metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[trans-di­aqua­bis­[μ-3-(3-pyrid­yl)propionato-κ2N,O]cadmium(II)]

aDepartment of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Republic of Korea
*Correspondence e-mail: soonwlee@skku.edu

(Received 2 February 2010; accepted 9 February 2010; online 13 February 2010)

The title compound [Cd(L)2(H2O)2]n (L = 3-pyridine­propionic acid, C8H8NO2), is a two-dimensional coordination polymer in which the CdII ion lies on an inversion center and is coordinated in a slightly distorted octa­hedral environment. The aqua H atoms are involved in inter­molecular O–H⋯O hydrogen bonds, which extend the two-dimensional structure to a three-dimensional architecture. The Cd⋯Cd separation within a layer is 9.0031 (1) Å.

Related literature

For the isostructural zinc analog, see: Wang et al. (2006[Wang, Y.-H., Suen, M.-C., Lee, H.-T. & Wang, J.-C. (2006). Polyhedron, 25, 2944-2952.]) and for the cobalt and nickel analogs, see: Martin et al. (2007[Martin, D. P., Springsteen, C. H. & LaDuca, R. L. (2007). Inorg. Chim. Acta, 360, 599-606.]). For background information on coordination polymers, see: Batten et al. (2009[Batten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application, Cambridge: The Royal Society of Chemistry.]); Lu (2003[Lu, J. Y. (2003). Coord. Chem. Rev. 246, 327-347.]); Perry et al. (2009[Perry IV, J. J., Perman, J. A. & Zaworotko, M. J. (2009). Chem. Soc. Rev. 38, 1400-1417.]); Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]). For coordination polymers based on pyridine carboxyl­ates, see: Huh & Lee (2006[Huh, H. S. & Lee, S. W. (2006). Bull. Korean Chem. Soc. 27, 1839-1843.], 2007[Huh, H. S. & Lee, S. W. (2007). J. Mol. Struct. 829, 44-50.], 2008[Huh, H. S. & Lee, S. W. (2008). Bull. Korean Chem. Soc. 29, 2383-2389.]); Kim et al. (2007[Kim, S. H., Huh, H. S. & Lee, S. W. (2007). J. Mol. Struct. 841, 78-87.]); Min et al. (2001[Min, D., Yoon, S. S., Jung, D.-Y., Lee, C. Y., Kim, Y., Han, W. S. & Lee, S. W. (2001). Inorg. Chim. Acta, 324, 293-299.], 2002[Min, D., Yoon, S. S. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 143-146.]); Min & Lee (2002[Min, D. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 978-983.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H8NO2)2(H2O)2]

  • Mr = 448.74

  • Monoclinic, P 21 /n

  • a = 9.6934 (4) Å

  • b = 8.9082 (4) Å

  • c = 10.1199 (5) Å

  • β = 104.309 (2)°

  • V = 846.75 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 296 K

  • 0.42 × 0.38 × 0.28 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.606, Tmax = 0.708

  • 12941 measured reflections

  • 2113 independent reflections

  • 1911 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.042

  • S = 1.05

  • 2113 reflections

  • 155 parameters

  • All H-atom parameters refined

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—O3i 2.2704 (9)
Cd1—O1 2.3306 (11)
Cd1—N1 2.3374 (10)
O3i—Cd1—O1 86.35 (4)
O3i—Cd1—N1ii 91.31 (4)
O1—Cd1—N1 89.58 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HO1B⋯O2iii 0.83 (3) 2.01 (3) 2.8361 (16) 174 (2)
O1—HO1A⋯O2iv 0.88 (2) 1.94 (2) 2.7546 (17) 155 (2)
Symmetry codes: (iii) -x+1, -y, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymers have gained attention due to their desirable properties applicable to size-selective adsorption, gas storage, host–guest recognition, catalysis, and photoluminescence (Batten et al., 2009; Perry IV et al., 2009; Robin & Fromm, 2006). We have been continually interested in the preparation, structures, and properties of coordination polymers based on the linking ligands of pyridine carboxylate derivatives, in which the carboxylate groups are directly attached to the pyridine ring (Huh & Lee, 2006; Huh & Lee, 2007; Huh & Lee, 2008; Kim et al., 2007; Min et al., 2001; Min et al., 2002; Min & Lee, 2002).

Linking ligands containing both N-donors and O-donors are frequently used for the construction of coordination polymers (Lu, 2003). In particular, silver, copper, zinc, cobalt, and nickel coordination polymers containing 3-pyridinepropionic acid as a linking ligand have been reported (Wang et al., 2006; Martin et al., 2007). This ligand has an enthylene (–CH2–CH2–) spacer between the pyridyl and carboxylate groups and therefore is flexible. As an extension of our study, we investigated the preparation of cadmium coordination polymers by employing this ligand.

The title compound is isostructural with the zinc (Wang et al., 2006), cobalt, and nickel (Martin et al., 2007) analogs with the empirical formula [Cd(L)2(H2O)2] (L = 3-pyridinepropionic acid). The local coordination environment around the Cd atom and the atom-numbering scheme is shown in Fig. 1. The asymmetric unit consists of one half CdII ion, one L ligand, and one aqua ligand. The CdII ion lies on a crystallographic inversion center, and the remaining atoms occupy general positions. The coordination environment of the CdII ion is slightly-distorted octahedral. The monomer units [Cd(L)2(H2O)2] are linked by covalent bonds (Cd–N and Cd–O) to form a 2-D layer approximately in the (101) plane (Fig. 2) and then extended into a 3-D architecture by hydrogen bonding. Two carboxylate O atoms (O2 and O3) act differently. Whereas O2 acts as a H-bond acceptor to the aqua ligands in the neighboring units, O3 is coordinated to the Cd metal to contribute to the formation of the 2-D layer, in which the Cd···Cd separation is 9.0031 (1) Å.

Related literature top

For the isostructural zinc analog, see: Wang et al. (2006) and for the cobalt and nickel analogs, see: Martin et al. (2007). For background information on coordination polymers, see: Batten et al. (2009); Lu (2003); Perry et al. (2009); Robin & Fromm (2006). For coordination polymers based on pyridine carboxylates, see: Huh & Lee (2006, 2007, 2008); Kim et al. (2007); Min et al. (2001, 2002); Min & Lee (2002).

Experimental top

A mixture of 3-pyridinepropionic acid (0.98 g, 6.5 mmol), [Cd(NO3)2]6(H2O) (1 g, 3.2 mmol), NaOH (6.5 mmol), and H2O (6 ml) was heated at 453 K for 2 days in a 23 ml Teflon-lined stainless-steel autoclave and then cooled slowly to room temperature to obtain pale yellow crystals. The product was collected by filtration, washed with H2O (3 × 10 ml) and ethanol (5 × 10 ml), and then air-dried. (1.18 g, 2.6 mmol, 82%). mp: 538–540 K. IR (KBr, cm-1): 3199 (s), 2173 (w), 1606 (s), 1302 (w), 1247 (w), 1201 (w), 1117 (m), 1047 (m), 961 (s), 607 (s)

Refinement top

All H atoms were located and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Local coordination environment around the Cd metal in the title compound showing 50% probability displacement ellipsoids (symmetry codes: (A) -x + 1, -y, -z, (B) -x + 1/2, y - 1/2, -z + 1/2, (C) x + 1/2, -y + 1/2, z - 1/2.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing a two-dimensional network.
Poly[trans-diaquabis[µ-3-(3-pyridyl)propionato- κ2N,O]cadmium(II)] top
Crystal data top
[Cd(C8H8NO2)2(H2O)2]F(000) = 452
Mr = 448.74Dx = 1.760 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8598 reflections
a = 9.6934 (4) Åθ = 2.6–28.4°
b = 8.9082 (4) ŵ = 1.33 mm1
c = 10.1199 (5) ÅT = 296 K
β = 104.309 (2)°Block, colourless
V = 846.75 (7) Å30.42 × 0.38 × 0.28 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2113 independent reflections
Radiation source: sealed tube1911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 28.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.606, Tmax = 0.708k = 1111
12941 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0233P)2 + 0.1949P]
where P = (Fo2 + 2Fc2)/3
2113 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Cd(C8H8NO2)2(H2O)2]V = 846.75 (7) Å3
Mr = 448.74Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.6934 (4) ŵ = 1.33 mm1
b = 8.9082 (4) ÅT = 296 K
c = 10.1199 (5) Å0.42 × 0.38 × 0.28 mm
β = 104.309 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2113 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1911 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 0.708Rint = 0.021
12941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.042All H-atom parameters refined
S = 1.05Δρmax = 0.30 e Å3
2113 reflectionsΔρmin = 0.22 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.00000.00000.02437 (5)
N10.28876 (11)0.07564 (12)0.05233 (11)0.0301 (2)
O10.61972 (13)0.02896 (15)0.22844 (12)0.0382 (2)
O20.21558 (10)0.21211 (11)0.63186 (10)0.0359 (2)
O30.04577 (10)0.26152 (10)0.44405 (10)0.0352 (2)
C10.20346 (15)0.17483 (15)0.02640 (14)0.0329 (3)
C20.07951 (16)0.22538 (17)0.00161 (16)0.0379 (3)
C30.04061 (15)0.16952 (16)0.11451 (15)0.0357 (3)
C40.12544 (13)0.06336 (15)0.19621 (13)0.0284 (3)
C50.24972 (16)0.02120 (15)0.16092 (16)0.0303 (3)
C60.08326 (19)0.01072 (15)0.31409 (17)0.0345 (3)
C70.17242 (17)0.03087 (17)0.45527 (15)0.0325 (3)
C80.14245 (13)0.18100 (13)0.51422 (13)0.0260 (2)
H10.2335 (18)0.208 (2)0.1008 (18)0.042 (4)*
H20.0224 (18)0.296 (2)0.0590 (18)0.043 (4)*
H30.0467 (19)0.199 (2)0.1376 (18)0.050 (5)*
H50.314 (2)0.048 (2)0.2165 (19)0.044 (5)*
H6A0.022 (2)0.0146 (17)0.302 (2)0.045 (6)*
H6B0.0908 (17)0.1217 (19)0.3076 (17)0.039 (4)*
H7A0.274 (3)0.037 (3)0.460 (2)0.059 (6)*
H7B0.158 (2)0.041 (2)0.525 (2)0.045 (5)*
HO1A0.673 (2)0.105 (3)0.217 (2)0.066 (7)*
HO1B0.672 (3)0.041 (3)0.266 (3)0.065 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02423 (8)0.02733 (8)0.02284 (8)0.00074 (4)0.00826 (5)0.00185 (4)
N10.0303 (5)0.0323 (6)0.0310 (6)0.0030 (4)0.0137 (4)0.0022 (4)
O10.0427 (6)0.0401 (6)0.0278 (5)0.0014 (5)0.0011 (5)0.0019 (4)
O20.0375 (5)0.0343 (5)0.0338 (5)0.0007 (4)0.0047 (4)0.0022 (4)
O30.0369 (5)0.0296 (5)0.0372 (5)0.0071 (4)0.0055 (4)0.0010 (4)
C10.0388 (7)0.0314 (6)0.0303 (7)0.0007 (5)0.0120 (6)0.0035 (5)
C20.0378 (7)0.0357 (7)0.0387 (8)0.0090 (6)0.0064 (6)0.0053 (6)
C30.0293 (6)0.0380 (7)0.0413 (8)0.0047 (5)0.0119 (6)0.0040 (6)
C40.0309 (6)0.0288 (6)0.0281 (6)0.0039 (5)0.0120 (5)0.0049 (5)
C50.0317 (7)0.0316 (7)0.0295 (7)0.0043 (5)0.0114 (6)0.0036 (5)
C60.0407 (8)0.0357 (8)0.0318 (8)0.0082 (5)0.0178 (6)0.0043 (5)
C70.0385 (8)0.0323 (6)0.0286 (7)0.0063 (6)0.0120 (6)0.0010 (5)
C80.0265 (6)0.0252 (6)0.0294 (6)0.0013 (4)0.0126 (5)0.0024 (5)
Geometric parameters (Å, º) top
Cd1—O3i2.2704 (9)C1—H10.919 (18)
Cd1—O3ii2.2705 (9)C2—C31.381 (2)
Cd1—O12.3306 (11)C2—H20.954 (17)
Cd1—O1iii2.3306 (11)C3—C41.385 (2)
Cd1—N1iii2.3374 (10)C3—H30.969 (18)
Cd1—N12.3374 (10)C4—C51.3902 (18)
N1—C11.3318 (17)C4—C61.5055 (19)
N1—C51.3385 (18)C5—H50.96 (2)
O1—HO1A0.88 (2)C6—C71.522 (2)
O1—HO1B0.83 (3)C6—H6A1.03 (2)
O2—C81.2568 (15)C6—H6B0.995 (17)
O3—C81.2522 (15)C7—C81.5213 (19)
O3—Cd1iv2.2705 (9)C7—H7A0.98 (2)
C1—C21.3766 (19)C7—H7B0.99 (2)
O3i—Cd1—O3ii180.0C1—C2—H2118.7 (11)
O3i—Cd1—O186.35 (4)C3—C2—H2122.4 (11)
O3ii—Cd1—O193.65 (4)C2—C3—C4119.78 (12)
O3i—Cd1—O1iii93.65 (4)C2—C3—H3122.3 (11)
O3ii—Cd1—O1iii86.35 (4)C4—C3—H3117.9 (11)
O1—Cd1—O1iii180.00 (3)C3—C4—C5117.09 (12)
O3i—Cd1—N1iii91.31 (4)C3—C4—C6122.34 (12)
O3ii—Cd1—N1iii88.69 (4)C5—C4—C6120.49 (13)
O1—Cd1—N1iii90.42 (4)N1—C5—C4123.49 (13)
O1iii—Cd1—N1iii89.58 (4)N1—C5—H5116.2 (11)
O3i—Cd1—N188.69 (4)C4—C5—H5120.3 (11)
O3ii—Cd1—N191.31 (4)C4—C6—C7115.77 (12)
O1—Cd1—N189.58 (4)C4—C6—H6A105.5 (12)
O1iii—Cd1—N190.42 (4)C7—C6—H6A112.2 (13)
N1iii—Cd1—N1180.00 (5)C4—C6—H6B110.2 (10)
C1—N1—C5118.16 (11)C7—C6—H6B105.7 (9)
C1—N1—Cd1120.32 (9)H6A—C6—H6B107.3 (13)
C5—N1—Cd1121.52 (9)C8—C7—C6117.58 (12)
Cd1—O1—HO1A97.1 (14)C8—C7—H7A102.6 (13)
Cd1—O1—HO1B118.0 (18)C6—C7—H7A113.1 (14)
HO1A—O1—HO1B109 (2)C8—C7—H7B102.8 (12)
C8—O3—Cd1iv124.02 (8)C6—C7—H7B111.3 (12)
N1—C1—C2122.56 (13)H7A—C7—H7B108.6 (17)
N1—C1—H1115.2 (11)O3—C8—O2125.36 (12)
C2—C1—H1122.3 (11)O3—C8—C7118.03 (12)
C1—C2—C3118.88 (13)O2—C8—C7116.59 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1B···O2v0.83 (3)2.01 (3)2.8361 (16)174 (2)
O1—HO1A···O2ii0.88 (2)1.94 (2)2.7546 (17)155 (2)
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C8H8NO2)2(H2O)2]
Mr448.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.6934 (4), 8.9082 (4), 10.1199 (5)
β (°) 104.309 (2)
V3)846.75 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.42 × 0.38 × 0.28
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.606, 0.708
No. of measured, independent and
observed [I > 2σ(I)] reflections
12941, 2113, 1911
Rint0.021
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 1.05
No. of reflections2113
No. of parameters155
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—O3i2.2704 (9)Cd1—N12.3374 (10)
Cd1—O12.3306 (11)
O3i—Cd1—O186.35 (4)O1—Cd1—N189.58 (4)
O3i—Cd1—N1ii91.31 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1B···O2iii0.83 (3)2.01 (3)2.8361 (16)174 (2)
O1—HO1A···O2iv0.88 (2)1.94 (2)2.7546 (17)155 (2)
Symmetry codes: (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2009–007996).

References

First citationBatten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application, Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuh, H. S. & Lee, S. W. (2006). Bull. Korean Chem. Soc. 27, 1839–1843.  CAS Google Scholar
First citationHuh, H. S. & Lee, S. W. (2007). J. Mol. Struct. 829, 44–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuh, H. S. & Lee, S. W. (2008). Bull. Korean Chem. Soc. 29, 2383–2389.  CAS Google Scholar
First citationKim, S. H., Huh, H. S. & Lee, S. W. (2007). J. Mol. Struct. 841, 78–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, J. Y. (2003). Coord. Chem. Rev. 246, 327–347.  Web of Science CrossRef CAS Google Scholar
First citationMartin, D. P., Springsteen, C. H. & LaDuca, R. L. (2007). Inorg. Chim. Acta, 360, 599–606.  Web of Science CSD CrossRef CAS Google Scholar
First citationMin, D. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 978–983.  Web of Science CSD CrossRef CAS Google Scholar
First citationMin, D., Yoon, S. S., Jung, D.-Y., Lee, C. Y., Kim, Y., Han, W. S. & Lee, S. W. (2001). Inorg. Chim. Acta, 324, 293–299.  Web of Science CSD CrossRef CAS Google Scholar
First citationMin, D., Yoon, S. S. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 143–146.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerry IV, J. J., Perman, J. A. & Zaworotko, M. J. (2009). Chem. Soc. Rev. 38, 1400–1417.  Web of Science CrossRef PubMed Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-H., Suen, M.-C., Lee, H.-T. & Wang, J.-C. (2006). Polyhedron, 25, 2944–2952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds