organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4,6-di­methyl­pyrimidine–anthranilic acid (1/1)

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 21 January 2010; accepted 29 January 2010; online 3 February 2010)

In the title 1:1 adduct, C6H9N3·C7H7NO2, the crystal structure is stabilized by hydrogen bonds involving two different R22(8) motifs. One of them is formed by the inter­action of 2-amino-4,6-dimethyl­pyrimidine (AMPY) with the carboxyl group of anthranilic acid (AA) through N—H⋯O and O—H⋯N hydrogen bonds, whereas the other is formed through the inter­action of two centrosymmetrically related pyrimidines involving N—H⋯N hydrogen bonds. These two combined motifs form a heterotetra­mer. The heterotetra­mer sheets are stacked into three-dimensional network.

Related literature

For the importance the reaction of amino­pyrimidine derivatives and carboxylic acids in protein–nucleic acid recognition and drug binding, see: Hunt et al. (1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533-536.]); Baker & Santi (1965[Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.]). For pyrimidine–carboxylic acid inter­actions, see: Allen et al. (1999[Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. pp. 25-34.]). For co-crystals of AMPY, see: Balasubramani et al. (2005[Balasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203-o4205.], 2006[Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907-o2909.]); Devi & Muthiah (2007[Devi, P. & Muthiah, P. T. (2007). Acta Cryst. E63, o4822-o4823.]). For hydrogen-bonded synthons, see: Thakur & Desiraju (2008[Thakur, T. S. & Desiraju, G. R. (2008). Cryst. Growth Des. 8, 4031-4044.]). For packing patterns in 2-amino-4,6-dimethyl­pyrimidine-salicylate, see: Muthiah et al. (2006[Muthiah, P. T., Balasubramani, K., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. C62, o605-o607.]). For typical geometric parameters in aromatic stacking, see: Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N3·C7H7NO2

  • Mr = 260.30

  • Triclinic, [P \overline 1]

  • a = 7.1922 (2) Å

  • b = 7.4269 (2) Å

  • c = 13.0675 (3) Å

  • α = 77.583 (1)°

  • β = 78.990 (1)°

  • γ = 82.473 (1)°

  • V = 666.19 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.982

  • 16171 measured reflections

  • 4279 independent reflections

  • 3021 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.174

  • S = 1.04

  • 4279 reflections

  • 182 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.81 1.90 2.7014 (13) 168
N2—H2A⋯N3i 0.86 2.26 3.0745 (14) 159
N2—H2B⋯O2 0.86 1.98 2.8303 (15) 169
N4—H4A⋯O2 0.94 (2) 1.91 (2) 2.6571 (17) 135.5 (17)
N4—H4B⋯N4ii 0.89 (2) 2.62 (2) 3.1409 (18) 118.7 (17)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The aminopyrimidine derivatives, in nature as components of nucleic acids, and drugs are relevant for biological functions. Their interactions with carboxylic acids are of utmost importance since they are involved in protein –nucleic acid recognition and drug binding (Hunt et al.,1980; Baker & Santi, 1965). In general aminopyrimidines posses self complementary hydrogen-bonded motifs forming a base pair which in itself is an unique property. In addition, aminopyrimidines readily form pyrimidine-carboxylic acid interaction with ease which is evident from the survey carried out by Allen et al. (1999).

The present study has been focused on the analyses of the hydrogen bonding patterns in the cocrystal of 2-amino-4,6-dimethylpyrimidine-anthranilic acid. Several cocrystals of AMPY such as 2-amino-4,6-dimethylpyrimidine-cinnamicacid (1:2), 2-amino-4,6-dimethylpyrimidine-4-hydroxybenzoic acid (1/1) and 2-amino-4,6-dimethylpyrimidine-terephthalicacid have been reported from our laboratory (Balasubramani et al., 2005; Balasubramani et al., 2006; Devi & Muthiah, 2007).

The asymmetric unit contains a molecule of AMPY and AA (Fig. 1). The N1 and the amino group of AMPY interact with the carboxyl group of AA via O—H···N and N—H···O hydrogen bonds (Table 1) generating ring motif with graph set notation R22(8). In addition, another type of R22(8) motif is formed by centrosmmetrically related pyrimidine molecules through a pair of N—H···N hydrogen bonds. These two different motifs generate a linear heterotetrameric unit (Fig. 2) known to be one of the most stable synthons (Thakur & Desiraju, 2008).

One can expect similarity between the overall packing patterns of the title complex and 2-amino-4,6-dimethylpyrimidine-salicylate salt which has been earlier reported from our laboratory (Muthiah et al., 2006). The primary level of organization is similar in both structures as they form a linear heterotetrameric synthon. However, the planarity of the heterotetraameric synthons is different. The heterotetrameric synthon formed in AMPY-AA is planar whereas that of 2-amino-4,6-dimethylpyrimidinium salicylate salt is not planar. In the title complex heterotetramers are arranged as sheets (Fig. 3) which are stabilized through stacking interactions. The same is also observed in the aminopyrimidine salicylate salt with two different types of sheets arranged alternatively one over the other.

AMPY forms stacking interactions with aromatic rings (Fig. 4) of the 2ABA molecules above and below its plane with perpendicular separations of 3.468 and 3.624 %A, respectively; centroid-to-centroid distances of 3.641 (7) and 3.934 (7)%A, offset distances of 1.130 and 1.858 %A and slip angles of 18.06 and 28.62, respectively. These geometric parameters are typical of aromatic stacking values (Hunter, 1994).

Related literature top

For the importance the reaction of aminopyrimidine derivatives and carboxylic acids in protein–nucleic acid recognition and drug binding, see: Hunt et al. (1980); Baker & Santi (1965). For pyrimidine–carboxylic acid interactions, see: Allen et al. (1999). For co-crystals of AMPY, see: Balasubramani et al. (2005, 2006); Devi & Muthiah (2007). For hydrogen-bonded synthons, see: Thakur & Desiraju (2008). For packing patterns in 2-amino-4,6-dimethylpyrimidine-salicylate, see: Muthiah et al. (2006). For typical geometric parameters in aromatic stacking, see: Hunter (1994).

Experimental top

A hot methanolic solution (20 ml) of 2-amino-4,6-dimethylpyrimidine (Aldrich) and anthranilic acid (Loba Chemie)in the ratio 1:1 was warmed for 0.5 h over a water bath. The mixture was cooled slowly and kept at room temperature and after a few days, colourless crystals were obtained.

Refinement top

The hydrogen atoms of the N4 (H4A, H4B) were located in difference Fourier map and refined freely. The other hydrogen atoms were positioned geometrically and were refined using a riding mode. The C—H and O—H bond lengths are 0.93–0.96 and 0.82Å respectively [Uiso(H)= 1.2Ueq (C, O)].

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound showing the 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. View of a heterotetrameric synthon formed through the O—H···N, N—H···O and N—H···N hydrogen bonds [Symmetry codes: (i) -x,1-y,1-z].
[Figure 3] Fig. 3. View of heterotetrameric synthons arranged parallel to the (122) plane.
[Figure 4] Fig. 4. Stacking interactions observed between the pyrimidine ring and the aryl ring. Cg1 and Cg2 represents the centroid of the pyrimidine ring and aryl ring respectively [Symmetry codes: (i) -1+x,y,z ] (ii) -1+x,1+y,z].
2-amino-4,6-dimethylpyrimidine–anthranilic acid (1/1) top
Crystal data top
C6H9N3·C7H7NO2Z = 2
Mr = 260.30F(000) = 276
Triclinic, P1Dx = 1.298 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1922 (2) ÅCell parameters from 4279 reflections
b = 7.4269 (2) Åθ = 1.6–31.3°
c = 13.0675 (3) ŵ = 0.09 mm1
α = 77.583 (1)°T = 293 K
β = 78.990 (1)°Prism, brown
γ = 82.473 (1)°0.28 × 0.22 × 0.20 mm
V = 666.19 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4279 independent reflections
Radiation source: fine-focus sealed tube3021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 31.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.975, Tmax = 0.982k = 1010
16171 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0991P)2 + 0.0554P]
where P = (Fo2 + 2Fc2)/3
4279 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H9N3·C7H7NO2γ = 82.473 (1)°
Mr = 260.30V = 666.19 (3) Å3
Triclinic, P1Z = 2
a = 7.1922 (2) ÅMo Kα radiation
b = 7.4269 (2) ŵ = 0.09 mm1
c = 13.0675 (3) ÅT = 293 K
α = 77.583 (1)°0.28 × 0.22 × 0.20 mm
β = 78.990 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4279 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3021 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.982Rint = 0.024
16171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
4279 reflectionsΔρmin = 0.24 e Å3
182 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.27302 (13)0.63647 (13)0.24381 (7)0.0389 (3)
N20.24994 (14)0.50645 (17)0.42161 (8)0.0546 (4)
N30.01789 (13)0.67010 (14)0.36590 (8)0.0438 (3)
C20.16646 (15)0.60562 (16)0.34206 (9)0.0398 (3)
C40.09918 (16)0.77159 (16)0.28620 (10)0.0428 (3)
C50.00014 (17)0.80839 (17)0.18345 (10)0.0465 (4)
C60.18851 (16)0.73870 (15)0.16483 (9)0.0406 (3)
C70.3091 (2)0.7734 (2)0.05754 (10)0.0551 (4)
C80.30286 (18)0.8452 (2)0.31434 (13)0.0589 (4)
O10.62794 (12)0.47921 (13)0.18713 (7)0.0520 (3)
O20.62400 (13)0.35172 (16)0.35704 (7)0.0646 (3)
N40.94272 (18)0.17934 (18)0.41965 (9)0.0555 (3)
C90.70902 (15)0.38005 (16)0.26562 (9)0.0402 (3)
C100.90843 (15)0.30730 (14)0.23577 (8)0.0364 (3)
C110.99344 (17)0.33560 (16)0.12857 (9)0.0438 (3)
C121.18091 (18)0.27621 (19)0.09731 (11)0.0517 (4)
C131.28729 (18)0.18659 (19)0.17468 (12)0.0536 (4)
C141.20848 (18)0.15583 (18)0.27979 (11)0.0503 (4)
C151.01624 (16)0.21446 (15)0.31397 (9)0.0408 (3)
H2A0.186500.485600.485100.0650*
H2B0.367200.463200.409400.0650*
H50.058900.878200.128300.0560*
H7A0.236400.851600.007800.0830*
H7B0.350800.657700.035000.0830*
H7C0.417800.833200.060700.0830*
H8A0.360500.876500.251500.0710*
H8B0.308200.953700.344000.0710*
H8C0.370300.752500.365500.0710*
H10.518100.511000.209400.0780*
H4A0.820 (3)0.238 (3)0.4358 (16)0.088 (6)*
H4B1.032 (3)0.151 (3)0.4607 (16)0.093 (6)*
H110.921200.396100.077200.0530*
H121.235200.295700.025800.0620*
H131.414500.146800.154600.0640*
H141.283000.094900.329900.0600*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0312 (4)0.0465 (5)0.0358 (5)0.0002 (4)0.0026 (3)0.0059 (4)
N20.0341 (5)0.0840 (8)0.0344 (5)0.0112 (5)0.0005 (4)0.0018 (5)
N30.0305 (4)0.0512 (5)0.0450 (5)0.0019 (4)0.0010 (4)0.0073 (4)
C20.0306 (5)0.0491 (6)0.0368 (5)0.0006 (4)0.0025 (4)0.0073 (4)
C40.0325 (5)0.0406 (5)0.0537 (7)0.0012 (4)0.0077 (5)0.0084 (5)
C50.0404 (6)0.0455 (6)0.0501 (7)0.0025 (5)0.0125 (5)0.0016 (5)
C60.0387 (5)0.0410 (5)0.0403 (6)0.0029 (4)0.0069 (4)0.0043 (4)
C70.0544 (7)0.0623 (8)0.0406 (6)0.0004 (6)0.0029 (5)0.0001 (5)
C80.0343 (6)0.0600 (8)0.0762 (9)0.0086 (5)0.0082 (6)0.0089 (7)
O10.0348 (4)0.0706 (6)0.0412 (5)0.0105 (4)0.0062 (3)0.0000 (4)
O20.0427 (5)0.0916 (7)0.0414 (5)0.0189 (5)0.0008 (4)0.0043 (4)
N40.0513 (6)0.0679 (7)0.0395 (5)0.0100 (5)0.0121 (5)0.0012 (5)
C90.0341 (5)0.0442 (6)0.0384 (5)0.0016 (4)0.0052 (4)0.0037 (4)
C100.0319 (5)0.0371 (5)0.0372 (5)0.0010 (4)0.0053 (4)0.0040 (4)
C110.0395 (6)0.0476 (6)0.0392 (6)0.0032 (5)0.0053 (5)0.0032 (4)
C120.0421 (6)0.0576 (7)0.0483 (7)0.0027 (5)0.0037 (5)0.0094 (5)
C130.0353 (6)0.0558 (7)0.0657 (8)0.0078 (5)0.0039 (5)0.0142 (6)
C140.0400 (6)0.0522 (7)0.0571 (7)0.0081 (5)0.0152 (5)0.0082 (5)
C150.0392 (5)0.0387 (5)0.0428 (6)0.0024 (4)0.0100 (4)0.0054 (4)
Geometric parameters (Å, º) top
O1—C91.3136 (15)C7—H7A0.9600
O2—C91.2214 (14)C7—H7C0.9600
O1—H10.8100C7—H7B0.9600
N1—C61.3390 (15)C8—H8C0.9600
N1—C21.3535 (14)C8—H8B0.9600
N2—C21.3330 (16)C8—H8A0.9600
N3—C41.3320 (16)C9—C101.4748 (16)
N3—C21.3507 (15)C10—C151.4073 (16)
N2—H2B0.8600C10—C111.4001 (15)
N2—H2A0.8600C11—C121.3750 (18)
N4—C151.3627 (16)C12—C131.387 (2)
N4—H4A0.94 (2)C13—C141.364 (2)
N4—H4B0.89 (2)C14—C151.4110 (18)
C4—C81.5003 (18)C11—H110.9300
C4—C51.3830 (18)C12—H120.9300
C5—C61.3828 (17)C13—H130.9300
C6—C71.4910 (17)C14—H140.9300
C5—H50.9300
O1···C73.3882 (17)C9···H2B2.8800
O1···N12.7014 (13)C11···H11viii2.9900
O2···N42.6571 (17)C12···H11viii3.0700
O2···N22.8303 (15)H1···C72.9500
O1···H112.4000H1···H2B2.6000
O2···H2B1.9800H1···C62.8100
O2···H4A1.91 (2)H1···N11.9000
N1···O12.7014 (13)H1···C22.8800
N2···N3i3.0745 (14)H2A···H4Aiii2.4800
N2···O22.8303 (15)H2A···N3i2.2600
N3···N2i3.0745 (14)H2A···C2i3.1000
N4···N4ii3.1409 (18)H2B···C92.8800
N4···O22.6571 (17)H2B···H12.6000
N1···H11.9000H2B···O21.9800
N2···H4Aiii2.87 (2)H4A···H2Aiii2.4800
N3···H2Ai2.2600H4A···O21.91 (2)
N3···H4Biii2.84 (2)H4A···C92.48 (2)
N4···H4Bii2.62 (2)H4A···N2iii2.87 (2)
C2···C15iv3.3428 (16)H4B···N4ii2.62 (2)
C2···C14iv3.5670 (18)H4B···H4Bii2.32 (3)
C4···C9iv3.4584 (17)H4B···N3iii2.84 (2)
C6···C13v3.5249 (18)H4B···H142.3000
C7···O13.3882 (17)H5···H7A2.4000
C9···C4vi3.4584 (17)H5···H8A2.4400
C13···C6vii3.5249 (18)H7A···H52.4000
C14···C2vi3.5670 (18)H8A···H52.4400
C15···C2vi3.3428 (16)H11···O12.4000
C2···H12.8800H11···C11viii2.9900
C2···H2Ai3.1000H11···C12viii3.0700
C6···H12.8100H11···H11viii2.4500
C7···H13viii3.0800H13···C7viii3.0800
C7···H12.9500H14···H4B2.3000
C9···H4A2.48 (2)
C9—O1—H1110.00C4—C8—H8B109.00
C2—N1—C6117.21 (10)C4—C8—H8C109.00
C2—N3—C4116.98 (10)H8A—C8—H8B109.00
C2—N2—H2A120.00C4—C8—H8A109.00
C2—N2—H2B120.00H8A—C8—H8C109.00
H2A—N2—H2B120.00H8B—C8—H8C109.00
H4A—N4—H4B127.5 (19)O2—C9—C10122.73 (11)
C15—N4—H4B112.9 (13)O1—C9—O2121.75 (11)
C15—N4—H4A113.4 (12)O1—C9—C10115.52 (10)
N1—C2—N3124.84 (10)C9—C10—C15120.80 (10)
N1—C2—N2117.74 (10)C11—C10—C15119.51 (10)
N2—C2—N3117.42 (10)C9—C10—C11119.66 (10)
N3—C4—C8116.34 (11)C10—C11—C12121.70 (11)
N3—C4—C5121.65 (11)C11—C12—C13118.63 (12)
C5—C4—C8122.01 (12)C12—C13—C14121.14 (13)
C4—C5—C6118.28 (11)C13—C14—C15121.38 (12)
N1—C6—C7116.38 (11)N4—C15—C14119.47 (11)
C5—C6—C7122.59 (11)C10—C15—C14117.64 (11)
N1—C6—C5121.03 (11)N4—C15—C10122.90 (11)
C6—C5—H5121.00C10—C11—H11119.00
C4—C5—H5121.00C12—C11—H11119.00
C6—C7—H7B109.00C11—C12—H12121.00
C6—C7—H7C109.00C13—C12—H12121.00
C6—C7—H7A109.00C12—C13—H13119.00
H7A—C7—H7B109.00C14—C13—H13119.00
H7A—C7—H7C109.00C13—C14—H14119.00
H7B—C7—H7C109.00C15—C14—H14119.00
C6—N1—C2—N2178.98 (11)O2—C9—C10—C11176.12 (12)
C6—N1—C2—N30.06 (17)O2—C9—C10—C155.78 (18)
C2—N1—C6—C50.37 (17)C9—C10—C11—C12177.60 (12)
C2—N1—C6—C7179.13 (11)C15—C10—C11—C120.53 (18)
C4—N3—C2—N10.10 (18)C9—C10—C15—N42.90 (18)
C4—N3—C2—N2178.93 (11)C9—C10—C15—C14177.28 (11)
C2—N3—C4—C50.47 (17)C11—C10—C15—N4178.99 (12)
C2—N3—C4—C8178.87 (11)C11—C10—C15—C140.83 (16)
N3—C4—C5—C60.78 (19)C10—C11—C12—C130.2 (2)
C8—C4—C5—C6178.53 (12)C11—C12—C13—C140.6 (2)
C4—C5—C6—N10.72 (18)C12—C13—C14—C150.3 (2)
C4—C5—C6—C7178.75 (12)C13—C14—C15—N4179.37 (13)
O1—C9—C10—C114.29 (16)C13—C14—C15—C100.45 (19)
O1—C9—C10—C15173.81 (10)
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x1, y+1, z; (vi) x+1, y, z; (vii) x+1, y1, z; (viii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.811.902.7014 (13)168
N2—H2A···N3i0.862.263.0745 (14)159
N2—H2B···O20.861.982.8303 (15)169
N4—H4A···O20.94 (2)1.91 (2)2.6571 (17)135.5 (17)
N4—H4B···N4ii0.89 (2)2.62 (2)3.1409 (18)118.7 (17)
C11—H11···O10.932.402.7353 (15)101
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N3·C7H7NO2
Mr260.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1922 (2), 7.4269 (2), 13.0675 (3)
α, β, γ (°)77.583 (1), 78.990 (1), 82.473 (1)
V3)666.19 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.975, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
16171, 4279, 3021
Rint0.024
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.174, 1.04
No. of reflections4279
No. of parameters182
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.81001.90002.7014 (13)168.00
N2—H2A···N3i0.86002.26003.0745 (14)159.00
N2—H2B···O20.86001.98002.8303 (15)169.00
N4—H4A···O20.94 (2)1.91 (2)2.6571 (17)135.5 (17)
N4—H4B···N4ii0.89 (2)2.62 (2)3.1409 (18)118.7 (17)
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z+1.
 

Acknowledgements

The authors thank the DST-India (FIST programme) for the use of diffractometer at the School of Chemistry, Bharathidasan University.

References

First citationAllen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. pp. 25–34.  Web of Science CrossRef Google Scholar
First citationBaker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBalasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907–o2909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBalasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203–o4205.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevi, P. & Muthiah, P. T. (2007). Acta Cryst. E63, o4822–o4823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536.  CAS Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationMuthiah, P. T., Balasubramani, K., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. C62, o605–o607.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakur, T. S. & Desiraju, G. R. (2008). Cryst. Growth Des. 8, 4031–4044.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds