organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o549-o550

N-Carbeth­oxy-N′-[3-(4-methylphenyl)-1H-1,2,4-triazol-5-yl]thiourea

aDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore, and bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
*Correspondence e-mail: phada@nus.edu.sg

(Received 25 January 2010; accepted 3 February 2010; online 6 February 2010)

The title compound, [systematic name: ethyl ({[3-(4-methylphenyl)-1H-1,2,4-triazol-5-yl]amino}carbonothioyl)carbamate], C13H16N5O2S, exists in the 3-aryl-5-thio­ureido-1H-1,2,4-triazole tautomeric form. The mol­ecular structure is stabilized by intra­molecular hydrogen bonding (N—H⋯S=C between the endocyclic N-bound H atom and the thio­ureido S atom, and N—H⋯O=C within the ethoxy­carbonyl­thio­urea unit), both arranged in an S(6) graph-set motif. The mean planes of the phenyl and 1,2,4-triazole rings make a dihedral angle of 6.59 (10)°. In the crystal structure, the mol­ecules form two types of centrosymmetric dimers connected by inter­molecular hydrogen bonds; in the first, the N—NH triazole sides of two mol­ecules are connected [R22(6) graph-set motif] and the second is an N—H⋯S=C inter­action between the imide H atoms and the thio­carbonyl S atoms [R22(8) graph-set motif]. Together, they form a network parallel to the (111) plane.

Related literature

For the synthesis, tautomerism and structures of related 1,2,4-triazoles, see: Dolzhenko et al. (2009a[Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2009a). Tetrahedron Lett. 50, 2124-2128.],b[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009b). Acta Cryst. E65, o126.],c[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009c). Acta Cryst. E65, o125.], 2010[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010). Acta Cryst. E66, o425.]); Buzykin et al. (2006[Buzykin, B. I., Mironova, E. V., Nabiullin, V. N., Gubaidullin, A. T. & Litvinov, I. A. (2006). Russ. J. Gen. Chem. 76, 1471-1486.]). For related carbethoxy­thio­ureas, see: Dolzhenko et al. (2010[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010). Acta Cryst. E66, o425.]); Huang et al. (2009[Huang, B., Kung, P.-P., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009). Acta Cryst. E65, o1249.]); Lin et al. (2004[Lin, Q., Zhang, Y.-M., Wei, T.-B. & Wang, H. (2004). Acta Cryst. E60, o580-o582.], 2007[Lin, Q., Wei, T. B. & Zhang, Y. M. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 863-871.]); Su et al. (2006[Su, B. Q., Liu, G. L., Sheng, L., Wang, X. Q. & Xian, L. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 745-750.]); Zhang et al. (2003[Zhang, Y.-M., Wei, T.-B., Xian, L., Lin, Q. & Yu, K.-B. (2003). Acta Cryst. E59, o905-o906.], 2007[Zhang, B., Xian, L. & Xiang, X. M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 447-448.]). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N5O2S

  • Mr = 305.36

  • Triclinic, [P \overline 1]

  • a = 6.8430 (5) Å

  • b = 8.7789 (6) Å

  • c = 12.2563 (9) Å

  • α = 90.780 (1)°

  • β = 99.425 (1)°

  • γ = 101.279 (1)°

  • V = 711.52 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.56 × 0.46 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.877, Tmax = 0.945

  • 9015 measured reflections

  • 3243 independent reflections

  • 3088 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.07

  • 3243 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N3i 0.865 (19) 2.316 (19) 2.9719 (15) 132.8 (16)
N2—H2N⋯S1 0.865 (19) 2.660 (19) 3.1116 (11) 113.8 (15)
N4—H4N⋯O1 0.830 (19) 1.929 (18) 2.6274 (14) 141.2 (17)
N5—H5N⋯S1ii 0.856 (18) 2.576 (19) 3.4119 (11) 165.7 (16)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we reported the crystal structure of N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea (Dolzhenko et al., 2010). Herein, in continuation of our investigations on annular tautomerism of 1,2,4-triazoles (Figs 3 and 4) in solutions (Dolzhenko et al., 2009a) and crystalline state (Dolzhenko et al., 2009b,c, 2010), we study the similar compound with methyl group presented in para-position of the phenyl ring. The electron donating effect of the methyl group might shift the tautomeric equilibrium towards the 5-aryl-3-thioureido-1H-1,2,4-triazole tautomeric form (Buzykin et al., 2006; Dolzhenko et al., 2009a). However, we found that this effect is not sufficient to alter the structure. Analogously to N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea (Dolzhenko et al., 2010), the title compound crystallizes with similar molecular structure (Fig. 1) and packing (Fig. 2). The N2—H···S1 hydrogen bonding between the endocyclic N(3)H proton of the triazole ring and the thioureido sulfur S1 atom (Fig.1 and Table 1) arranged in a S(6) graph-set motif (Bernstein et al., 1995) is believed to be an essential factor stabilizing the tautomer. The triazole ring is planar with an r.m.s. deviation of 0.0069 Å. It makes a dihedral angle of 6.59 (10)° with the phenyl ring. The C10—N4 bond is significantly shorter (1.3414 (16) Å) than other C—N bonds of the carbethoxythiourea group (1.384–1.385 Å). Similarly to the previously reported related structures (Dolzhenko et al., 2010; Huang et al., 2009; Lin et al., 2007; Lin et al., 2004; Su et al., 2006; Zhang et al., 2007; Zhang et al., 2003), the carbethoxythiourea group of the title compound adopts (Z)-configuration across the thiourea C10—N4 bond and (E)-configuration across the C11—N5 bond. The strong intramolecular N4—H···O1C11 hydrogen bonding arranged in common for carbethoxythioureas (Dolzhenko et al., 2010; Huang et al., 2009; Lin et al., 2007; Lin et al., 2004; Su et al., 2006; Zhang et al., 2007; Zhang et al., 2003) S(6) graph-set motif stabilizes this configuration.

In the crystal, the molecules form two types of centrosymmetric dimmers (Fig. 2, Table 1). The N3—N2H sides of two molecules are connected by intermolecular hydrogen bonds making the R22(6) graph-set motif. Atom N5 is also involved in the intermolecular N—H···S interaction with the thiocarbonyl atom S1 of adjacent molecule making another pair with the R22(8) graph-set motif similar to that observed in other carbethoxythioureas (Dolzhenko et al., 2010; Huang et al., 2009; Lin et al., 2007; Lin et al., 2004; Su et al., 2006; Zhang et al., 2007; Zhang et al., 2003). Together, these hydrogen bonds connect molecules in a network parallel to the (111) plane.

Related literature top

For the synthesis, tautomerism and structures of related 1,2,4-triazoles, see: Dolzhenko et al. (2009a,b,c, 2010); Buzykin et al. (2006). For related carbethoxythioureas, see: Dolzhenko et al. (2010); Huang et al. (2009); Lin et al. (2004, 2007); Su et al. (2006); Zhang et al. (2003, 2007). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

The title compound (I) was synthesized by nucleophilic addition of 3(5)-amino-5(3)-(4-methylphenyl)-1H-1,2,4-triazole (Dolzhenko et al., 2009a) to ethoxycarbonyl isothiocyanate in DMF solution at room temperature (Fig. 3). Single crystals suitable for crystallographic analysis were grown by recrystallization from ethanol.

Refinement top

All the H atoms attached to the carbon atoms were constrained in a riding motion approximation [0.95 Å for Caryl—H, 0.99 Å for methylenic protons and 0.98 Å for methyl group protons; Uiso(H) = 1.2Ueq(Caryl), Uiso(H) = 1.2Ueq(Cmethylenic) and Uiso(H) = 1.5Ueq(Cmethyl)] while the N-bound H atoms were located in a difference map and refined freely.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing in the cell viewed along the axis c.
[Figure 3] Fig. 3. Synthesis of N-carbethoxy-N'-[3-(4-methylphenyl)-1H-1,2,4-triazol-5- yl]thiourea.
[Figure 4] Fig. 4. Annular tautomerism in N-carbethoxy-N'-[3(5)-(4-methylphenyl)-1(4)H-1,2,4-τriazol-5(3)-yl]thiourea.
ethyl ({[3-(4-methylphenyl)-1H-1,2,4-triazol-5-yl]amino}carbonothioyl)carbamate top
Crystal data top
C13H15N5O2SZ = 2
Mr = 305.36F(000) = 320
Triclinic, P1Dx = 1.425 Mg m3
Hall symbol: -P 1Melting point: 489 K
a = 6.8430 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7789 (6) ÅCell parameters from 6864 reflections
c = 12.2563 (9) Åθ = 2.4–27.5°
α = 90.780 (1)°µ = 0.24 mm1
β = 99.425 (1)°T = 100 K
γ = 101.279 (1)°Block, colourless
V = 711.52 (9) Å30.56 × 0.46 × 0.24 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3243 independent reflections
Radiation source: fine-focus sealed tube3088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 88
Tmin = 0.877, Tmax = 0.945k = 1111
9015 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.328P]
where P = (Fo2 + 2Fc2)/3
3243 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C13H15N5O2Sγ = 101.279 (1)°
Mr = 305.36V = 711.52 (9) Å3
Triclinic, P1Z = 2
a = 6.8430 (5) ÅMo Kα radiation
b = 8.7789 (6) ŵ = 0.24 mm1
c = 12.2563 (9) ÅT = 100 K
α = 90.780 (1)°0.56 × 0.46 × 0.24 mm
β = 99.425 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3243 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3088 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.945Rint = 0.021
9015 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.44 e Å3
3243 reflectionsΔρmin = 0.31 e Å3
204 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23286 (5)0.36065 (4)0.52820 (2)0.01721 (11)
O10.17169 (14)0.49382 (11)0.16661 (8)0.0193 (2)
O20.10045 (14)0.57606 (10)0.20980 (8)0.0174 (2)
N10.62121 (16)0.25023 (12)0.28575 (9)0.0155 (2)
N20.51358 (16)0.16832 (13)0.43785 (9)0.0162 (2)
H2N0.440 (3)0.145 (2)0.4885 (16)0.029 (5)*
N30.65581 (16)0.08284 (13)0.42368 (9)0.0173 (2)
N40.35689 (16)0.35967 (12)0.33186 (9)0.0156 (2)
H4N0.343 (3)0.390 (2)0.2676 (16)0.024 (4)*
N50.09899 (17)0.48816 (13)0.34439 (9)0.0163 (2)
H5N0.016 (3)0.512 (2)0.3841 (15)0.022 (4)*
C11.3339 (2)0.07535 (17)0.13315 (12)0.0239 (3)
H1A1.41990.12310.18880.036*
H1B1.41690.01320.10360.036*
H1C1.26880.15210.07280.036*
C21.17417 (19)0.02005 (15)0.18576 (11)0.0180 (3)
C31.0630 (2)0.08361 (15)0.13251 (11)0.0184 (3)
H31.08980.12040.06280.022*
C40.91420 (19)0.13361 (14)0.17991 (11)0.0169 (3)
H40.83910.20290.14200.020*
C50.87416 (18)0.08280 (14)0.28277 (10)0.0149 (2)
C60.98549 (19)0.01994 (14)0.33704 (11)0.0169 (3)
H60.96040.05540.40730.020*
C71.13279 (19)0.07028 (15)0.28828 (11)0.0180 (3)
H71.20690.14050.32580.022*
C80.71732 (18)0.13779 (14)0.33214 (10)0.0144 (2)
C90.49501 (18)0.26348 (14)0.35425 (10)0.0143 (2)
C100.23405 (18)0.40227 (14)0.39616 (10)0.0144 (2)
C110.06534 (19)0.51753 (14)0.23292 (11)0.0156 (2)
C120.1632 (2)0.59864 (16)0.09263 (11)0.0197 (3)
H12A0.20360.49720.05050.024*
H12B0.05100.66330.06220.024*
C130.3400 (2)0.67920 (17)0.08463 (12)0.0234 (3)
H13A0.44640.61700.11920.035*
H13B0.39260.69110.00660.035*
H13C0.29580.78190.12290.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02084 (18)0.01893 (17)0.01474 (17)0.00843 (12)0.00598 (12)0.00253 (11)
O10.0225 (5)0.0213 (5)0.0182 (4)0.0100 (4)0.0082 (4)0.0051 (4)
O20.0192 (4)0.0177 (4)0.0178 (4)0.0082 (3)0.0049 (3)0.0034 (3)
N10.0169 (5)0.0127 (5)0.0181 (5)0.0040 (4)0.0049 (4)0.0016 (4)
N20.0162 (5)0.0182 (5)0.0172 (5)0.0076 (4)0.0066 (4)0.0035 (4)
N30.0169 (5)0.0190 (5)0.0195 (5)0.0089 (4)0.0067 (4)0.0042 (4)
N40.0183 (5)0.0161 (5)0.0147 (5)0.0070 (4)0.0051 (4)0.0029 (4)
N50.0187 (5)0.0170 (5)0.0166 (5)0.0089 (4)0.0067 (4)0.0019 (4)
C10.0195 (6)0.0250 (7)0.0298 (7)0.0071 (5)0.0087 (5)0.0045 (6)
C20.0151 (6)0.0157 (6)0.0232 (6)0.0021 (5)0.0050 (5)0.0045 (5)
C30.0209 (6)0.0161 (6)0.0195 (6)0.0026 (5)0.0082 (5)0.0005 (5)
C40.0179 (6)0.0143 (6)0.0197 (6)0.0044 (5)0.0050 (5)0.0020 (5)
C50.0147 (6)0.0127 (5)0.0176 (6)0.0023 (4)0.0043 (5)0.0010 (4)
C60.0182 (6)0.0155 (6)0.0172 (6)0.0037 (5)0.0032 (5)0.0013 (5)
C70.0167 (6)0.0148 (6)0.0225 (6)0.0054 (5)0.0011 (5)0.0004 (5)
C80.0142 (5)0.0130 (5)0.0161 (6)0.0028 (4)0.0026 (4)0.0002 (4)
C90.0143 (5)0.0122 (5)0.0165 (6)0.0029 (4)0.0027 (4)0.0005 (4)
C100.0153 (6)0.0114 (5)0.0167 (6)0.0025 (4)0.0036 (4)0.0000 (4)
C110.0181 (6)0.0109 (5)0.0186 (6)0.0038 (4)0.0043 (5)0.0014 (4)
C120.0219 (6)0.0217 (6)0.0176 (6)0.0091 (5)0.0034 (5)0.0042 (5)
C130.0197 (6)0.0241 (7)0.0286 (7)0.0090 (5)0.0048 (5)0.0060 (5)
Geometric parameters (Å, º) top
S1—C101.6649 (13)C1—H1C0.9800
O1—C111.2173 (16)C2—C71.3915 (19)
O2—C111.3260 (15)C2—C31.3988 (18)
O2—C121.4578 (15)C3—C41.3889 (17)
N1—C91.3184 (16)C3—H30.9500
N1—C81.3701 (15)C4—C51.3943 (17)
N2—C91.3364 (16)C4—H40.9500
N2—N31.3704 (14)C5—C61.3984 (17)
N2—H2N0.865 (19)C5—C81.4691 (17)
N3—C81.3261 (16)C6—C71.3903 (17)
N4—C101.3414 (16)C6—H60.9500
N4—C91.3839 (15)C7—H70.9500
N4—H4N0.830 (19)C12—C131.5067 (18)
N5—C111.3840 (16)C12—H12A0.9900
N5—C101.3853 (16)C12—H12B0.9900
N5—H5N0.856 (18)C13—H13A0.9800
C1—C21.5088 (17)C13—H13B0.9800
C1—H1A0.9800C13—H13C0.9800
C1—H1B0.9800
C11—O2—C12114.69 (10)C7—C6—C5120.07 (12)
C9—N1—C8102.36 (10)C7—C6—H6120.0
C9—N2—N3109.09 (10)C5—C6—H6120.0
C9—N2—H2N130.3 (12)C6—C7—C2121.48 (12)
N3—N2—H2N119.7 (12)C6—C7—H7119.3
C8—N3—N2102.49 (10)C2—C7—H7119.3
C10—N4—C9129.41 (11)N3—C8—N1114.56 (11)
C10—N4—H4N116.0 (12)N3—C8—C5123.37 (11)
C9—N4—H4N114.5 (12)N1—C8—C5122.06 (11)
C11—N5—C10126.49 (11)N1—C9—N2111.46 (11)
C11—N5—H5N117.7 (12)N1—C9—N4120.65 (11)
C10—N5—H5N115.0 (12)N2—C9—N4127.77 (11)
C2—C1—H1A109.5N4—C10—N5114.73 (11)
C2—C1—H1B109.5N4—C10—S1125.77 (9)
H1A—C1—H1B109.5N5—C10—S1119.49 (9)
C2—C1—H1C109.5O1—C11—O2125.35 (12)
H1A—C1—H1C109.5O1—C11—N5125.32 (12)
H1B—C1—H1C109.5O2—C11—N5109.33 (11)
C7—C2—C3118.02 (11)O2—C12—C13106.66 (11)
C7—C2—C1121.23 (12)O2—C12—H12A110.4
C3—C2—C1120.75 (12)C13—C12—H12A110.4
C4—C3—C2121.03 (12)O2—C12—H12B110.4
C4—C3—H3119.5C13—C12—H12B110.4
C2—C3—H3119.5H12A—C12—H12B108.6
C3—C4—C5120.49 (12)C12—C13—H13A109.5
C3—C4—H4119.8C12—C13—H13B109.5
C5—C4—H4119.8H13A—C13—H13B109.5
C4—C5—C6118.90 (11)C12—C13—H13C109.5
C4—C5—C8119.80 (11)H13A—C13—H13C109.5
C6—C5—C8121.30 (11)H13B—C13—H13C109.5
C9—N2—N3—C81.76 (13)C4—C5—C8—N16.63 (18)
C7—C2—C3—C40.71 (19)C6—C5—C8—N1173.24 (11)
C1—C2—C3—C4179.27 (12)C8—N1—C9—N20.94 (14)
C2—C3—C4—C50.84 (19)C8—N1—C9—N4175.31 (11)
C3—C4—C5—C60.36 (19)N3—N2—C9—N11.78 (15)
C3—C4—C5—C8179.52 (11)N3—N2—C9—N4174.14 (12)
C4—C5—C6—C70.23 (19)C10—N4—C9—N1171.44 (12)
C8—C5—C6—C7179.89 (11)C10—N4—C9—N213.0 (2)
C5—C6—C7—C20.36 (19)C9—N4—C10—N5173.84 (12)
C3—C2—C7—C60.11 (19)C9—N4—C10—S16.13 (19)
C1—C2—C7—C6179.87 (12)C11—N5—C10—N47.69 (18)
N2—N3—C8—N11.24 (14)C11—N5—C10—S1172.28 (10)
N2—N3—C8—C5179.33 (11)C12—O2—C11—O15.70 (18)
C9—N1—C8—N30.24 (14)C12—O2—C11—N5174.54 (10)
C9—N1—C8—C5179.68 (11)C10—N5—C11—O112.6 (2)
C4—C5—C8—N3172.75 (12)C10—N5—C11—O2167.62 (11)
C6—C5—C8—N37.38 (19)C11—O2—C12—C13174.72 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N3i0.865 (19)2.316 (19)2.9719 (15)132.8 (16)
N2—H2N···S10.865 (19)2.660 (19)3.1116 (11)113.8 (15)
N4—H4N···O10.830 (19)1.929 (18)2.6274 (14)141.2 (17)
N5—H5N···S1ii0.856 (18)2.576 (19)3.4119 (11)165.7 (16)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H15N5O2S
Mr305.36
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.8430 (5), 8.7789 (6), 12.2563 (9)
α, β, γ (°)90.780 (1), 99.425 (1), 101.279 (1)
V3)711.52 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.56 × 0.46 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.877, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
9015, 3243, 3088
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.07
No. of reflections3243
No. of parameters204
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.31

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N3i0.865 (19)2.316 (19)2.9719 (15)132.8 (16)
N2—H2N···S10.865 (19)2.660 (19)3.1116 (11)113.8 (15)
N4—H4N···O10.830 (19)1.929 (18)2.6274 (14)141.2 (17)
N5—H5N···S1ii0.856 (18)2.576 (19)3.4119 (11)165.7 (16)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the National Medical Research Council, Singapore (grant No. NMRC/NIG/0019/2008).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationBuzykin, B. I., Mironova, E. V., Nabiullin, V. N., Gubaidullin, A. T. & Litvinov, I. A. (2006). Russ. J. Gen. Chem. 76, 1471–1486.  Web of Science CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2009a). Tetrahedron Lett. 50, 2124–2128.  Web of Science CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009b). Acta Cryst. E65, o126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009c). Acta Cryst. E65, o125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010). Acta Cryst. E66, o425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, B., Kung, P.-P., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009). Acta Cryst. E65, o1249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, Q., Wei, T. B. & Zhang, Y. M. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 863–871.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, Q., Zhang, Y.-M., Wei, T.-B. & Wang, H. (2004). Acta Cryst. E60, o580–o582.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, B. Q., Liu, G. L., Sheng, L., Wang, X. Q. & Xian, L. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 745–750.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y.-M., Wei, T.-B., Xian, L., Lin, Q. & Yu, K.-B. (2003). Acta Cryst. E59, o905–o906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B., Xian, L. & Xiang, X. M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 447–448.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o549-o550
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds