organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Oxo-2-phenyl­ethyl)-1,2-benziso­thia­zol-3(2H)-one 1,1-dioxide

aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, bInstitute of Biochemistry, University of Baluchistan, Quetta 8700, Pakistan, cDepartment of Chemistry, University of Sargodha, Sargodha 10400, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 29 January 2010; accepted 9 February 2010; online 13 February 2010)

In the title compound, C15H11NO4S, the benzothia­zole unit is essentially planar [maximum deviation = 0.0644 (14) Å for the N atom] and forms a dihedral angle 54.43 (6)° with the phenyl ring. In the crystal structure, weak bifurcated C—H⋯O hydrogen bonds involving the carbonyl O atoms as acceptors result in R22(7) ring motifs.

Related literature

For the use of 1,2-benzisothia­zoline-3-one 1,1-dioxide (saccharine) as an inter­mediate in the preparation of medicinally important mol­ecules, see: Siddiqui et al. (2006[Siddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583-589.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M. Z., Choudary, J. A. amp; Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For the biological activity of saccharine, see: Singh et al. (2007[Singh, S. K., Shivaramakrishna, S., Saibaba, V., Rao, K. S., Ganesh, K. R., Vasudev, R., Kumar, P. P., Babu, J. M., Vyas, K., Rao, Y. K. & Iqbal, J. (2007). Eur. J. Med. Chem. 42, 456-462.]); Vaccarino et al. (2007[Vaccarino, A. L., Paul, D., Mukherjee, P. K., de Turco, E. B. R., Marcheselli, V. L., Xu, L., Trudell, M. L., Minguez, J. M., Matia, M. P., Sunkel, C., Alvarez-Builla, J. & Bazan, N. G. (2007). Bioorg. Med. Chem. 15, 2206-2215.]); Kapui et al. (2003[Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Batori, S., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 451-459.]). For related structures, see: Ahmad et al. (2008[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.], 2009[Ahmad, M., Siddiqui, H. L., Azam, M., Siddiqui, W. A. & Parvez, M. (2009). Acta Cryst. E65, o2185.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NO4S

  • Mr = 301.31

  • Monoclinic, P 21 /n

  • a = 8.0730 (2) Å

  • b = 9.1270 (3) Å

  • c = 18.0143 (6) Å

  • β = 95.4616 (18)°

  • V = 1321.31 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.18 × 0.14 × 0.10 mm

Data collection
  • Nonius diffractometer with Bruker APEXII CCD

  • Absorption correction: multi-scan (SORTAV;Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.955, Tmax = 0.974

  • 15562 measured reflections

  • 3016 independent reflections

  • 2554 reflections with (I) > 2.0 σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.115

  • S = 1.09

  • 3016 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.99 2.41 3.318 (3) 153
C15—H15⋯O1i 0.95 2.47 3.417 (3) 178
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2-Benzisothiazoline-3-one 1,1-dioxide (saccharine) is an important starting material for the synthesis of different heterocyclic compounds and plays a role as an intermediate for the preparation of medicinally important molecules (Siddiqui et al., 2006; Zia-ur-Rehman et al., 2009). Various derivatives of saccharin are known to be cyclooxygenase-2 (COX-2) inhibitors (Singh et al., 2007), analgesic (Vaccarino et al., 2007), human leucocyte elastase (HLE) inhibitors (Kapui et al., 2003) etc. In continuation of our research on the synthesis of potential biologically active derivatives of benzothiazines (Ahmad et al., 2008; Ahmad et al., 2009), we herein report the crystal structure of the title compound, N-phenacylsaccharin, (I).

The structure of (I) contains discrete molecules separated by normal van der Waals distances (Fig. 1). The benzothiazole moiety (S1/N1/C1—C7) is essentially planar (maximum deviation = 0.0644 (14) Å for N1-atom) and lies at an angle 54.43 (6) ° with respect to the phenyl ring (C10—C15). The structure is devoid of any classical hydrogen bonds. However, non-classical hydrogen bonding interactions of the type C—H···O are present in the crystal structure involving O1 and H-atoms bonded to C8 and C15 resulting in a seven membered ring in R22(7) motif (Bernstein et al., 1995) (Fig. 2 and Table 1).

Related literature top

For the use of 1,2-benzisothiazoline-3-one 1,1-dioxide (saccharine) as an intermediate in the preparation of medicinally important molecules, see: Siddiqui et al. (2006); Zia-ur-Rehman et al. (2005, 2009). For the biological activity of saccharine, see: Singh et al. (2007); Vaccarino et al. (2007); Kapui et al. (2003). For related structures, see: Ahmad et al. (2008, 2009). For hydrogen-bonding motifs, see: Bernstein et al. (1995).

Experimental top

Phenacyl bromide (4.85 g, 0.024 mol) was slowly added to a suspension of sodium saccharine (5 g, 0.024 mol) in dimethylformamide (15 ml) and the mixture was stirred at 383 K for 3 hours under anhydrous conditions. On completion of reaction (as indicated by tlc), the mixture was poured on crushed ice and the precipitates formed were filtered and washed with excess of distilled water and cold ethanol respectively. The crystals of N-phenacylsaccharin suitable for XRD were grown from a solution of chloroform-methanol (3:1).

Refinement top

All the H-atoms were located from the difference Fourier maps and were included in the refinements at geometrically idealized positions with C—H distances = 0.95 and 0.99 Å for aryl and methylene H-atoms, respectively, and Uiso = 1.2 times Ueq of the C-atoms to which they were bonded. The final difference map was free of chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of (I) showing non-classical hydrogen bonding interaction with dashed lines; H-atoms not involved in H-bonds have been excluded for clarity.
2-(2-Oxo-2-phenylethyl)-1,2-benzisothiazol-3(2H)-one 1,1-dioxide top
Crystal data top
C15H11NO4SF(000) = 624
Mr = 301.31Dx = 1.515 Mg m3
Monoclinic, P21/nMelting point: 458 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.0730 (2) ÅCell parameters from 3115 reflections
b = 9.1270 (3) Åθ = 1.0–27.5°
c = 18.0143 (6) ŵ = 0.26 mm1
β = 95.4616 (18)°T = 173 K
V = 1321.31 (7) Å3Block, white
Z = 40.18 × 0.14 × 0.10 mm
Data collection top
Nonius APEX2 CCD
diffractometer
3016 independent reflections
Radiation source: fine-focus sealed tube2554 reflections with (I) > 2.0 σ(I)
Graphite monochromatorRint = 0.030
ϕ & ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SORTAV;Blessing, 1997)
h = 1010
Tmin = 0.955, Tmax = 0.974k = 1111
15562 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0412P)2 + 1.31P]
where P = (Fo2 + 2Fc2)/3
3016 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C15H11NO4SV = 1321.31 (7) Å3
Mr = 301.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0730 (2) ŵ = 0.26 mm1
b = 9.1270 (3) ÅT = 173 K
c = 18.0143 (6) Å0.18 × 0.14 × 0.10 mm
β = 95.4616 (18)°
Data collection top
Nonius APEX2 CCD
diffractometer
3016 independent reflections
Absorption correction: multi-scan
(SORTAV;Blessing, 1997)
2554 reflections with (I) > 2.0 σ(I)
Tmin = 0.955, Tmax = 0.974Rint = 0.030
15562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
3016 reflectionsΔρmin = 0.43 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21297 (6)0.21225 (5)0.09588 (3)0.02212 (14)
O10.0329 (2)0.51326 (18)0.20418 (9)0.0369 (4)
O20.20831 (19)0.06413 (16)0.12149 (9)0.0303 (4)
O30.35091 (18)0.25411 (18)0.05634 (8)0.0306 (4)
O40.4233 (2)0.5471 (2)0.17286 (10)0.0480 (5)
N10.1956 (2)0.3264 (2)0.16706 (9)0.0256 (4)
C10.0221 (2)0.2691 (2)0.05015 (11)0.0220 (4)
C20.0584 (3)0.2109 (2)0.01446 (11)0.0258 (4)
H20.01330.13090.03960.031*
C30.2090 (3)0.2757 (3)0.04073 (12)0.0301 (5)
H30.26800.23950.08510.036*
C40.2743 (3)0.3918 (3)0.00347 (12)0.0306 (5)
H40.37650.43470.02310.037*
C50.1931 (3)0.4467 (2)0.06218 (12)0.0292 (5)
H50.23940.52500.08820.035*
C60.0424 (2)0.3840 (2)0.08864 (11)0.0239 (4)
C70.0608 (3)0.4209 (2)0.15913 (11)0.0251 (4)
C80.3232 (3)0.3329 (2)0.22988 (11)0.0264 (4)
H8A0.38410.23870.23360.032*
H8B0.26900.34620.27650.032*
C90.4470 (3)0.4575 (2)0.22252 (11)0.0274 (4)
C100.5913 (2)0.4682 (2)0.28032 (11)0.0242 (4)
C110.6695 (3)0.6038 (2)0.29126 (13)0.0294 (5)
H110.63120.68560.26190.035*
C120.8030 (3)0.6194 (3)0.34485 (13)0.0333 (5)
H120.85510.71220.35260.040*
C130.8607 (3)0.5001 (3)0.38712 (12)0.0347 (5)
H130.95220.51140.42390.042*
C140.7858 (3)0.3650 (3)0.37606 (13)0.0354 (5)
H140.82710.28280.40450.042*
C150.6494 (3)0.3493 (3)0.32304 (12)0.0291 (5)
H150.59610.25690.31620.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0205 (2)0.0219 (3)0.0228 (2)0.00177 (18)0.00385 (18)0.00180 (19)
O10.0420 (9)0.0322 (9)0.0349 (9)0.0078 (7)0.0040 (7)0.0128 (7)
O20.0332 (8)0.0218 (8)0.0347 (8)0.0030 (6)0.0036 (6)0.0007 (6)
O30.0222 (7)0.0374 (9)0.0320 (8)0.0010 (6)0.0007 (6)0.0023 (7)
O40.0550 (11)0.0412 (10)0.0430 (10)0.0156 (9)0.0195 (8)0.0180 (8)
N10.0260 (9)0.0255 (9)0.0235 (8)0.0023 (7)0.0075 (7)0.0049 (7)
C10.0206 (9)0.0222 (10)0.0227 (9)0.0007 (8)0.0009 (7)0.0020 (8)
C20.0265 (10)0.0274 (11)0.0228 (10)0.0021 (8)0.0019 (8)0.0020 (8)
C30.0295 (11)0.0353 (12)0.0236 (10)0.0031 (9)0.0075 (8)0.0018 (9)
C40.0248 (10)0.0322 (12)0.0333 (11)0.0029 (9)0.0054 (9)0.0044 (9)
C50.0282 (10)0.0253 (11)0.0335 (11)0.0052 (9)0.0006 (9)0.0008 (9)
C60.0247 (10)0.0202 (10)0.0261 (10)0.0009 (8)0.0011 (8)0.0012 (8)
C70.0263 (10)0.0216 (10)0.0266 (10)0.0013 (8)0.0020 (8)0.0004 (8)
C80.0281 (10)0.0274 (11)0.0219 (10)0.0009 (8)0.0071 (8)0.0000 (8)
C90.0295 (10)0.0271 (11)0.0242 (10)0.0015 (9)0.0039 (8)0.0003 (8)
C100.0232 (9)0.0282 (11)0.0209 (9)0.0019 (8)0.0002 (7)0.0039 (8)
C110.0261 (10)0.0275 (11)0.0344 (12)0.0016 (9)0.0016 (9)0.0025 (9)
C120.0274 (11)0.0335 (12)0.0390 (13)0.0090 (9)0.0031 (9)0.0088 (10)
C130.0260 (11)0.0488 (15)0.0282 (11)0.0086 (10)0.0031 (9)0.0044 (10)
C140.0320 (12)0.0400 (13)0.0321 (12)0.0056 (10)0.0079 (9)0.0073 (10)
C150.0303 (11)0.0304 (11)0.0251 (10)0.0070 (9)0.0050 (8)0.0013 (9)
Geometric parameters (Å, º) top
S1—O31.4298 (15)C5—H50.9500
S1—O21.4301 (15)C6—C71.489 (3)
S1—N11.6685 (18)C8—C91.528 (3)
S1—C11.755 (2)C8—H8A0.9900
O1—C71.206 (3)C8—H8B0.9900
O4—C91.213 (3)C9—C101.490 (3)
N1—C71.385 (3)C10—C151.386 (3)
N1—C81.457 (2)C10—C111.395 (3)
C1—C21.384 (3)C11—C121.384 (3)
C1—C61.386 (3)C11—H110.9500
C2—C31.394 (3)C12—C131.383 (3)
C2—H20.9500C12—H120.9500
C3—C41.386 (3)C13—C141.380 (3)
C3—H30.9500C13—H130.9500
C4—C51.390 (3)C14—C151.395 (3)
C4—H40.9500C14—H140.9500
C5—C61.387 (3)C15—H150.9500
O3—S1—O2117.32 (10)N1—C7—C6108.51 (17)
O3—S1—N1110.03 (9)N1—C8—C9112.50 (17)
O2—S1—N1109.61 (9)N1—C8—H8A109.1
O3—S1—C1112.19 (9)C9—C8—H8A109.1
O2—S1—C1112.48 (9)N1—C8—H8B109.1
N1—S1—C192.39 (9)C9—C8—H8B109.1
C7—N1—C8123.03 (17)H8A—C8—H8B107.8
C7—N1—S1115.60 (14)O4—C9—C10122.0 (2)
C8—N1—S1121.16 (14)O4—C9—C8120.45 (19)
C2—C1—C6122.85 (19)C10—C9—C8117.53 (17)
C2—C1—S1127.02 (16)C15—C10—C11119.42 (19)
C6—C1—S1110.12 (14)C15—C10—C9122.54 (19)
C1—C2—C3116.6 (2)C11—C10—C9118.04 (19)
C1—C2—H2121.7C12—C11—C10120.1 (2)
C3—C2—H2121.7C12—C11—H11119.9
C4—C3—C2121.4 (2)C10—C11—H11119.9
C4—C3—H3119.3C13—C12—C11120.1 (2)
C2—C3—H3119.3C13—C12—H12119.9
C3—C4—C5121.1 (2)C11—C12—H12119.9
C3—C4—H4119.4C14—C13—C12120.3 (2)
C5—C4—H4119.4C14—C13—H13119.9
C6—C5—C4118.1 (2)C12—C13—H13119.9
C6—C5—H5120.9C13—C14—C15119.8 (2)
C4—C5—H5120.9C13—C14—H14120.1
C1—C6—C5119.97 (19)C15—C14—H14120.1
C1—C6—C7113.03 (17)C10—C15—C14120.2 (2)
C5—C6—C7126.91 (19)C10—C15—H15119.9
O1—C7—N1124.10 (19)C14—C15—H15119.9
O1—C7—C6127.35 (19)
O3—S1—N1—C7109.01 (16)S1—N1—C7—O1177.54 (18)
O2—S1—N1—C7120.57 (16)C8—N1—C7—C6179.40 (18)
C1—S1—N1—C75.67 (17)S1—N1—C7—C64.5 (2)
O3—S1—N1—C865.95 (18)C1—C6—C7—O1178.4 (2)
O2—S1—N1—C864.47 (18)C5—C6—C7—O11.8 (4)
C1—S1—N1—C8179.38 (17)C1—C6—C7—N10.5 (2)
O3—S1—C1—C272.9 (2)C5—C6—C7—N1176.0 (2)
O2—S1—C1—C262.0 (2)C7—N1—C8—C977.6 (3)
N1—S1—C1—C2174.4 (2)S1—N1—C8—C997.0 (2)
O3—S1—C1—C6107.75 (16)N1—C8—C9—O47.7 (3)
O2—S1—C1—C6117.42 (15)N1—C8—C9—C10175.22 (18)
N1—S1—C1—C65.03 (16)O4—C9—C10—C15160.3 (2)
C6—C1—C2—C31.2 (3)C8—C9—C10—C1522.7 (3)
S1—C1—C2—C3179.45 (16)O4—C9—C10—C1119.8 (3)
C1—C2—C3—C40.4 (3)C8—C9—C10—C11157.27 (19)
C2—C3—C4—C50.9 (3)C15—C10—C11—C120.6 (3)
C3—C4—C5—C61.4 (3)C9—C10—C11—C12179.3 (2)
C2—C1—C6—C50.8 (3)C10—C11—C12—C130.8 (3)
S1—C1—C6—C5179.80 (16)C11—C12—C13—C140.1 (4)
C2—C1—C6—C7176.07 (19)C12—C13—C14—C151.3 (4)
S1—C1—C6—C73.4 (2)C11—C10—C15—C140.5 (3)
C4—C5—C6—C10.6 (3)C9—C10—C15—C14179.5 (2)
C4—C5—C6—C7176.9 (2)C13—C14—C15—C101.5 (4)
C8—N1—C7—O12.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.992.413.318 (3)153
C15—H15···O1i0.952.473.417 (3)178
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H11NO4S
Mr301.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)8.0730 (2), 9.1270 (3), 18.0143 (6)
β (°) 95.4616 (18)
V3)1321.31 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.18 × 0.14 × 0.10
Data collection
DiffractometerNonius APEX2 CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV;Blessing, 1997)
Tmin, Tmax0.955, 0.974
No. of measured, independent and
observed [(I) > 2.0 σ(I)] reflections
15562, 3016, 2554
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.09
No. of reflections3016
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.43

Computer programs: COLLECT (Hooft, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.992.413.318 (3)153
C15—H15···O1i0.952.473.417 (3)178
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Higher Education Commission of Pakistan for financial support of this research.

References

First citationAhmad, M., Siddiqui, H. L., Azam, M., Siddiqui, W. A. & Parvez, M. (2009). Acta Cryst. E65, o2185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.  Google Scholar
First citationKapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Batori, S., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 451–459.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583–589.  Google Scholar
First citationSingh, S. K., Shivaramakrishna, S., Saibaba, V., Rao, K. S., Ganesh, K. R., Vasudev, R., Kumar, P. P., Babu, J. M., Vyas, K., Rao, Y. K. & Iqbal, J. (2007). Eur. J. Med. Chem. 42, 456–462.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVaccarino, A. L., Paul, D., Mukherjee, P. K., de Turco, E. B. R., Marcheselli, V. L., Xu, L., Trudell, M. L., Minguez, J. M., Matia, M. P., Sunkel, C., Alvarez-Builla, J. & Bazan, N. G. (2007). Bioorg. Med. Chem. 15, 2206–2215.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M. Z., Choudary, J. A. amp; Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds