.3428 (16) | H11···O1 | 2.4000 |
C2···H1 | 2.8800 | H11···C11viii | 2.9900 |
C2···H2Ai | 3.1000 | H11···C12viii | 3.0700 |
C6···H1 | 2.8100 | H11···H11viii | 2.4500 |
C7···H13viii | 3.0800 | H13···C7viii | 3.0800 |
C7···H1 | 2.9500 | H14···H4B | 2.3000 |
C9···H4A | 2.48 (2) | ||
C9—O1—H1 | 110.00 | C4—C8—H8B | 109.00 |
C2—N1—C6 | 117.21 (10) | C4—C8—H8C | 109.00 |
C2—N3—C4 | 116.98 (10) | H8A—C8—H8B | 109.00 |
C2—N2—H2A | 120.00 | C4—C8—H8A | 109.00 |
C2—N2—H2B | 120.00 | H8A—C8—H8C | 109.00 |
H2A—N2—H2B | 120.00 | H8B—C8—H8C | 109.00 |
H4A—N4—H4B | 127.5 (19) | O2—C9—C10 | 122.73 (11) |
C15—N4—H4B | 112.9 (13) | O1—C9—O2 | 121.75 (11) |
C15—N4—H4A | 113.4 (12) | O1—C9—C10 | 115.52 (10) |
N1—C2—N3 | 124.84 (10) | C9—C10—C15 | 120.80 (10) |
N1—C2—N2 | 117.74 (10) | C11—C10—C15 | 119.51 (10) |
N2—C2—N3 | 117.42 (10) | C9—C10—C11 | 119.66 (10) |
N3—C4—C8 | 116.34 (11) | C10—C11—C12 | 121.70 (11) |
N3—C4—C5 | 121.65 (11) | C11—C12—C13 | 118.63 (12) |
C5—C4—C8 | 122.01 (12) | C12—C13—C14 | 121.14 (13) |
C4—C5—C6 | 118.28 (11) | C13—C14—C15 | 121.38 (12) |
N1—C6—C7 | 116.38 (11) | N4—C15—C14 | 119.47 (11) |
C5—C6—C7 | 122.59 (11) | C10—C15—C14 | 117.64 (11) |
N1—C6—C5 | 121.03 (11) | N4—C15—C10 | 122.90 (11) |
C6—C5—H5 | 121.00 | C10—C11—H11 | 119.00 |
C4—C5—H5 | 121.00 | C12—C11—H11 | 119.00 |
C6—C7—H7B | 109.00 | C11—C12—H12 | 121.00 |
C6—C7—H7C | 109.00 | C13—C12—H12 | 121.00 |
C6—C7—H7A | 109.00 | C12—C13—H13 | 119.00 |
H7A—C7—H7B | 109.00 | C14—C13—H13 | 119.00 |
H7A—C7—H7C | 109.00 | C13—C14—H14 | 119.00 |
H7B—C7—H7C | 109.00 | C15—C14—H14 | 119.00 |
C6—N1—C2—N2 | −178.98 (11) | O2—C9—C10—C11 | 176.12 (12) |
C6—N1—C2—N3 | 0.06 (17) | O2—C9—C10—C15 | −5.78 (18) |
C2—N1—C6—C5 | −0.37 (17) | C9—C10—C11—C12 | 177.60 (12) |
C2—N1—C6—C7 | 179.13 (11) | C15—C10—C11—C12 | −0.53 (18) |
C4—N3—C2—N1 | −0.10 (18) | C9—C10—C15—N4 | 2.90 (18) |
C4—N3—C2—N2 | 178.93 (11) | C9—C10—C15—C14 | −177.28 (11) |
C2—N3—C4—C5 | 0.47 (17) | C11—C10—C15—N4 | −178.99 (12) |
C2—N3—C4—C8 | −178.87 (11) | C11—C10—C15—C14 | 0.83 (16) |
N3—C4—C5—C6 | −0.78 (19) | C10—C11—C12—C13 | −0.2 (2) |
C8—C4—C5—C6 | 178.53 (12) | C11—C12—C13—C14 | 0.6 (2) |
C4—C5—C6—N1 | 0.72 (18) | C12—C13—C14—C15 | −0.3 (2) |
C4—C5—C6—C7 | −178.75 (12) | C13—C14—C15—N4 | 179.37 (13) |
O1—C9—C10—C11 | −4.29 (16) | C13—C14—C15—C10 | −0.45 (19) |
O1—C9—C10—C15 | 173.81 (10) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+2, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z; (v) x−1, y+1, z; (vi) x+1, y, z; (vii) x+1, y−1, z; (viii) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.81 | 1.90 | 2.7014 (13) | 168 |
N2—H2A···N3i | 0.86 | 2.26 | 3.0745 (14) | 159 |
N2—H2B···O2 | 0.86 | 1.98 | 2.8303 (15) | 169 |
N4—H4A···O2 | 0.94 (2) | 1.91 (2) | 2.6571 (17) | 135.5 (17) |
N4—H4B···N4ii | 0.89 (2) | 2.62 (2) | 3.1409 (18) | 118.7 (17) |
C11—H11···O1 | 0.93 | 2.40 | 2.7353 (15) | 101 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C6H9N3·C7H7NO2 |
Mr | 260.30 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.1922 (2), 7.4269 (2), 13.0675 (3) |
α, β, γ (°) | 77.583 (1), 78.990 (1), 82.473 (1) |
V (Å3) | 666.19 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.28 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.975, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16171, 4279, 3021 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.731 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.174, 1.04 |
No. of reflections | 4279 |
No. of parameters | 182 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.24 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.8100 | 1.9000 | 2.7014 (13) | 168.00 |
N2—H2A···N3i | 0.8600 | 2.2600 | 3.0745 (14) | 159.00 |
N2—H2B···O2 | 0.8600 | 1.9800 | 2.8303 (15) | 169.00 |
N4—H4A···O2 | 0.94 (2) | 1.91 (2) | 2.6571 (17) | 135.5 (17) |
N4—H4B···N4ii | 0.89 (2) | 2.62 (2) | 3.1409 (18) | 118.7 (17) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+2, −y, −z+1. |
Acknowledgements
The authors thank the DST-India (FIST programme) for the use of diffractometer at the School of Chemistry, Bharathidasan University.
References
Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. pp. 25–34. Web of Science CrossRef Google Scholar
Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257. CrossRef CAS PubMed Web of Science Google Scholar
Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907–o2909. Web of Science CSD CrossRef IUCr Journals Google Scholar
Balasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203–o4205. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Devi, P. & Muthiah, P. T. (2007). Acta Cryst. E63, o4822–o4823. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536. CAS Google Scholar
Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109. CrossRef CAS Web of Science Google Scholar
Muthiah, P. T., Balasubramani, K., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. C62, o605–o607. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thakur, T. S. & Desiraju, G. R. (2008). Cryst. Growth Des. 8, 4031–4044. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The aminopyrimidine derivatives, in nature as components of nucleic acids, and drugs are relevant for biological functions. Their interactions with carboxylic acids are of utmost importance since they are involved in protein –nucleic acid recognition and drug binding (Hunt et al.,1980; Baker & Santi, 1965). In general aminopyrimidines posses self complementary hydrogen-bonded motifs forming a base pair which in itself is an unique property. In addition, aminopyrimidines readily form pyrimidine-carboxylic acid interaction with ease which is evident from the survey carried out by Allen et al. (1999).
The present study has been focused on the analyses of the hydrogen bonding patterns in the cocrystal of 2-amino-4,6-dimethylpyrimidine-anthranilic acid. Several cocrystals of AMPY such as 2-amino-4,6-dimethylpyrimidine-cinnamicacid (1:2), 2-amino-4,6-dimethylpyrimidine-4-hydroxybenzoic acid (1/1) and 2-amino-4,6-dimethylpyrimidine-terephthalicacid have been reported from our laboratory (Balasubramani et al., 2005; Balasubramani et al., 2006; Devi & Muthiah, 2007).
The asymmetric unit contains a molecule of AMPY and AA (Fig. 1). The N1 and the amino group of AMPY interact with the carboxyl group of AA via O—H···N and N—H···O hydrogen bonds (Table 1) generating ring motif with graph set notation R22(8). In addition, another type of R22(8) motif is formed by centrosmmetrically related pyrimidine molecules through a pair of N—H···N hydrogen bonds. These two different motifs generate a linear heterotetrameric unit (Fig. 2) known to be one of the most stable synthons (Thakur & Desiraju, 2008).
One can expect similarity between the overall packing patterns of the title complex and 2-amino-4,6-dimethylpyrimidine-salicylate salt which has been earlier reported from our laboratory (Muthiah et al., 2006). The primary level of organization is similar in both structures as they form a linear heterotetrameric synthon. However, the planarity of the heterotetraameric synthons is different. The heterotetrameric synthon formed in AMPY-AA is planar whereas that of 2-amino-4,6-dimethylpyrimidinium salicylate salt is not planar. In the title complex heterotetramers are arranged as sheets (Fig. 3) which are stabilized through stacking interactions. The same is also observed in the aminopyrimidine salicylate salt with two different types of sheets arranged alternatively one over the other.
AMPY forms stacking interactions with aromatic rings (Fig. 4) of the 2ABA molecules above and below its plane with perpendicular separations of 3.468 and 3.624 %A, respectively; centroid-to-centroid distances of 3.641 (7) and 3.934 (7)%A, offset distances of 1.130 and 1.858 %A and slip angles of 18.06 and 28.62, respectively. These geometric parameters are typical of aromatic stacking values (Hunter, 1994).