organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-di­amino­pyridinium) hydrogen phthalate nitrate monohydrate

aFaculty of Chemistry, Islamic Azad University-North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 23 January 2010; accepted 2 February 2010; online 6 February 2010)

The title hydrated salt, 2C5H8N3+·C8H5O4·NO3·H2O, was obtained fortuitously from the reaction between 2,6-diamino­pyridine, phthalic acid and Co(NO3)2·6H2O at 343 K. The asymmetric unit consists of two crystallographically independent 2,6-diamino­pyridinium cations, a hydrogen phthalate anion, a nitrate ion and a water mol­ecule of crystallization which in the crystal structure are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network. In the hydrogen phthalate anion, there is a very strong intra­molecular O—H⋯O hydrogen bond.

Related literature

For a related structure, see: Al-Dajani et al. (2009[Al-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2931-o2932.]). For a study of strong O—H⋯O hydrogen bonds, see: Gilli et al. (1994[Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H8N3+·C8H5O4·NO3·H2O

  • Mr = 465.43

  • Monoclinic, C c

  • a = 3.6923 (3) Å

  • b = 37.857 (3) Å

  • c = 14.8415 (10) Å

  • β = 95.111 (2)°

  • V = 2066.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 K

  • 0.29 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.974

  • 15097 measured reflections

  • 2737 independent reflections

  • 2309 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.093

  • S = 1.01

  • 2737 reflections

  • 298 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 1.13 1.25 2.373 (4) 173
N1—H1NA⋯O1 0.90 2.10 2.950 (4) 157
N1—H1NB⋯O5 0.90 2.06 2.940 (4) 165
N2—H2NA⋯O1 0.90 2.48 3.259 (4) 146
N2—H2NA⋯O2 0.90 2.00 2.846 (3) 157
N3—H3NB⋯O5i 0.90 2.09 2.921 (4) 154
N3—H3NA⋯O2 0.90 2.25 3.074 (4) 153
N4—H4NA⋯O3ii 0.90 2.18 2.979 (4) 147
N4—H4NB⋯O6 0.90 2.02 2.891 (4) 163
N5—H5NA⋯O3ii 0.90 2.35 3.167 (4) 150
N5—H5NA⋯O4ii 0.90 2.07 2.889 (4) 150
N6—H6NB⋯O1Wiii 0.90 1.98 2.825 (4) 157
N6—H6NA⋯O4ii 0.90 2.21 2.988 (4) 144
O1W—H1WA⋯O6iv 0.85 1.99 2.834 (4) 169
O1W—H1WB⋯O6 0.85 2.59 3.258 (4) 136
O1W—H1WB⋯O7 0.85 2.06 2.885 (3) 165
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In previous work, the crystal structure of tetrakis(2,6-diaminopyridinium) diphthalate 2,6-diaminopyridine (Al-Dajani et al., 2009) was investigated; we report here on the synthesis and crystal structure of a new proton-transfer salt of 2,6-diaminopyridine and phthalic acid. In the title compound (Fig. 1), phthalic acid is mono-deprotonated while the two 2,6-diaminopyridine components are protonated at the pyridine nitrogen atom. The two 2,6-diaminopyridinium cations are crystallographically independent. In the mono-anion, there is a very strong intramolecular [O—H···O]- hydrogen bond (O1···O3 = 2.373 (4) Å) which is a result of the negative charge-assisted effect described by Gilli et al. (1994). The cations, anions and water molecules are liked into a 3-D network by O—H···O and N—H···O hydrogen bonds. A view of crystal packing is shown in Fig. 2.

Related literature top

For a related structure, see: Al-Dajani et al. (2009). For a study of strong O—H···O hydrogen bonds, see: Gilli et al. (1994).

Experimental top

The title compound was prepared according to the following procedure: A solution of phthalic acid (0.83 g, 5 mmol) in H2O (20 ml) was added to a solution of 2,6-diaminopyridine (0.545 g, 5 mmol) in H2O (5 ml) and stirred. To this solution, a solution of Co(NO3)2.6H2O (1.45 g, 5 mmol) in H2O (5 ml) was added and stirred at 343 K (20 minutes). The mixture was filtered and single crystals were obtained after slow evaporation at room temperature. IR (KBr, cm-1): 3436, 2347, 1650, 1385, 1053, 984, 773, 731, 485.

Refinement top

In the absence of significant anomalous dispersion effects the Friedel pairs were merged. H atoms were placed in calculated positions with C-H = 0.95, N-H = 0.90 and O-H = 0.84Å. The hydroxyl H atom of the hydrogen phthalate anion was included in an 'as found' position. All H atoms were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title hydrated salt, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. The hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines.
Bis(2,6-diaminopyridinium) hydrogen phthalate nitrate monohydrate top
Crystal data top
2C5H8N3+·C8H5O4·NO3·H2OF(000) = 976
Mr = 465.43Dx = 1.496 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5008 reflections
a = 3.6923 (3) Åθ = 2.2–27.2°
b = 37.857 (3) ŵ = 0.12 mm1
c = 14.8415 (10) ÅT = 120 K
β = 95.111 (2)°Prism, colorless
V = 2066.3 (3) Å30.29 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker SMART 1000
diffractometer
2737 independent reflections
Radiation source: fine-focus sealed tube2309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 29.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.966, Tmax = 0.974k = 5049
15097 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.093H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.02P)2 + 3.5P]
where P = (Fo2 + 2Fc2)/3
2737 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.26 e Å3
2 restraintsΔρmin = 0.19 e Å3
Crystal data top
2C5H8N3+·C8H5O4·NO3·H2OV = 2066.3 (3) Å3
Mr = 465.43Z = 4
Monoclinic, CcMo Kα radiation
a = 3.6923 (3) ŵ = 0.12 mm1
b = 37.857 (3) ÅT = 120 K
c = 14.8415 (10) Å0.29 × 0.26 × 0.22 mm
β = 95.111 (2)°
Data collection top
Bruker SMART 1000
diffractometer
2737 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2309 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.974Rint = 0.034
15097 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
2737 reflectionsΔρmin = 0.19 e Å3
298 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6231 (8)0.17540 (6)0.49397 (18)0.0283 (6)
H1NA0.44750.16580.45570.034*
H1NB0.60410.17210.55340.034*
N20.6881 (7)0.22109 (6)0.39298 (16)0.0229 (5)
H2NA0.56010.20720.35250.027*
N30.7201 (9)0.26246 (7)0.28055 (19)0.0355 (7)
H3NB0.77870.28480.26720.043*
H3NA0.60320.24540.24730.043*
C10.7408 (8)0.20826 (8)0.4790 (2)0.0229 (6)
C20.9210 (9)0.22967 (8)0.5452 (2)0.0268 (6)
H2A0.96460.22170.60590.032*
C31.0348 (8)0.26286 (8)0.5202 (2)0.0274 (6)
H3A1.15890.27750.56490.033*
C40.9751 (8)0.27550 (8)0.4329 (2)0.0269 (6)
H4A1.05390.29840.41770.032*
C50.7960 (8)0.25365 (8)0.3679 (2)0.0253 (6)
N40.5267 (8)0.09027 (7)0.51218 (19)0.0296 (6)
H4NA0.68690.09880.47530.036*
H4NB0.53520.10360.56250.036*
N50.4276 (7)0.03920 (7)0.42957 (18)0.0258 (5)
H5NA0.51800.05200.38570.031*
N60.3504 (8)0.00825 (7)0.33294 (19)0.0331 (6)
H6NB0.21890.02750.31580.040*
H6NA0.44570.00430.28930.040*
C60.4164 (8)0.05637 (8)0.5096 (2)0.0251 (6)
C70.2886 (9)0.03842 (8)0.5820 (2)0.0283 (6)
H7A0.27770.04970.63890.034*
C80.1770 (8)0.00351 (9)0.5693 (2)0.0295 (7)
H8A0.08860.00900.61840.035*
C90.1914 (9)0.01353 (9)0.4870 (2)0.0294 (7)
H9A0.11470.03740.47970.035*
C100.3200 (8)0.00492 (8)0.4155 (2)0.0255 (6)
O10.1534 (7)0.15535 (7)0.33076 (16)0.0377 (6)
H10.03800.12790.33750.057*
O20.3398 (7)0.19199 (6)0.23096 (17)0.0367 (6)
O30.1237 (7)0.09909 (7)0.34030 (16)0.0388 (6)
O40.3587 (7)0.05715 (7)0.25269 (18)0.0429 (6)
C110.1856 (8)0.16417 (8)0.2484 (2)0.0269 (6)
C120.0332 (7)0.14044 (8)0.1715 (2)0.0204 (6)
C130.0674 (8)0.15452 (8)0.0853 (2)0.0232 (6)
H13A0.17350.17730.08110.028*
C140.0452 (8)0.13698 (8)0.0067 (2)0.0263 (6)
H14A0.01350.14720.05050.032*
C150.2063 (8)0.10402 (8)0.0126 (2)0.0273 (6)
H15A0.29050.09160.04090.033*
C160.2436 (8)0.08934 (8)0.0964 (2)0.0248 (6)
H16A0.34980.06660.09940.030*
C170.1311 (8)0.10676 (8)0.1768 (2)0.0225 (6)
C180.2081 (9)0.08613 (9)0.2609 (2)0.0295 (7)
N70.5255 (8)0.14787 (7)0.72886 (18)0.0307 (6)
O50.4868 (8)0.17644 (6)0.68613 (17)0.0419 (6)
O60.6450 (7)0.12132 (6)0.69036 (16)0.0392 (6)
O70.4512 (7)0.14595 (6)0.80893 (16)0.0380 (6)
O1W0.0932 (8)0.07824 (6)0.81011 (18)0.0400 (6)
H1WA0.03870.09320.77970.060*
H1WB0.23330.09590.80750.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0383 (15)0.0226 (13)0.0237 (13)0.0027 (11)0.0010 (11)0.0000 (10)
N20.0276 (13)0.0200 (12)0.0211 (12)0.0015 (10)0.0019 (10)0.0023 (10)
N30.0520 (18)0.0264 (14)0.0270 (14)0.0091 (13)0.0020 (13)0.0015 (11)
C10.0223 (14)0.0206 (14)0.0261 (15)0.0022 (11)0.0042 (11)0.0003 (11)
C20.0310 (16)0.0269 (15)0.0221 (14)0.0018 (13)0.0002 (12)0.0017 (12)
C30.0277 (16)0.0256 (15)0.0285 (16)0.0016 (12)0.0001 (12)0.0091 (12)
C40.0264 (15)0.0223 (15)0.0324 (16)0.0007 (12)0.0044 (12)0.0023 (13)
C50.0285 (15)0.0226 (15)0.0254 (15)0.0014 (12)0.0056 (12)0.0002 (12)
N40.0385 (15)0.0230 (13)0.0276 (13)0.0039 (11)0.0042 (11)0.0019 (10)
N50.0293 (13)0.0210 (12)0.0273 (13)0.0020 (10)0.0030 (10)0.0032 (10)
N60.0440 (17)0.0260 (14)0.0295 (14)0.0065 (12)0.0047 (12)0.0026 (11)
C60.0248 (15)0.0225 (14)0.0282 (15)0.0034 (11)0.0025 (12)0.0022 (12)
C70.0304 (16)0.0299 (16)0.0247 (15)0.0028 (13)0.0038 (12)0.0012 (13)
C80.0273 (16)0.0299 (17)0.0318 (16)0.0018 (13)0.0053 (13)0.0099 (13)
C90.0306 (17)0.0255 (15)0.0322 (16)0.0006 (13)0.0035 (13)0.0053 (13)
C100.0239 (14)0.0231 (15)0.0292 (16)0.0027 (12)0.0016 (11)0.0030 (12)
O10.0485 (15)0.0380 (13)0.0262 (12)0.0022 (11)0.0012 (10)0.0044 (10)
O20.0404 (14)0.0301 (12)0.0397 (14)0.0112 (10)0.0042 (11)0.0086 (10)
O30.0516 (16)0.0393 (14)0.0259 (12)0.0030 (12)0.0065 (11)0.0062 (11)
O40.0471 (15)0.0370 (14)0.0444 (15)0.0143 (12)0.0021 (12)0.0138 (12)
C110.0233 (15)0.0267 (15)0.0307 (16)0.0016 (12)0.0028 (12)0.0067 (13)
C120.0178 (13)0.0211 (13)0.0224 (13)0.0033 (10)0.0010 (10)0.0017 (11)
C130.0225 (14)0.0206 (13)0.0269 (14)0.0023 (11)0.0040 (11)0.0025 (12)
C140.0276 (16)0.0293 (15)0.0224 (14)0.0060 (12)0.0039 (12)0.0036 (12)
C150.0258 (15)0.0299 (16)0.0257 (15)0.0043 (12)0.0012 (12)0.0067 (12)
C160.0226 (15)0.0195 (13)0.0316 (16)0.0001 (11)0.0014 (12)0.0008 (12)
C170.0212 (14)0.0238 (14)0.0232 (14)0.0028 (11)0.0049 (11)0.0007 (11)
C180.0257 (16)0.0310 (16)0.0318 (16)0.0052 (13)0.0021 (12)0.0072 (13)
N70.0372 (16)0.0307 (14)0.0239 (14)0.0012 (12)0.0004 (11)0.0044 (11)
O50.0644 (18)0.0302 (13)0.0324 (13)0.0097 (12)0.0118 (12)0.0070 (10)
O60.0564 (16)0.0311 (13)0.0299 (13)0.0120 (11)0.0019 (11)0.0063 (10)
O70.0551 (17)0.0352 (14)0.0243 (11)0.0027 (12)0.0071 (11)0.0020 (10)
O1W0.0516 (16)0.0255 (12)0.0431 (14)0.0061 (11)0.0053 (12)0.0075 (10)
Geometric parameters (Å, º) top
N1—C11.343 (4)C8—C91.386 (5)
N1—H1NA0.8999C8—H8A0.9500
N1—H1NB0.9001C9—C101.390 (4)
N2—C51.358 (4)C9—H9A0.9500
N2—C11.364 (4)O1—C111.283 (4)
N2—H2NA0.9000O1—H11.1299
N3—C51.343 (4)O2—C111.235 (4)
N3—H3NB0.8998O3—C181.289 (4)
N3—H3NA0.8998O3—H11.2468
C1—C21.396 (4)O4—C181.231 (4)
C2—C31.386 (4)C11—C121.520 (4)
C2—H2A0.9500C12—C131.402 (4)
C3—C41.379 (4)C12—C171.417 (4)
C3—H3A0.9500C13—C141.374 (4)
C4—C51.393 (4)C13—H13A0.9500
C4—H4A0.9500C14—C151.389 (5)
N4—C61.346 (4)C14—H14A0.9500
N4—H4NA0.9000C15—C161.381 (4)
N4—H4NB0.9001C15—H15A0.9500
N5—C61.358 (4)C16—C171.393 (4)
N5—C101.368 (4)C16—H16A0.9500
N5—H5NA0.9000C17—C181.520 (4)
N6—C101.336 (4)N7—O71.245 (3)
N6—H6NB0.8996N7—O61.255 (3)
N6—H6NA0.8999N7—O51.256 (4)
C6—C71.389 (4)O1W—H1WA0.8497
C7—C81.392 (5)O1W—H1WB0.8496
C7—H7A0.9500
C1—N1—H1NA119.7C9—C8—C7121.8 (3)
C1—N1—H1NB110.2C9—C8—H8A119.1
H1NA—N1—H1NB116.7C7—C8—H8A119.1
C5—N2—C1124.0 (3)C8—C9—C10118.8 (3)
C5—N2—H2NA119.7C8—C9—H9A120.6
C1—N2—H2NA116.2C10—C9—H9A120.6
C5—N3—H3NB114.3N6—C10—N5116.6 (3)
C5—N3—H3NA113.5N6—C10—C9125.1 (3)
H3NB—N3—H3NA131.9N5—C10—C9118.3 (3)
N1—C1—N2117.6 (3)C11—O1—H1113.1
N1—C1—C2124.3 (3)C18—O3—H1112.4
N2—C1—C2118.1 (3)O2—C11—O1120.4 (3)
C3—C2—C1118.4 (3)O2—C11—C12119.5 (3)
C3—C2—H2A120.8O1—C11—C12120.1 (3)
C1—C2—H2A120.8C13—C12—C17117.8 (3)
C4—C3—C2122.6 (3)C13—C12—C11113.8 (3)
C4—C3—H3A118.7C17—C12—C11128.5 (3)
C2—C3—H3A118.7C14—C13—C12123.1 (3)
C3—C4—C5118.1 (3)C14—C13—H13A118.5
C3—C4—H4A120.9C12—C13—H13A118.5
C5—C4—H4A120.9C13—C14—C15118.7 (3)
N3—C5—N2116.7 (3)C13—C14—H14A120.7
N3—C5—C4124.5 (3)C15—C14—H14A120.7
N2—C5—C4118.8 (3)C16—C15—C14119.7 (3)
C6—N4—H4NA122.5C16—C15—H15A120.1
C6—N4—H4NB123.2C14—C15—H15A120.1
H4NA—N4—H4NB109.1C15—C16—C17122.3 (3)
C6—N5—C10123.8 (3)C15—C16—H16A118.8
C6—N5—H5NA114.7C17—C16—H16A118.8
C10—N5—H5NA121.5C16—C17—C12118.4 (3)
C10—N6—H6NB118.3C16—C17—C18113.4 (3)
C10—N6—H6NA122.2C12—C17—C18128.3 (3)
H6NB—N6—H6NA117.4O4—C18—O3120.0 (3)
N4—C6—N5116.7 (3)O4—C18—C17119.5 (3)
N4—C6—C7124.5 (3)O3—C18—C17120.5 (3)
N5—C6—C7118.8 (3)O7—N7—O6120.3 (3)
C6—C7—C8118.5 (3)O7—N7—O5120.5 (3)
C6—C7—H7A120.8O6—N7—O5119.2 (3)
C8—C7—H7A120.8H1WA—O1W—H1WB76.9
C5—N2—C1—N1179.3 (3)O2—C11—C12—C133.8 (4)
C5—N2—C1—C20.9 (4)O1—C11—C12—C13176.1 (3)
N1—C1—C2—C3178.7 (3)O2—C11—C12—C17175.6 (3)
N2—C1—C2—C30.4 (4)O1—C11—C12—C174.5 (5)
C1—C2—C3—C40.4 (5)C17—C12—C13—C141.0 (4)
C2—C3—C4—C50.6 (5)C11—C12—C13—C14178.5 (3)
C1—N2—C5—N3179.3 (3)C12—C13—C14—C151.1 (4)
C1—N2—C5—C40.7 (4)C13—C14—C15—C161.2 (4)
C3—C4—C5—N3179.9 (3)C14—C15—C16—C171.3 (5)
C3—C4—C5—N20.1 (4)C15—C16—C17—C121.2 (4)
C10—N5—C6—N4179.0 (3)C15—C16—C17—C18178.4 (3)
C10—N5—C6—C70.0 (4)C13—C12—C17—C161.0 (4)
N4—C6—C7—C8178.8 (3)C11—C12—C17—C16178.4 (3)
N5—C6—C7—C80.1 (4)C13—C12—C17—C18178.5 (3)
C6—C7—C8—C90.2 (5)C11—C12—C17—C182.1 (5)
C7—C8—C9—C100.2 (5)C16—C17—C18—O40.5 (4)
C6—N5—C10—N6179.5 (3)C12—C17—C18—O4179.0 (3)
C6—N5—C10—C90.0 (4)C16—C17—C18—O3179.1 (3)
C8—C9—C10—N6179.6 (3)C12—C17—C18—O30.4 (5)
C8—C9—C10—N50.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O31.131.252.373 (4)173
N1—H1NA···O10.902.102.950 (4)157
N1—H1NB···O50.902.062.940 (4)165
N2—H2NA···O10.902.483.259 (4)146
N2—H2NA···O20.902.002.846 (3)157
N3—H3NB···O5i0.902.092.921 (4)154
N3—H3NA···O20.902.253.074 (4)153
N4—H4NA···O3ii0.902.182.979 (4)147
N4—H4NB···O60.902.022.891 (4)163
N5—H5NA···O3ii0.902.353.167 (4)150
N5—H5NA···O4ii0.902.072.889 (4)150
N6—H6NB···O1Wiii0.901.982.825 (4)157
N6—H6NA···O4ii0.902.212.988 (4)144
O1W—H1WA···O6iv0.851.992.834 (4)169
O1W—H1WB···O60.852.593.258 (4)136
O1W—H1WB···O70.852.062.885 (3)165
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x, y, z1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula2C5H8N3+·C8H5O4·NO3·H2O
Mr465.43
Crystal system, space groupMonoclinic, Cc
Temperature (K)120
a, b, c (Å)3.6923 (3), 37.857 (3), 14.8415 (10)
β (°) 95.111 (2)
V3)2066.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.29 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
15097, 2737, 2309
Rint0.034
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.093, 1.01
No. of reflections2737
No. of parameters298
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O31.131.252.373 (4)173
N1—H1NA···O10.902.102.950 (4)157
N1—H1NB···O50.902.062.940 (4)165
N2—H2NA···O10.902.483.259 (4)146
N2—H2NA···O20.902.002.846 (3)157
N3—H3NB···O5i0.902.092.921 (4)154
N3—H3NA···O20.902.253.074 (4)153
N4—H4NA···O3ii0.902.182.979 (4)147
N4—H4NB···O60.902.022.891 (4)163
N5—H5NA···O3ii0.902.353.167 (4)150
N5—H5NA···O4ii0.902.072.889 (4)150
N6—H6NB···O1Wiii0.901.982.825 (4)157
N6—H6NA···O4ii0.902.212.988 (4)144
O1W—H1WA···O6iv0.851.992.834 (4)169
O1W—H1WB···O60.852.593.258 (4)136
O1W—H1WB···O70.852.062.885 (3)165
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x, y, z1/2; (iv) x1, y, z.
 

Acknowledgements

Support of this investigation by Islamic Azad University-North Tehran Branch is gratefully acknowledged.

References

First citationAl-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2931–o2932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds