organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(3-Chloro­phen­yl)-2-oxoeth­yl]-1,2-benziso­thia­zol-3(2H)-one 1,1-dioxide

aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha 10400, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 1 February 2010; accepted 9 February 2010; online 13 February 2010)

In the title compound, C15H10ClNO4S, the benzothia­zole ring system is essentially planar [maximum deviation = 0.0382 (13) Å for the N atom] and forms a dihedral angle of 74.43 (6)° with the chloro-substituted benzene ring. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds form R22(10) and R22(16) ring motifs

Related literature

For the use of 1,2-benzisothia­zoline-3-one 1,1-dioxide (saccharine) as an inter­mediate in the preparation of medicinally important mol­ecules, see: Siddiqui et al. (2006[Siddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583-589.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M. Z., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For the biological activity of saccharine, see: Singh et al. (2007[Singh, S. K., Shivaramakrishna, S., Saibaba, V., Rao, K. S., Ganesh, K. R., Vasudev, R., Kumar, P. P., Babu, J. M., Vyas, K., Rao, Y. K. & Iqbal, J. (2007). Eur. J. Med. Chem. 42, 456-462.]); Vaccarino et al. (2007[Vaccarino, A. L., Paul, D., Mukherjee, P. K., de Turco, E. B. R., Marcheselli, V. L., Xu, L., Trudell, M. L., Minguez, J. M., Matia, M. P., Sunkel, C., Alvarez-Builla, J. & Bazan, N. G. (2007). Bioorg. Med. Chem. 15, 2206-2215.]); Kapui et al. (2003[Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Batori, S., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 451-459.]). For related structures, see: Ahmad et al. (2008[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.], 2009[Ahmad, M., Siddiqui, H. L., Azam, M., Siddiqui, W. A. & Parvez, M. (2009). Acta Cryst. E65, o2185.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Zia-ur-Rehman, Choudary & Ahmad (2005[Zia-ur-Rehman, M. Z., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClNO4S

  • Mr = 335.75

  • Triclinic, [P \overline 1]

  • a = 7.7258 (4) Å

  • b = 9.0780 (4) Å

  • c = 10.0809 (5) Å

  • α = 83.884 (3)°

  • β = 85.092 (3)°

  • γ = 87.765 (3)°

  • V = 700.10 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 173 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Nonius diffractometer with Bruker APEXII CCD

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.917, Tmax = 0.957

  • 5768 measured reflections

  • 3157 independent reflections

  • 2881 reflections with (I) > 2.0 σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.06

  • 3157 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.40 3.249 (3) 148
C8—H8A⋯O1ii 0.99 2.45 3.378 (3) 156
C11—H11⋯O3iii 0.95 2.44 3.382 (3) 173
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2-Benzisothiazoline-3-one 1,1-dioxide (saccharine) is an important starting material for the synthesis of different heterocyclic compounds and plays a role as an intermediate for the preparation of medicinally important molecules (Siddiqui et al., 2006; Zia-ur-Rehman et al., 2005; Zia-ur-Rehman et al., 2009). Various derivatives of saccharin are known to be cyclooxygenase-2 (COX-2) inhibitors (Singh et al., 2007), analgesic (Vaccarino et al., 2007), human leucocyte elastase (HLE) inhibitors (Kapui et al., 2003) etc. In continuation of our research on the synthesis of potential biologically active derivatives of benzothiazines (Ahmad et al., 2008; Ahmad et al., 2009), we herein report the crystal structure of the title compound (I).

The molecular structure of the title compund is shown in (Fig. 1). The benzothiazole moiety (S1/N1/C1—C7) is essentially planar (maximum deviation = 0.0382 (13) Å for atom N1) and lies at an angle 74.43 (6) ° with respect to the C10—C15 benzene ring. The structure is devoid of any classical hydrogen bonds. However, non-classical hydrogen bonding interactions of the type C—H···O are present in the crystal structure resulting in ten and sixteen membered macrocyclic rings in R22(10) and R22(16) motifs (Bernstein et al., 1995) (Fig. 2 and Table 1).

Related literature top

For the use of 1,2-benzisothiazoline-3-one 1,1-dioxide (saccharine) as an intermediate in the preparation of medicinally important molecules, see: Siddiqui et al. (2006); Zia-ur-Rehman et al. (2005, 2009). For the biological activity of saccharine, see: Singh et al. (2007); Vaccarino et al. (2007); Kapui et al. (2003). For related structures, see: Ahmad et al. (2008, 2009). For hydrogen-bonding motifs, see: Bernstein et al. (1995). Zia-ur-Rehman, Choudary & Ahmad (2005).

Experimental top

3-Chlorophenacyl bromide (5.60 g, 0.024 mol) was slowly added to a suspension of sodium saccharine (5 g, 0.024 mol) in dimethylformamide (15 ml) and the mixture was stirred at 383 K for 3 hours under anhydrous conditions. On completion of reaction (indicated by TLC), the mixture was poured on crushed ice and the precipitates formed were filtered and washed with excess of distilled water and cold ethanol respectively. The crystals of the title compound suitable for XRD were grown from a solution of chloroform-methanol (3:1).

Refinement top

All H-atoms were located from the difference Fourier maps and were included in the refinements at geometrically idealized positions with C—H distances = 0.95 and 0.99 Å for aryl and methylene H-atoms, respectively, and Uiso = 1.2 times Ueq of the C-atoms to which they were bonded. The final difference map was free of chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of (I) showing non-classical hydrogen bonding interaction with dashed lines; H-atoms not involved in H-bonds have been excluded for clarity.
2-[2-(3-Chlorophenyl)-2-oxoethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide top
Crystal data top
C15H10ClNO4SZ = 2
Mr = 335.75F(000) = 344
Triclinic, P1Dx = 1.593 Mg m3
Hall symbol: -P 1Melting point: 488 K
a = 7.7258 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0780 (4) ÅCell parameters from 2955 reflections
c = 10.0809 (5) Åθ = 1.0–27.5°
α = 83.884 (3)°µ = 0.44 mm1
β = 85.092 (3)°T = 173 K
γ = 87.765 (3)°Prism, white
V = 700.10 (6) Å30.20 × 0.12 × 0.10 mm
Data collection top
Nonius APEXII CCD
diffractometer
3157 independent reflections
Radiation source: fine-focus sealed tube2881 reflections with (I) > 2.0 σ(I)
Graphite monochromatorRint = 0.025
ϕ & ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 109
Tmin = 0.917, Tmax = 0.957k = 1111
5768 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0738P)2 + 0.5259P]
where P = (Fo2 + 2Fc2)/3
3157 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C15H10ClNO4Sγ = 87.765 (3)°
Mr = 335.75V = 700.10 (6) Å3
Triclinic, P1Z = 2
a = 7.7258 (4) ÅMo Kα radiation
b = 9.0780 (4) ŵ = 0.44 mm1
c = 10.0809 (5) ÅT = 173 K
α = 83.884 (3)°0.20 × 0.12 × 0.10 mm
β = 85.092 (3)°
Data collection top
Nonius APEXII CCD
diffractometer
3157 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2881 reflections with (I) > 2.0 σ(I)
Tmin = 0.917, Tmax = 0.957Rint = 0.025
5768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
3157 reflectionsΔρmin = 0.40 e Å3
199 parameters
Special details top

Experimental. IR (KBr): 1737, 1690, 1341, 1151 cm-1, 1H NMR: (DMSO-d6) δ: 5.40 (s, 2H, CH2), 7.43 (dd, 1H, J1 = 2.4 Hz, J2 = 8.4 Hz, Ar—H), 7.50 (t, 1H, J = 8.0 Hz, Ar—H), 7.58 (t, 1H, J = 2.4 Hz, Ar—H), 7.65 (d, 1H, J = 7.6 Hz, Ar—H), 8.05 (t, 1H, J = 7.6 Hz, Ar—H), 8.11 (t, 1H, J = 7.6 Hz, Ar—H), 8.17 (d, 1H, J = 7.6 Hz, Ar—H), 8.23 (d, 1H, J = 7.2 Hz, Ar—H). MS m/z: 335.8[M+].

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05636 (8)0.97635 (7)0.83644 (5)0.03594 (18)
S10.13366 (6)0.50633 (5)0.22038 (5)0.02250 (15)
O10.57018 (19)0.54728 (17)0.34507 (15)0.0275 (3)
O20.0709 (2)0.62625 (18)0.13199 (17)0.0340 (4)
O30.0067 (2)0.42357 (19)0.30583 (17)0.0341 (4)
O40.3503 (2)0.85538 (18)0.25316 (16)0.0360 (4)
N10.2798 (2)0.56575 (19)0.31383 (17)0.0237 (4)
C10.2881 (2)0.3923 (2)0.13935 (19)0.0206 (4)
C20.2593 (3)0.2980 (2)0.0452 (2)0.0259 (4)
H20.14690.28740.01660.031*
C30.4039 (3)0.2192 (2)0.0055 (2)0.0285 (4)
H30.38980.15250.07000.034*
C40.5687 (3)0.2356 (2)0.0359 (2)0.0279 (4)
H40.66480.18080.00120.034*
C50.5948 (3)0.3314 (2)0.1312 (2)0.0239 (4)
H50.70710.34240.15980.029*
C60.4518 (3)0.4102 (2)0.18287 (18)0.0197 (4)
C70.4493 (3)0.5143 (2)0.28697 (19)0.0207 (4)
C80.2318 (3)0.6673 (2)0.4143 (2)0.0237 (4)
H8A0.28910.63340.49680.028*
H8B0.10460.66600.43670.028*
C90.2845 (3)0.8255 (2)0.3652 (2)0.0232 (4)
C100.2549 (3)0.9392 (2)0.46202 (19)0.0216 (4)
C110.1755 (3)0.9062 (2)0.5907 (2)0.0219 (4)
H110.13510.80950.61930.026*
C120.1567 (3)1.0164 (2)0.6761 (2)0.0237 (4)
C130.2149 (3)1.1584 (2)0.6376 (2)0.0277 (4)
H130.20201.23240.69790.033*
C140.2926 (3)1.1900 (2)0.5085 (2)0.0307 (5)
H140.33251.28680.48040.037*
C150.3124 (3)1.0828 (2)0.4209 (2)0.0266 (4)
H150.36481.10620.33280.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0441 (3)0.0384 (3)0.0246 (3)0.0009 (2)0.0080 (2)0.0084 (2)
S10.0185 (2)0.0232 (3)0.0262 (3)0.00100 (18)0.00166 (18)0.00494 (19)
O10.0254 (7)0.0312 (8)0.0276 (8)0.0025 (6)0.0057 (6)0.0074 (6)
O20.0318 (8)0.0319 (8)0.0386 (9)0.0082 (7)0.0110 (7)0.0020 (7)
O30.0245 (8)0.0375 (9)0.0398 (9)0.0060 (7)0.0071 (7)0.0073 (7)
O40.0505 (10)0.0325 (8)0.0234 (8)0.0037 (7)0.0081 (7)0.0037 (6)
N10.0221 (8)0.0248 (8)0.0252 (8)0.0024 (7)0.0022 (6)0.0087 (7)
C10.0206 (9)0.0200 (9)0.0207 (9)0.0005 (7)0.0003 (7)0.0017 (7)
C20.0257 (10)0.0271 (10)0.0258 (10)0.0028 (8)0.0042 (8)0.0047 (8)
C30.0366 (12)0.0261 (10)0.0238 (10)0.0025 (8)0.0007 (8)0.0083 (8)
C40.0300 (10)0.0279 (10)0.0250 (10)0.0041 (8)0.0027 (8)0.0047 (8)
C50.0218 (9)0.0254 (10)0.0238 (10)0.0007 (8)0.0009 (7)0.0016 (8)
C60.0234 (9)0.0185 (9)0.0168 (8)0.0013 (7)0.0005 (7)0.0007 (7)
C70.0224 (9)0.0182 (9)0.0210 (9)0.0007 (7)0.0010 (7)0.0007 (7)
C80.0280 (10)0.0216 (9)0.0217 (9)0.0010 (8)0.0010 (8)0.0067 (7)
C90.0219 (9)0.0258 (10)0.0216 (9)0.0011 (7)0.0014 (7)0.0025 (8)
C100.0217 (9)0.0220 (9)0.0215 (9)0.0002 (7)0.0020 (7)0.0032 (7)
C110.0222 (9)0.0209 (9)0.0227 (9)0.0007 (7)0.0007 (7)0.0031 (7)
C120.0252 (10)0.0270 (10)0.0193 (9)0.0017 (8)0.0025 (7)0.0041 (7)
C130.0317 (11)0.0244 (10)0.0289 (11)0.0010 (8)0.0073 (8)0.0076 (8)
C140.0390 (12)0.0214 (10)0.0319 (11)0.0038 (9)0.0053 (9)0.0007 (8)
C150.0325 (11)0.0244 (10)0.0228 (10)0.0032 (8)0.0024 (8)0.0003 (8)
Geometric parameters (Å, º) top
Cl1—C121.740 (2)C5—C61.387 (3)
S1—O21.4285 (16)C5—H50.9500
S1—O31.4297 (16)C6—C71.483 (3)
S1—N11.6707 (18)C8—C91.528 (3)
S1—C11.755 (2)C8—H8A0.9900
O1—C71.207 (2)C8—H8B0.9900
O4—C91.206 (3)C9—C101.493 (3)
N1—C71.388 (3)C10—C111.395 (3)
N1—C81.456 (2)C10—C151.403 (3)
C1—C21.381 (3)C11—C121.384 (3)
C1—C61.394 (3)C11—H110.9500
C2—C31.393 (3)C12—C131.387 (3)
C2—H20.9500C13—C141.391 (3)
C3—C41.392 (3)C13—H130.9500
C3—H30.9500C14—C151.377 (3)
C4—C51.394 (3)C14—H140.9500
C4—H40.9500C15—H150.9500
O2—S1—O3116.98 (10)N1—C7—C6108.78 (17)
O2—S1—N1110.34 (9)N1—C8—C9111.68 (16)
O3—S1—N1108.98 (10)N1—C8—H8A109.3
O2—S1—C1112.54 (10)C9—C8—H8A109.3
O3—S1—C1112.63 (10)N1—C8—H8B109.3
N1—S1—C192.62 (9)C9—C8—H8B109.3
C7—N1—C8122.70 (17)H8A—C8—H8B107.9
C7—N1—S1115.44 (14)O4—C9—C10121.91 (19)
C8—N1—S1121.85 (14)O4—C9—C8120.72 (19)
C2—C1—C6122.96 (18)C10—C9—C8117.36 (17)
C2—C1—S1127.13 (16)C11—C10—C15119.82 (19)
C6—C1—S1109.90 (14)C11—C10—C9122.23 (18)
C1—C2—C3116.44 (19)C15—C10—C9117.94 (18)
C1—C2—H2121.8C12—C11—C10118.92 (18)
C3—C2—H2121.8C12—C11—H11120.5
C4—C3—C2121.64 (19)C10—C11—H11120.5
C4—C3—H3119.2C11—C12—C13121.94 (19)
C2—C3—H3119.2C11—C12—Cl1119.16 (16)
C3—C4—C5120.9 (2)C13—C12—Cl1118.90 (16)
C3—C4—H4119.5C12—C13—C14118.45 (19)
C5—C4—H4119.5C12—C13—H13120.8
C6—C5—C4118.02 (19)C14—C13—H13120.8
C6—C5—H5121.0C15—C14—C13121.0 (2)
C4—C5—H5121.0C15—C14—H14119.5
C5—C6—C1119.99 (18)C13—C14—H14119.5
C5—C6—C7126.87 (18)C14—C15—C10119.9 (2)
C1—C6—C7113.12 (17)C14—C15—H15120.1
O1—C7—N1123.66 (18)C10—C15—H15120.1
O1—C7—C6127.50 (18)
O2—S1—N1—C7111.61 (16)C8—N1—C7—C6178.35 (16)
O3—S1—N1—C7118.65 (15)S1—N1—C7—C63.0 (2)
C1—S1—N1—C73.62 (16)C5—C6—C7—O10.6 (3)
O2—S1—N1—C867.08 (18)C1—C6—C7—O1177.71 (19)
O3—S1—N1—C862.65 (18)C5—C6—C7—N1177.90 (19)
C1—S1—N1—C8177.68 (16)C1—C6—C7—N10.5 (2)
O2—S1—C1—C269.4 (2)C7—N1—C8—C975.9 (2)
O3—S1—C1—C265.5 (2)S1—N1—C8—C9102.69 (18)
N1—S1—C1—C2177.32 (19)N1—C8—C9—O43.1 (3)
O2—S1—C1—C6110.17 (15)N1—C8—C9—C10175.59 (17)
O3—S1—C1—C6114.98 (15)O4—C9—C10—C11178.6 (2)
N1—S1—C1—C63.15 (15)C8—C9—C10—C112.8 (3)
C6—C1—C2—C30.1 (3)O4—C9—C10—C152.4 (3)
S1—C1—C2—C3179.62 (16)C8—C9—C10—C15176.20 (18)
C1—C2—C3—C40.4 (3)C15—C10—C11—C120.7 (3)
C2—C3—C4—C50.5 (3)C9—C10—C11—C12178.30 (18)
C3—C4—C5—C60.3 (3)C10—C11—C12—C130.2 (3)
C4—C5—C6—C10.0 (3)C10—C11—C12—Cl1179.53 (15)
C4—C5—C6—C7178.24 (18)C11—C12—C13—C140.7 (3)
C2—C1—C6—C50.1 (3)Cl1—C12—C13—C14179.03 (17)
S1—C1—C6—C5179.49 (15)C12—C13—C14—C150.3 (3)
C2—C1—C6—C7178.41 (18)C13—C14—C15—C100.5 (3)
S1—C1—C6—C72.0 (2)C11—C10—C15—C141.0 (3)
C8—N1—C7—O11.0 (3)C9—C10—C15—C14178.0 (2)
S1—N1—C7—O1179.65 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.403.249 (3)148
C8—H8A···O1ii0.992.453.378 (3)156
C11—H11···O3iii0.952.443.382 (3)173
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10ClNO4S
Mr335.75
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.7258 (4), 9.0780 (4), 10.0809 (5)
α, β, γ (°)83.884 (3), 85.092 (3), 87.765 (3)
V3)700.10 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerNonius APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.917, 0.957
No. of measured, independent and
observed [(I) > 2.0 σ(I)] reflections
5768, 3157, 2881
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.06
No. of reflections3157
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.40

Computer programs: COLLECT (Hooft, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.403.249 (3)148
C8—H8A···O1ii0.992.453.378 (3)156
C11—H11···O3iii0.952.443.382 (3)173
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Higher Education Commission of Pakistan for financial support of this research.

References

First citationAhmad, M., Siddiqui, H. L., Azam, M., Siddiqui, W. A. & Parvez, M. (2009). Acta Cryst. E65, o2185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.  Google Scholar
First citationKapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Batori, S., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 451–459.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583–589.  Google Scholar
First citationSingh, S. K., Shivaramakrishna, S., Saibaba, V., Rao, K. S., Ganesh, K. R., Vasudev, R., Kumar, P. P., Babu, J. M., Vyas, K., Rao, Y. K. & Iqbal, J. (2007). Eur. J. Med. Chem. 42, 456–462.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVaccarino, A. L., Paul, D., Mukherjee, P. K., de Turco, E. B. R., Marcheselli, V. L., Xu, L., Trudell, M. L., Minguez, J. M., Matia, M. P., Sunkel, C., Alvarez-Builla, J. & Bazan, N. G. (2007). Bioorg. Med. Chem. 15, 2206–2215.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M. Z., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds