organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5α-Di­hydro­vespertilin acetate

aDepartment of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: parvez@ucalgary.ca

(Received 27 January 2010; accepted 8 February 2010; online 13 February 2010)

In the title compound, C24H36O4 [systematic name: (20S)-3β-acet­oxy-16α-hydr­oxy-22,23-bis­nor-5α,17β-cholano(22-16)lac­tone], the three six-membered rings adopt classical chair conformations, while the five-membered rings are in envelope conformations. The ester group attached to ring A is in an equatorial position. Rings A/B, B/C and C/D are trans-fused, whereas rings D/E are cis-fused. The structure is devoid of any classical hydrogen bonds. However, non-classical inter- and intra­molecular hydrogen-bonding inter­actions of the type C—H⋯O are present in the structure.

Related literature

For background to the synthesis, see: Vohra (1973[Vohra, K. N. (1973). N-Haloamides and their Applications in Natural Product Synthesis. PhD thesis, University of Calgary, Canada.]). For spectroscopic data for 5α dihydro­vespertilin, see: Iglesias-Arteaga & Alvarado-Nuñes (2006[Iglesias-Arteaga, M. A. & Alvarado-Nuñes, A. A. (2006). Tetrahedron Lett. 47, 5351-5353.]). For a closely related structure, see: Novoa de Armas et al. (2000[Novoa de Armas, H. N., Peeters, O. M., Blaton, N. M., De Ranter, C. J. D., Pomés Hernández, R. P., Mola, J. L., Serafín Pérez, C. S., Suárez García, L. S., Iglesias, M. A. & Coll Manchado, F. C. (2000). Acta Cryst. C56, 78-79.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H36O4

  • Mr = 388.53

  • Orthorhombic, P 21 21 21

  • a = 6.4256 (3) Å

  • b = 9.6527 (6) Å

  • c = 34.953 (2) Å

  • V = 2167.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.30 × 0.08 × 0.02 mm

Data collection
  • Nonius Kappa geometry diffractometer with Bruker APEXII CCD

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.977, Tmax = 0.998

  • 8349 measured reflections

  • 2784 independent reflections

  • 2554 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.119

  • S = 1.11

  • 2784 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 1.00 2.36 3.116 (3) 131
C18—H18A⋯O1 0.98 2.58 3.246 (3) 126
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During some investigations of the thermolysis of the N-chloro and N-bromo derivatives of secondary amides in aqueous dioxane (1:4 v/v) it was discovered that a radical-chain reaction ensued in which the first-formed N-centred radical abstracted a hydrogen atom from a proximate site. In the case of intramolecular reactions a 6-membered transition state was strongly favoured, leading to a C-centred radical which abstracted a halogen from starting material in a chain-propagating step. Under the reaction conditions the intermediate C-halo product underwent intramolecular heterolysis with the carbonyl oxygen of the amide displacing the halogen and generating an iminolactone which in turn hydrolysed to produce a γ-lactone. This process afforded a method for the functionalisation of chemically unactivated sites within the steroid nucleus as illustrated by its application to the synthesis of 5α-dihydrovespertilin acetate (I) from the 3-O-acetate of N-chloro-N-methyl-5α-bisnorcholanamide (Vohra, 1973).

The molecular structure of (I) is presented in Fig. 1. The molecule contains three six-membered rings, A, B and C and two five-membered rings, D and E. The rings A/B, B/C and C/D are trans-fused whereas the rings D/E are cis-fused. The rings A–C adopt chair conformations. The puckering parameters (Cremer & Pople, 1975) for the rings A to C are: Q = 0.569 (3), 0.590 (3), 0.571 (3) Å, θ = 4.6 (3), 4.4 (3), 7.3 (2)° and ϕ = 305 (4), 272 (2), 248 (2)°, respectively. The rings D and E adopt envelope conformations with C13 and C17 0.697 (4) and 0.398 (4) Å, out of the mean-planes formed by the remaining ring atoms, respectively. The ester group attached to the ring A is in an equatorial position. The bond distances (Allen et al., 1987) and angles in (I) are as expected. The structure is devoid of any classical hydrogen bonds. However, non-classical inter and intra molecular hydrogen bonding interactions of the type C—H···O invoving O1 are present in the structure (Table 1). The crystal structure of a compound very closely related to (I), 3β-acetoxy-5α,6β-dihydroxy-bisnorcholanic acid 22,16-lactone, has been reported (Novoa de Armas et al., 2000).

Related literature top

For background to the synthesis, see: Vohra (1973). For spectroscopic data for 5α dihydrovespertilin, see: Iglesias-Arteaga & Alvarado-Nuñes (2006). For a closely related structure, see: Novoa de Armas et al. (2000). For reference bond lengths, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of N-chloro-N-methyl-5α-bisnorcholanamide acetate (500 mg, 1.14 mmol), prepared from the parent amide by treatment with excess t-butyl hypochlorite in the dark, in aqueous 1,4-dioxane (1:4 v/v) (50 ml) containing calcium carbonate (2.5 g) and dibenzoyl peroxide (20 mg) was heated to 358 K (bath) under an atmosphere of nitrogen. After 2 hr a test for active chlorine (starch-KI paper) was negative. The mixture was filtered and the filter cake washed with dioxane (2 × 25 ml). The combined filtrate and washings were evaporated to dryness (Rotovap) and the residue separated by PTLC on silica gel 60 F254 (Merck) (1 m × 20 cm × 2 mm) using EtOAc–PhH (1:1) v/v for development to give as the major product (20S)-3β-acetoxy-16α-hydroxy-22,23-bisnor-5α,17β-cholano(22-16)lactone (181 mg, 0.53 mmol, 46%), m.p. 492–493 K, with 1H and 13C-NMR as reported for this compound, 5α dihydrovespertilin (Iglesias-Arteaga & Alvarado-Nuñes, 2006). Suitable crystals of the title compound for X-ray study were grown from an aqueous solution of ethanol (ca 1:20) in the form of plates.

Refinement top

An absolute structure could not be established reliably because of insufficient anomalous scattering effects. Therefore, Friedel pairs (1738) were merged. The H atoms were included in the refinements at geometrically idealized positions with C—H distances = 0.98, 0.99 and 1.00 Å for methyl, methylene and methine type H atoms, respectively. The H atoms were assigned Uiso = 1.5 and 1.2 times Ueq of the methyl and non-methyl C atoms to which they were bonded. H atoms bonded to C24 were disordered over six sites with equal site occupancy factors. The final difference map was free of chemically significant features.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids plotted at 50% probability level.
(20S)-3β-acetoxy-16α-hydroxy-22,23-bisnor-5α,17β-cholano(22-16)lactone top
Crystal data top
C24H36O4Dx = 1.190 Mg m3
Mr = 388.53Melting point = 492–493 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2395 reflections
a = 6.4256 (3) Åθ = 1.0–27.5°
b = 9.6527 (6) ŵ = 0.08 mm1
c = 34.953 (2) ÅT = 173 K
V = 2167.9 (2) Å3Plate, colourless
Z = 40.30 × 0.08 × 0.02 mm
F(000) = 848
Data collection top
Nonius APEXII CCD
diffractometer
2784 independent reflections
Radiation source: fine-focus sealed tube2554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 88
Tmin = 0.977, Tmax = 0.998k = 1212
8349 measured reflectionsl = 4445
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.037P)2 + 1.01P]
where P = (Fo2 + 2Fc2)/3
2784 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C24H36O4V = 2167.9 (2) Å3
Mr = 388.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4256 (3) ŵ = 0.08 mm1
b = 9.6527 (6) ÅT = 173 K
c = 34.953 (2) Å0.30 × 0.08 × 0.02 mm
Data collection top
Nonius APEXII CCD
diffractometer
2784 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2554 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.998Rint = 0.028
8349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.11Δρmax = 0.24 e Å3
2784 reflectionsΔρmin = 0.20 e Å3
256 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

An absolute structure using Flack method [Flack H D (1983), Acta Cryst. A39, 876-881] could not be established reliably becuase of insufficient anomalous scattering effects. Therefore, Friedel pairs (1738) were merged.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0207 (3)0.09610 (19)0.50200 (5)0.0334 (4)
O20.1447 (3)0.0949 (2)0.47447 (6)0.0434 (5)
O30.8680 (4)0.1358 (3)0.78266 (5)0.0487 (6)
O41.2141 (4)0.0994 (3)0.78197 (7)0.0667 (8)
C10.8182 (4)0.0137 (3)0.68247 (7)0.0358 (6)
H1A0.93270.03360.66870.043*
H1B0.81520.11130.67380.043*
C20.8633 (5)0.0097 (3)0.72580 (7)0.0407 (7)
H2A0.75710.06500.73950.049*
H2B1.00120.05150.73090.049*
C30.8604 (5)0.1379 (3)0.74049 (7)0.0402 (7)
H30.98400.18900.73040.048*
C40.6643 (5)0.2149 (3)0.73005 (7)0.0418 (7)
H4A0.67820.31320.73780.050*
H4B0.54530.17470.74420.050*
C50.6209 (5)0.2071 (3)0.68664 (7)0.0349 (6)
H50.74180.25190.67350.042*
C60.4282 (5)0.2905 (3)0.67576 (8)0.0471 (8)
H6A0.44470.38720.68470.057*
H6B0.30470.25060.68860.057*
C70.3937 (5)0.2900 (3)0.63221 (8)0.0435 (7)
H7A0.26130.33790.62630.052*
H7B0.50790.34170.61960.052*
C80.3860 (4)0.1422 (3)0.61610 (6)0.0295 (5)
H80.26300.09370.62740.035*
C90.5849 (4)0.0615 (3)0.62748 (6)0.0274 (5)
H90.70490.11680.61760.033*
C100.6112 (4)0.0558 (3)0.67195 (6)0.0294 (5)
C110.5995 (4)0.0820 (3)0.60811 (7)0.0308 (5)
H11A0.73850.12220.61330.037*
H11B0.49410.14430.61960.037*
C120.5651 (4)0.0757 (3)0.56452 (7)0.0297 (5)
H12A0.68060.02370.55250.036*
H12B0.56510.17080.55390.036*
C130.3596 (4)0.0054 (2)0.55515 (6)0.0256 (5)
C140.3631 (4)0.1415 (2)0.57245 (6)0.0270 (5)
H140.49040.18770.56210.032*
C150.1770 (4)0.2139 (3)0.55379 (7)0.0332 (6)
H15A0.19510.31580.55380.040*
H15B0.04560.19040.56700.040*
C160.1799 (4)0.1556 (3)0.51274 (7)0.0296 (5)
H160.22310.22860.49410.035*
C170.3339 (4)0.0331 (2)0.51221 (6)0.0267 (5)
H170.47060.06400.50150.032*
C180.1768 (4)0.0934 (3)0.56960 (7)0.0316 (5)
H18A0.04530.04820.56280.047*
H18B0.18570.10280.59750.047*
H18C0.18250.18540.55780.047*
C190.4331 (5)0.0268 (3)0.69033 (8)0.0404 (7)
H19A0.30010.00320.67940.061*
H19B0.43240.01060.71800.061*
H19C0.45320.12580.68530.061*
C200.2312 (4)0.0705 (3)0.48481 (7)0.0286 (5)
H200.25160.16760.49410.034*
C210.3096 (4)0.0551 (3)0.44337 (7)0.0375 (6)
H21A0.22750.11500.42650.056*
H21B0.45640.08200.44210.056*
H21C0.29450.04160.43520.056*
C220.0030 (4)0.0311 (3)0.48607 (7)0.0321 (6)
C231.0529 (6)0.1106 (4)0.79906 (8)0.0500 (8)
C241.0304 (7)0.0994 (4)0.84196 (8)0.0692 (12)
H24A0.88400.11200.84900.104*0.50
H24B1.11490.17120.85430.104*0.50
H24C1.07770.00790.85040.104*0.50
H24D1.16700.08200.85350.104*0.50
H24E0.93620.02280.84820.104*0.50
H24F0.97330.18610.85210.104*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0272 (9)0.0343 (9)0.0388 (9)0.0019 (9)0.0071 (8)0.0022 (8)
O20.0321 (10)0.0468 (11)0.0514 (11)0.0070 (10)0.0072 (9)0.0082 (10)
O30.0518 (12)0.0723 (15)0.0220 (8)0.0066 (13)0.0015 (9)0.0056 (9)
O40.0518 (15)0.101 (2)0.0472 (13)0.0075 (17)0.0111 (11)0.0020 (14)
C10.0372 (14)0.0467 (16)0.0236 (11)0.0070 (14)0.0036 (11)0.0019 (11)
C20.0420 (15)0.0546 (17)0.0256 (11)0.0005 (16)0.0057 (12)0.0018 (12)
C30.0413 (15)0.0593 (18)0.0198 (11)0.0058 (16)0.0006 (11)0.0037 (11)
C40.0459 (16)0.0522 (16)0.0272 (12)0.0016 (16)0.0009 (12)0.0116 (12)
C50.0413 (15)0.0400 (14)0.0234 (11)0.0000 (14)0.0007 (11)0.0054 (10)
C60.060 (2)0.0486 (17)0.0327 (13)0.0151 (17)0.0029 (14)0.0143 (13)
C70.0559 (18)0.0389 (15)0.0357 (13)0.0149 (15)0.0072 (14)0.0090 (12)
C80.0292 (12)0.0350 (13)0.0245 (10)0.0043 (12)0.0032 (10)0.0034 (10)
C90.0298 (12)0.0319 (12)0.0206 (10)0.0013 (11)0.0018 (9)0.0005 (9)
C100.0307 (13)0.0358 (13)0.0216 (10)0.0014 (12)0.0013 (10)0.0013 (10)
C110.0317 (13)0.0333 (13)0.0274 (11)0.0096 (12)0.0047 (10)0.0030 (10)
C120.0292 (12)0.0357 (13)0.0241 (11)0.0052 (11)0.0002 (9)0.0040 (10)
C130.0250 (11)0.0285 (11)0.0232 (10)0.0002 (10)0.0019 (9)0.0003 (9)
C140.0291 (12)0.0279 (11)0.0239 (10)0.0014 (11)0.0008 (10)0.0006 (9)
C150.0373 (14)0.0303 (12)0.0321 (12)0.0074 (12)0.0040 (11)0.0021 (11)
C160.0301 (13)0.0292 (12)0.0294 (11)0.0004 (11)0.0035 (10)0.0016 (10)
C170.0264 (12)0.0297 (11)0.0239 (10)0.0033 (11)0.0009 (9)0.0007 (10)
C180.0287 (12)0.0335 (13)0.0324 (12)0.0024 (12)0.0021 (10)0.0043 (11)
C190.0386 (15)0.0549 (18)0.0278 (12)0.0098 (15)0.0005 (11)0.0057 (13)
C200.0323 (13)0.0299 (12)0.0238 (10)0.0023 (11)0.0012 (10)0.0013 (10)
C210.0382 (14)0.0466 (15)0.0277 (11)0.0043 (14)0.0017 (11)0.0054 (11)
C220.0319 (13)0.0337 (13)0.0306 (12)0.0022 (12)0.0008 (11)0.0016 (11)
C230.063 (2)0.0545 (19)0.0323 (14)0.0132 (19)0.0128 (15)0.0006 (14)
C240.093 (3)0.083 (3)0.0313 (15)0.030 (3)0.0172 (17)0.0083 (17)
Geometric parameters (Å, º) top
O1—C221.357 (3)C11—H11B0.9900
O1—C161.460 (3)C12—C131.520 (3)
O2—C221.202 (3)C12—H12A0.9900
O3—C231.342 (4)C12—H12B0.9900
O3—C31.475 (3)C13—C181.535 (3)
O4—C231.200 (4)C13—C141.542 (3)
C1—C101.535 (4)C13—C171.555 (3)
C1—C21.542 (3)C14—C151.531 (3)
C1—H1A0.9900C14—H141.0000
C1—H1B0.9900C15—C161.541 (3)
C2—C31.514 (4)C15—H15A0.9900
C2—H2A0.9900C15—H15B0.9900
C2—H2B0.9900C16—C171.543 (4)
C3—C41.508 (4)C16—H161.0000
C3—H31.0000C17—C201.534 (3)
C4—C51.545 (3)C17—H171.0000
C4—H4A0.9900C18—H18A0.9800
C4—H4B0.9900C18—H18B0.9800
C5—C61.525 (4)C18—H18C0.9800
C5—C101.549 (4)C19—H19A0.9800
C5—H51.0000C19—H19B0.9800
C6—C71.539 (4)C19—H19C0.9800
C6—H6A0.9900C20—C221.515 (4)
C6—H6B0.9900C20—C211.541 (3)
C7—C81.534 (4)C20—H201.0000
C7—H7A0.9900C21—H21A0.9800
C7—H7B0.9900C21—H21B0.9800
C8—C141.533 (3)C21—H21C0.9800
C8—C91.548 (3)C23—C241.510 (4)
C8—H81.0000C24—H24A0.9800
C9—C111.545 (3)C24—H24B0.9800
C9—C101.565 (3)C24—H24C0.9800
C9—H91.0000C24—H24D0.9800
C10—C191.536 (4)C24—H24E0.9800
C11—C121.541 (3)C24—H24F0.9800
C11—H11A0.9900
C22—O1—C16111.24 (19)C18—C13—C17111.6 (2)
C23—O3—C3117.3 (2)C14—C13—C1799.24 (18)
C10—C1—C2112.8 (2)C15—C14—C8119.8 (2)
C10—C1—H1A109.0C15—C14—C13103.99 (19)
C2—C1—H1A109.0C8—C14—C13113.3 (2)
C10—C1—H1B109.0C15—C14—H14106.3
C2—C1—H1B109.0C8—C14—H14106.3
H1A—C1—H1B107.8C13—C14—H14106.3
C3—C2—C1110.7 (2)C14—C15—C16102.75 (19)
C3—C2—H2A109.5C14—C15—H15A111.2
C1—C2—H2A109.5C16—C15—H15A111.2
C3—C2—H2B109.5C14—C15—H15B111.2
C1—C2—H2B109.5C16—C15—H15B111.2
H2A—C2—H2B108.1H15A—C15—H15B109.1
O3—C3—C4106.0 (2)O1—C16—C15111.9 (2)
O3—C3—C2109.0 (2)O1—C16—C17105.15 (19)
C4—C3—C2113.1 (3)C15—C16—C17107.39 (19)
O3—C3—H3109.5O1—C16—H16110.7
C4—C3—H3109.5C15—C16—H16110.7
C2—C3—H3109.5C17—C16—H16110.7
C3—C4—C5111.4 (2)C20—C17—C16103.4 (2)
C3—C4—H4A109.4C20—C17—C13119.5 (2)
C5—C4—H4A109.4C16—C17—C13103.87 (18)
C3—C4—H4B109.4C20—C17—H17109.8
C5—C4—H4B109.4C16—C17—H17109.8
H4A—C4—H4B108.0C13—C17—H17109.8
C6—C5—C4111.4 (2)C13—C18—H18A109.5
C6—C5—C10112.5 (2)C13—C18—H18B109.5
C4—C5—C10112.3 (2)H18A—C18—H18B109.5
C6—C5—H5106.7C13—C18—H18C109.5
C4—C5—H5106.7H18A—C18—H18C109.5
C10—C5—H5106.7H18B—C18—H18C109.5
C5—C6—C7111.2 (2)C10—C19—H19A109.5
C5—C6—H6A109.4C10—C19—H19B109.5
C7—C6—H6A109.4H19A—C19—H19B109.5
C5—C6—H6B109.4C10—C19—H19C109.5
C7—C6—H6B109.4H19A—C19—H19C109.5
H6A—C6—H6B108.0H19B—C19—H19C109.5
C8—C7—C6111.8 (2)C22—C20—C17103.6 (2)
C8—C7—H7A109.3C22—C20—C21108.6 (2)
C6—C7—H7A109.3C17—C20—C21112.5 (2)
C8—C7—H7B109.3C22—C20—H20110.6
C6—C7—H7B109.3C17—C20—H20110.6
H7A—C7—H7B107.9C21—C20—H20110.6
C14—C8—C7111.9 (2)C20—C21—H21A109.5
C14—C8—C9109.43 (19)C20—C21—H21B109.5
C7—C8—C9110.3 (2)H21A—C21—H21B109.5
C14—C8—H8108.4C20—C21—H21C109.5
C7—C8—H8108.4H21A—C21—H21C109.5
C9—C8—H8108.4H21B—C21—H21C109.5
C11—C9—C8112.9 (2)O2—C22—O1120.9 (2)
C11—C9—C10113.4 (2)O2—C22—C20128.7 (2)
C8—C9—C10111.22 (19)O1—C22—C20110.4 (2)
C11—C9—H9106.2O4—C23—O3124.6 (3)
C8—C9—H9106.2O4—C23—C24124.8 (3)
C10—C9—H9106.2O3—C23—C24110.6 (3)
C1—C10—C19108.6 (2)C23—C24—H24A109.5
C1—C10—C5107.3 (2)C23—C24—H24B109.5
C19—C10—C5112.4 (2)H24A—C24—H24B109.5
C1—C10—C9110.3 (2)C23—C24—H24C109.5
C19—C10—C9110.7 (2)H24A—C24—H24C109.5
C5—C10—C9107.5 (2)H24B—C24—H24C109.5
C12—C11—C9112.9 (2)C23—C24—H24D109.5
C12—C11—H11A109.0H24A—C24—H24D141.1
C9—C11—H11A109.0H24B—C24—H24D56.3
C12—C11—H11B109.0H24C—C24—H24D56.3
C9—C11—H11B109.0C23—C24—H24E109.5
H11A—C11—H11B107.8H24A—C24—H24E56.3
C13—C12—C11110.8 (2)H24B—C24—H24E141.1
C13—C12—H12A109.5H24C—C24—H24E56.3
C11—C12—H12A109.5H24D—C24—H24E109.5
C13—C12—H12B109.5C23—C24—H24F109.5
C11—C12—H12B109.5H24A—C24—H24F56.3
H12A—C12—H12B108.1H24B—C24—H24F56.3
C12—C13—C18110.31 (19)H24C—C24—H24F141.1
C12—C13—C14108.3 (2)H24D—C24—H24F109.5
C18—C13—C14113.0 (2)H24E—C24—H24F109.5
C12—C13—C17114.01 (19)
C10—C1—C2—C356.4 (3)C7—C8—C14—C1557.9 (3)
C23—O3—C3—C4160.7 (3)C9—C8—C14—C15179.6 (2)
C23—O3—C3—C277.2 (4)C7—C8—C14—C13178.7 (2)
C1—C2—C3—O3170.4 (2)C9—C8—C14—C1356.2 (3)
C1—C2—C3—C452.7 (3)C12—C13—C14—C15167.09 (19)
O3—C3—C4—C5172.0 (2)C18—C13—C14—C1570.4 (2)
C2—C3—C4—C552.6 (3)C17—C13—C14—C1547.9 (2)
C3—C4—C5—C6177.4 (3)C12—C13—C14—C861.2 (3)
C3—C4—C5—C1055.4 (3)C18—C13—C14—C861.3 (3)
C4—C5—C6—C7176.4 (3)C17—C13—C14—C8179.6 (2)
C10—C5—C6—C756.5 (3)C8—C14—C15—C16165.0 (2)
C5—C6—C7—C854.1 (4)C13—C14—C15—C1637.2 (2)
C6—C7—C8—C14177.0 (2)C22—O1—C16—C15132.0 (2)
C6—C7—C8—C955.0 (3)C22—O1—C16—C1715.7 (2)
C14—C8—C9—C1149.6 (3)C14—C15—C16—O1126.4 (2)
C7—C8—C9—C11173.0 (2)C14—C15—C16—C1711.5 (3)
C14—C8—C9—C10178.4 (2)O1—C16—C17—C2024.1 (2)
C7—C8—C9—C1058.2 (3)C15—C16—C17—C20143.4 (2)
C2—C1—C10—C1964.1 (3)O1—C16—C17—C13101.4 (2)
C2—C1—C10—C557.6 (3)C15—C16—C17—C1317.9 (3)
C2—C1—C10—C9174.4 (2)C12—C13—C17—C2091.2 (3)
C6—C5—C10—C1176.5 (2)C18—C13—C17—C2034.6 (3)
C4—C5—C10—C156.8 (3)C14—C13—C17—C20153.9 (2)
C6—C5—C10—C1964.2 (3)C12—C13—C17—C16154.3 (2)
C4—C5—C10—C1962.5 (3)C18—C13—C17—C1679.8 (2)
C6—C5—C10—C957.8 (3)C14—C13—C17—C1639.5 (2)
C4—C5—C10—C9175.5 (2)C16—C17—C20—C2223.4 (2)
C11—C9—C10—C156.3 (3)C13—C17—C20—C2291.3 (3)
C8—C9—C10—C1175.2 (2)C16—C17—C20—C2193.7 (2)
C11—C9—C10—C1963.9 (3)C13—C17—C20—C21151.6 (2)
C8—C9—C10—C1964.6 (3)C16—O1—C22—O2178.0 (2)
C11—C9—C10—C5173.0 (2)C16—O1—C22—C200.3 (3)
C8—C9—C10—C558.5 (3)C17—C20—C22—O2166.6 (3)
C8—C9—C11—C1250.2 (3)C21—C20—C22—O273.6 (4)
C10—C9—C11—C12177.8 (2)C17—C20—C22—O115.2 (3)
C9—C11—C12—C1354.8 (3)C21—C20—C22—O1104.6 (2)
C11—C12—C13—C1865.7 (3)C3—O3—C23—O45.5 (5)
C11—C12—C13—C1458.4 (3)C3—O3—C23—C24175.0 (3)
C11—C12—C13—C17167.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i1.002.363.116 (3)131
C18—H18A···O10.982.583.246 (3)126
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC24H36O4
Mr388.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)6.4256 (3), 9.6527 (6), 34.953 (2)
V3)2167.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.08 × 0.02
Data collection
DiffractometerNonius APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.977, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
8349, 2784, 2554
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.119, 1.11
No. of reflections2784
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: COLLECT (Nonius, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i1.002.363.116 (3)131
C18—H18A···O10.982.583.246 (3)126
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIglesias-Arteaga, M. A. & Alvarado-Nuñes, A. A. (2006). Tetrahedron Lett. 47, 5351–5353.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNovoa de Armas, H. N., Peeters, O. M., Blaton, N. M., De Ranter, C. J. D., Pomés Hernández, R. P., Mola, J. L., Serafín Pérez, C. S., Suárez García, L. S., Iglesias, M. A. & Coll Manchado, F. C. (2000). Acta Cryst. C56, 78–79.  CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVohra, K. N. (1973). N-Haloamides and their Applications in Natural Product Synthesis. PhD thesis, University of Calgary, Canada.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds