organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­phenyl­propan-2-one (2,4-di­nitro­phen­yl)hydrazone

aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169_007 Porto, Portugal, bCentro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169_007 Porto, Portugal, cCICECO, Departamento de Química, Universidade de Aviero, 3810-193 Aveiro, Portugal, and dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland.
*Correspondence e-mail: che562@abdn.ac.uk

(Received 19 January 2010; accepted 21 January 2010; online 10 February 2010)

In the title compound, C21H18N4O4, there is an intra­molecular N—H⋯O hydrogen bond between the amino H atom and an O atom of the 2-nitro group of the adjacent benzene ring. The central benzene ring forms dihedral angles of 79.98 (7) and 82.88 (7)° with the two phenyl rings. In the crystal structure, mol­ecules are linked into a three-dimensional network by weak C—H⋯N, C—H⋯O and C—H⋯π inter­actions.

Related literature

For the structures of related 2,4-dinitro­phenyl hydrazines, see: Wardell et al. (2006[Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o318-o320.]); Lima et al. (2009[Lima, C. F. R. A. C., Gomes, L. R., Santos, L. M. N. B. F., Rodriguez-Borges, J. E. & Low, J. N. (2009). Acta Cryst. E65, o2729.]). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N4O4

  • Mr = 390.39

  • Monoclinic, P 21 /c

  • a = 17.2448 (9) Å

  • b = 5.1013 (2) Å

  • c = 22.7459 (13) Å

  • β = 109.475 (2)°

  • V = 1886.49 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.40 × 0.06 × 0.02 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.998

  • 13123 measured reflections

  • 4973 independent reflections

  • 3417 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.04

  • 4973 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg31 and Cg41 are the centroids of the C31–C36 and C41–C46 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O122 0.91 1.92 2.5976 (15) 129
C15—H15⋯O142i 0.95 2.44 3.314 (2) 153
C3—H3A⋯N2ii 0.99 2.53 3.3811 (18) 144
C3—H3B⋯O121iii 0.99 2.55 3.3138 (18) 134
C4—H4BCg41iv 0.99 2.79 3.7438 (16) 163
C45—H45⋯Cg31v 0.95 2.92 3.7424 (18) 145
Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) x, y-1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y+1, z; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structure of the title compound with the crystallographic numbering scheme is shown in Figure. 1. The relevant bonds, angles and distances compare well with similar structures (Lima et al., 2009; Wardell et al., 2006).

The molecular geometry and conformation is as expected taking account of electronic repulsions and steric effects.

The orange colour of the title compound is caused by the conjugation of the nitrophenyl with the -N-N= group. The atoms N1, N2 C2, C3 and C4 are coplanar with a rms deviation of the fitted atoms of 0.0126 Å. The two phenyl groups attached to C3 and C4 lie out of this plane. The dihedral angle between the mean plane of the the C11-C16 benzene ring and C31-C36 phenyl ring is 79.98 (7)° and that between the C11-C16 ring C41-46 ring is 82.88 (7)°. The dihedral angle formed by the mean planes of the C31-C36 and C41-C46 phenyl rings 16.25 (8)°.

An intramolecular hydrogen bond, N1-H1···O122, forms an R(6) ring, Bernstein et al., (1995) as in (E)-1-phenylbutan-2-one(2,4-dinitrophenyl)hydrazone (Lima et al., 2009). In addition to this hydrogen bond there are three weak intermolecular hydrogen bonds and two C-H···π interactions which link the molecules into a three-dimensional network.

C15 via H15(x,y,z) forms a hydrogen bond to O142(1-x, 3-y, 1-z), forming an R22(10) ring thus creating a centrosymmetric dimer centred on the crystallographic centre-of-symmetry at (0.5, 1.5, 0.5), Figure 2. The other two hydrogen bonds involve the hydrogen atoms attached to C3, these two hydrogen bonds along with a C–H..π interaction form a tubular structure which runs parallel to the b-axis, Figure 3. C3 via H3A(x,y,z) forms a hydrogen bond to N2(x,-1+y,z) forming a C4 chain parallel to the b axis. C3 via H3B(x,y,z) forms a hydrogen bond to O121(1-x,-1/2+y,3/2-z) forming a C9 helical chain produced by the action of a screw axis at (0.5,y,0.75) which also runs parallel to the b-axis. The resulting tubular structure is further reinforced by a weak C-H..π interaction, C4—H4B···Cg41(x, y+1, z) where Cg41 is the centre of gravity of the phenyl ring containing C41. The b-axis tubular structures are connected by the R22(10) rings and by a second weak C-H..π interaction, C45—H45···Cg31(-x+2, y-1/2, -z+3/2) where Cg31 is the centre of gravity of the phenyl ring containing C31, to form a three dimensional network. A short nitro-nitro contact of 2.8506 (15)Å between N12(x,y,z) and O122(1-x,-1/2+y,3/2-z) is observed. A similar short contact of 2.755 (2)Å occurs in (E)-1-phenylbutan-2-one(2,4-dinitrophenyl)hydrazone (Lima et al.,2009).

Related literature top

For the structures of related 2,4-dinitrophenyl hydrazines, see: Wardell et al. (2006); Lima et al. (2009). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995).

Experimental top

(1) was obtained from the condensation reaction of dibenzylketone with 2,4-dinitrophenylhydrazine. 2.3 mmol of dibenzylketone was added to a solution of 2.4 mmol of 2,4-dinitrophenylhydrazine in an ethanol /HCl mixture (10:1 and heated (50 °C) to reflux until completely dissolved. The reaction mixture was extracted with ethylacetate and then removed under vacuum. The resulting orange residue was re-crystallised, first from ethanol and then from ethylacetate. (overall yield: 0.54 g, 60%). 1H-NMR (400 MHz, CDCl3, 298 K, TMS): δ = 11.22 (s, 1H, H5), δ = 9.11 (d, J = 2.8 Hz, 1H, H8), δ = 8.34 (dd, J = 9.6 Hz, J = 2.8 Hz, 1H, H7), δ = 8.04 (d, J = 9.6 Hz, 1H, H6), δ = [7.40-7.25] (m, 8H, H1 - H3), δ = 7.18 (d, J = 6.8 Hz, 2H, H3), δ = 3.83 (s, 2H, H4), δ = 3.75 (s, 2H, H4).

Orange needles suitable for X-ray diffraction were grown from dichloromethane.

Refinement top

Molecule (1) crystallized in the monoclinic system; space group P21/c. H atoms were treated as riding atoms with C—H(aromatic), 0.95 Å, C—H(CH2), 0.99 Å. The atom attached to N1 was located on a difference map at a distance of 0.9123Å and was fixed as a riding atom at this distance.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (1) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the R22(10) dimer. The atoms labelled * are in the molecule at (1-x,3-y, 1-z). Hydrogen atoms not involved in the motifs are not included.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of compound, showing part of the tubular structure running parallel to the b-axis formed by C—H..O and C—H..N hydrogen bonds. Hydrogen atoms not involved in the motifs are not included nor are the reinforcing C—H···π interaction which is omitted for the sake of clarity.
1,3-Diphenylpropan-2-one (2,4-dinitrophenyl)hydrazone top
Crystal data top
C21H18N4O4Dx = 1.375 Mg m3
Mr = 390.39Melting point: 381.7 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.2448 (9) ÅCell parameters from 211 reflections
b = 5.1013 (2) Åθ = 15.5–51.4°
c = 22.7459 (13) ŵ = 0.10 mm1
β = 109.475 (2)°T = 150 K
V = 1886.49 (16) Å3Needle, orange
Z = 40.40 × 0.06 × 0.02 mm
F(000) = 816
Data collection top
Bruker SMART APEX
diffractometer
4973 independent reflections
Radiation source: fine-focus sealed tube3417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 29.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2223
Tmin = 0.962, Tmax = 0.998k = 56
13123 measured reflectionsl = 2931
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.0648P]
where P = (Fo2 + 2Fc2)/3
4973 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C21H18N4O4V = 1886.49 (16) Å3
Mr = 390.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.2448 (9) ŵ = 0.10 mm1
b = 5.1013 (2) ÅT = 150 K
c = 22.7459 (13) Å0.40 × 0.06 × 0.02 mm
β = 109.475 (2)°
Data collection top
Bruker SMART APEX
diffractometer
4973 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3417 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.998Rint = 0.032
13123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
4973 reflectionsΔρmin = 0.24 e Å3
262 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An apprO122imate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1210.38029 (6)0.5908 (2)0.68188 (5)0.0370 (3)
O1220.50403 (6)0.43658 (19)0.71259 (5)0.0290 (2)
O1410.29905 (7)1.3039 (3)0.54043 (6)0.0478 (3)
O1420.38465 (7)1.4722 (2)0.49984 (6)0.0488 (3)
N10.61933 (7)0.6614 (2)0.68083 (5)0.0238 (3)
H10.60850.54630.70780.029*
N20.69791 (6)0.7018 (2)0.67903 (5)0.0223 (3)
N120.45159 (7)0.5957 (2)0.68209 (5)0.0249 (3)
N140.36726 (8)1.3166 (3)0.53486 (6)0.0328 (3)
C20.75430 (8)0.5395 (3)0.70889 (6)0.0210 (3)
C30.74525 (8)0.3003 (3)0.74514 (6)0.0245 (3)
H3A0.75600.14170.72400.029*
H3B0.68780.29040.74500.029*
C40.83751 (8)0.5887 (3)0.70326 (6)0.0235 (3)
H4A0.87960.58830.74540.028*
H4B0.83790.76400.68470.028*
C110.55764 (8)0.8161 (3)0.64553 (6)0.0218 (3)
C120.47530 (8)0.7921 (3)0.64507 (6)0.0219 (3)
C130.41292 (8)0.9552 (3)0.60887 (6)0.0250 (3)
H130.35830.93820.60950.030*
C140.43201 (8)1.1413 (3)0.57223 (6)0.0261 (3)
C150.51178 (9)1.1705 (3)0.57056 (6)0.0277 (3)
H150.52331.30020.54460.033*
C160.57319 (8)1.0114 (3)0.60642 (6)0.0255 (3)
H160.62741.03200.60510.031*
C310.80301 (8)0.3014 (3)0.81217 (6)0.0231 (3)
C320.86423 (9)0.1136 (3)0.83308 (7)0.0275 (3)
H320.87100.01420.80480.033*
C330.91584 (9)0.1099 (3)0.89490 (7)0.0331 (4)
H330.95750.01990.90870.040*
C340.90638 (10)0.2952 (3)0.93612 (7)0.0358 (4)
H340.94110.29200.97850.043*
C350.84621 (10)0.4858 (3)0.91564 (7)0.0351 (4)
H350.84020.61490.94390.042*
C360.79469 (9)0.4891 (3)0.85398 (7)0.0287 (3)
H360.75350.62030.84030.034*
C410.85952 (8)0.3836 (3)0.66334 (6)0.0223 (3)
C420.80419 (9)0.3234 (3)0.60454 (6)0.0338 (4)
H420.75300.41260.58970.041*
C430.82283 (10)0.1359 (4)0.56759 (7)0.0397 (4)
H430.78430.09620.52770.048*
C440.89716 (10)0.0059 (3)0.58834 (7)0.0327 (4)
H440.90970.12440.56300.039*
C450.95344 (9)0.0661 (3)0.64620 (7)0.0298 (3)
H451.00510.02060.66040.036*
C460.93414 (8)0.2534 (3)0.68334 (6)0.0256 (3)
H460.97280.29280.72320.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1210.0247 (5)0.0451 (7)0.0453 (6)0.0008 (5)0.0172 (5)0.0075 (5)
O1220.0301 (5)0.0275 (5)0.0303 (5)0.0038 (4)0.0111 (4)0.0049 (4)
O1410.0297 (6)0.0569 (8)0.0527 (7)0.0135 (6)0.0083 (5)0.0170 (6)
O1420.0399 (6)0.0496 (8)0.0480 (7)0.0041 (6)0.0029 (6)0.0241 (6)
N10.0217 (6)0.0243 (6)0.0266 (6)0.0007 (5)0.0099 (5)0.0023 (5)
N20.0203 (5)0.0222 (6)0.0254 (6)0.0006 (5)0.0092 (4)0.0016 (4)
N120.0249 (6)0.0266 (6)0.0240 (6)0.0001 (5)0.0091 (5)0.0027 (5)
N140.0307 (7)0.0329 (7)0.0275 (6)0.0025 (6)0.0001 (5)0.0023 (5)
C20.0228 (6)0.0196 (7)0.0211 (6)0.0016 (5)0.0080 (5)0.0041 (5)
C30.0214 (6)0.0212 (7)0.0302 (7)0.0019 (6)0.0076 (5)0.0000 (5)
C40.0204 (6)0.0234 (7)0.0266 (7)0.0016 (6)0.0076 (5)0.0002 (5)
C110.0230 (6)0.0209 (7)0.0212 (6)0.0017 (6)0.0068 (5)0.0048 (5)
C120.0248 (6)0.0215 (7)0.0200 (6)0.0008 (6)0.0083 (5)0.0022 (5)
C130.0232 (6)0.0282 (7)0.0221 (6)0.0003 (6)0.0057 (5)0.0059 (5)
C140.0263 (7)0.0259 (7)0.0216 (6)0.0026 (6)0.0021 (5)0.0021 (5)
C150.0328 (7)0.0258 (8)0.0229 (7)0.0020 (6)0.0072 (6)0.0011 (5)
C160.0241 (7)0.0277 (7)0.0253 (7)0.0015 (6)0.0088 (6)0.0003 (5)
C310.0246 (7)0.0210 (7)0.0258 (7)0.0050 (6)0.0109 (5)0.0023 (5)
C320.0305 (7)0.0220 (7)0.0305 (7)0.0003 (6)0.0107 (6)0.0003 (6)
C330.0322 (8)0.0298 (8)0.0337 (8)0.0000 (7)0.0065 (6)0.0075 (6)
C340.0398 (9)0.0411 (9)0.0249 (7)0.0088 (8)0.0088 (6)0.0040 (6)
C350.0467 (9)0.0353 (9)0.0288 (8)0.0082 (8)0.0197 (7)0.0066 (6)
C360.0315 (7)0.0257 (7)0.0332 (8)0.0003 (6)0.0164 (6)0.0009 (6)
C410.0211 (6)0.0239 (7)0.0232 (6)0.0011 (6)0.0092 (5)0.0023 (5)
C420.0255 (7)0.0503 (10)0.0230 (7)0.0079 (7)0.0046 (6)0.0003 (6)
C430.0326 (8)0.0615 (11)0.0219 (7)0.0024 (8)0.0050 (6)0.0098 (7)
C440.0375 (8)0.0389 (9)0.0263 (7)0.0010 (7)0.0166 (6)0.0063 (6)
C450.0270 (7)0.0340 (8)0.0290 (7)0.0057 (6)0.0102 (6)0.0022 (6)
C460.0217 (6)0.0302 (8)0.0226 (6)0.0005 (6)0.0043 (5)0.0011 (6)
Geometric parameters (Å, º) top
O121—N121.2281 (15)C15—H150.9500
O122—N121.2409 (15)C16—H160.9500
O141—N141.2261 (16)C31—C321.387 (2)
O142—N141.2305 (17)C31—C361.390 (2)
N1—C111.3528 (17)C32—C331.3911 (19)
N1—N21.3847 (15)C32—H320.9500
N1—H10.9123C33—C341.379 (2)
N2—C21.2854 (17)C33—H330.9500
N12—C121.4525 (18)C34—C351.385 (2)
N14—C141.4615 (17)C34—H340.9500
C2—C41.5036 (19)C35—C361.388 (2)
C2—C31.5093 (19)C35—H350.9500
C3—C311.5180 (18)C36—H360.9500
C3—H3A0.9900C41—C461.3835 (18)
C3—H3B0.9900C41—C421.3939 (18)
C4—C411.5140 (19)C42—C431.380 (2)
C4—H4A0.9900C42—H420.9500
C4—H4B0.9900C43—C441.379 (2)
C11—C161.420 (2)C43—H430.9500
C11—C121.4218 (18)C44—C451.3843 (19)
C12—C131.3917 (18)C44—H440.9500
C13—C141.374 (2)C45—C461.388 (2)
C13—H130.9500C45—H450.9500
C14—C151.397 (2)C46—H460.9500
C15—C161.3672 (19)
C11—N1—N2118.64 (11)C15—C16—C11121.32 (13)
C11—N1—H1118.5C15—C16—H16119.3
N2—N1—H1122.5C11—C16—H16119.3
C2—N2—N1117.64 (11)C32—C31—C36118.78 (13)
O121—N12—O122122.07 (12)C32—C31—C3120.76 (12)
O121—N12—C12119.13 (11)C36—C31—C3120.46 (12)
O122—N12—C12118.80 (11)C31—C32—C33120.88 (14)
O141—N14—O142123.39 (12)C31—C32—H32119.6
O141—N14—C14118.74 (13)C33—C32—H32119.6
O142—N14—C14117.87 (13)C34—C33—C32119.82 (14)
N2—C2—C4115.01 (12)C34—C33—H33120.1
N2—C2—C3127.69 (13)C32—C33—H33120.1
C4—C2—C3117.19 (11)C33—C34—C35119.86 (14)
C2—C3—C31113.14 (11)C33—C34—H34120.1
C2—C3—H3A109.0C35—C34—H34120.1
C31—C3—H3A109.0C34—C35—C36120.26 (14)
C2—C3—H3B109.0C34—C35—H35119.9
C31—C3—H3B109.0C36—C35—H35119.9
H3A—C3—H3B107.8C35—C36—C31120.39 (14)
C2—C4—C41111.89 (11)C35—C36—H36119.8
C2—C4—H4A109.2C31—C36—H36119.8
C41—C4—H4A109.2C46—C41—C42118.28 (13)
C2—C4—H4B109.2C46—C41—C4121.75 (11)
C41—C4—H4B109.2C42—C41—C4119.96 (12)
H4A—C4—H4B107.9C43—C42—C41120.87 (13)
N1—C11—C16120.40 (12)C43—C42—H42119.6
N1—C11—C12122.68 (12)C41—C42—H42119.6
C16—C11—C12116.92 (12)C44—C43—C42120.23 (13)
C13—C12—C11121.72 (13)C44—C43—H43119.9
C13—C12—N12116.36 (12)C42—C43—H43119.9
C11—C12—N12121.92 (11)C43—C44—C45119.72 (14)
C14—C13—C12118.55 (13)C43—C44—H44120.1
C14—C13—H13120.7C45—C44—H44120.1
C12—C13—H13120.7C44—C45—C46119.81 (13)
C13—C14—C15121.84 (12)C44—C45—H45120.1
C13—C14—N14118.98 (13)C46—C45—H45120.1
C15—C14—N14119.16 (13)C41—C46—C45121.07 (12)
C16—C15—C14119.63 (13)C41—C46—H46119.5
C16—C15—H15120.2C45—C46—H46119.5
C14—C15—H15120.2
C11—N1—N2—C2174.48 (12)C13—C14—C15—C160.3 (2)
N1—N2—C2—C4177.96 (11)N14—C14—C15—C16178.54 (12)
N1—N2—C2—C31.8 (2)C14—C15—C16—C110.0 (2)
N2—C2—C3—C31124.82 (14)N1—C11—C16—C15179.75 (13)
C4—C2—C3—C3159.11 (16)C12—C11—C16—C150.70 (19)
N2—C2—C4—C41108.55 (13)C2—C3—C31—C32115.42 (15)
C3—C2—C4—C4168.02 (15)C2—C3—C31—C3665.49 (17)
N2—N1—C11—C161.50 (18)C36—C31—C32—C330.8 (2)
N2—N1—C11—C12178.97 (11)C3—C31—C32—C33178.27 (13)
N1—C11—C12—C13179.34 (12)C31—C32—C33—C340.1 (2)
C16—C11—C12—C131.12 (19)C32—C33—C34—C350.8 (2)
N1—C11—C12—N120.91 (19)C33—C34—C35—C360.9 (2)
C16—C11—C12—N12178.63 (12)C34—C35—C36—C310.1 (2)
O121—N12—C12—C133.20 (18)C32—C31—C36—C350.7 (2)
O122—N12—C12—C13176.22 (12)C3—C31—C36—C35178.37 (13)
O121—N12—C12—C11177.04 (12)C2—C4—C41—C46129.80 (14)
O122—N12—C12—C113.54 (18)C2—C4—C41—C4250.75 (18)
C11—C12—C13—C140.8 (2)C46—C41—C42—C431.0 (2)
N12—C12—C13—C14178.94 (11)C4—C41—C42—C43179.56 (15)
C12—C13—C14—C150.1 (2)C41—C42—C43—C440.4 (3)
C12—C13—C14—N14178.95 (12)C42—C43—C44—C450.6 (3)
O141—N14—C14—C134.8 (2)C43—C44—C45—C461.1 (2)
O142—N14—C14—C13176.13 (13)C42—C41—C46—C450.5 (2)
O141—N14—C14—C15174.14 (13)C4—C41—C46—C45179.95 (13)
O142—N14—C14—C154.95 (19)C44—C45—C46—C410.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg31 and Cg41 are the centroids of the C31–C36 and C41–C46 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1220.911.922.5976 (15)129
C15—H15···O142i0.952.443.314 (2)153
C3—H3A···N2ii0.992.533.3811 (18)144
C3—H3B···O121iii0.992.553.3138 (18)134
C4—H4B···Cg41iv0.992.793.7438 (16)163
C45—H45···Cg31v0.952.923.7424 (18)145
Symmetry codes: (i) x+1, y+3, z+1; (ii) x, y1, z; (iii) x+1, y1/2, z+3/2; (iv) x, y+1, z; (v) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC21H18N4O4
Mr390.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)17.2448 (9), 5.1013 (2), 22.7459 (13)
β (°) 109.475 (2)
V3)1886.49 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.06 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.962, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
13123, 4973, 3417
Rint0.032
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.04
No. of reflections4973
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg31 and Cg41 are the centroids of the C31–C36 and C41–C46 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1220.911.922.5976 (15)129
C15—H15···O142i0.952.443.314 (2)153
C3—H3A···N2ii0.992.533.3811 (18)144
C3—H3B···O121iii0.992.553.3138 (18)134
C4—H4B···Cg41iv0.992.793.7438 (16)163
C45—H45···Cg31v0.952.923.7424 (18)145
Symmetry codes: (i) x+1, y+3, z+1; (ii) x, y1, z; (iii) x+1, y1/2, z+3/2; (iv) x, y+1, z; (v) x+2, y1/2, z+3/2.
 

Acknowledgements

CFRACL thanks the FCT and the European Social Fund (ESF) under the third Community Support Framework (CSF) for the award of a PhD Research Grant (SRFH/BD/29394/2006). LRG thanks the Fundação para o Ensino e Cultura Fernando Pessoa.

References

First citationBernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLima, C. F. R. A. C., Gomes, L. R., Santos, L. M. N. B. F., Rodriguez-Borges, J. E. & Low, J. N. (2009). Acta Cryst. E65, o2729.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o318–o320.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds