metal-organic compounds
Poly[trans-diaquabis[μ-3-(3-pyridyl)propionato-κ2N,O]cadmium(II)]
aDepartment of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Republic of Korea
*Correspondence e-mail: soonwlee@skku.edu
The title compound [Cd(L)2(H2O)2]n (L = 3-pyridinepropionic acid, C8H8NO2), is a two-dimensional coordination polymer in which the CdII ion lies on an inversion center and is coordinated in a slightly distorted octahedral environment. The aqua H atoms are involved in intermolecular O–H⋯O hydrogen bonds, which extend the two-dimensional structure to a three-dimensional architecture. The Cd⋯Cd separation within a layer is 9.0031 (1) Å.
Related literature
For the isostructural zinc analog, see: Wang et al. (2006) and for the cobalt and nickel analogs, see: Martin et al. (2007). For background information on coordination polymers, see: Batten et al. (2009); Lu (2003); Perry et al. (2009); Robin & Fromm (2006). For coordination polymers based on pyridine carboxylates, see: Huh & Lee (2006, 2007, 2008); Kim et al. (2007); Min et al. (2001, 2002); Min & Lee (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810005222/lh2993sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810005222/lh2993Isup2.hkl
A mixture of 3-pyridinepropionic acid (0.98 g, 6.5 mmol), [Cd(NO3)2]6(H2O) (1 g, 3.2 mmol), NaOH (6.5 mmol), and H2O (6 ml) was heated at 453 K for 2 days in a 23 ml Teflon-lined stainless-steel autoclave and then cooled slowly to room temperature to obtain pale yellow crystals. The product was collected by filtration, washed with H2O (3 × 10 ml) and ethanol (5 × 10 ml), and then air-dried. (1.18 g, 2.6 mmol, 82%). mp: 538–540 K. IR (KBr, cm-1): 3199 (s), 2173 (w), 1606 (s), 1302 (w), 1247 (w), 1201 (w), 1117 (m), 1047 (m), 961 (s), 607 (s)
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cd(C8H8NO2)2(H2O)2] | F(000) = 452 |
Mr = 448.74 | Dx = 1.760 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 8598 reflections |
a = 9.6934 (4) Å | θ = 2.6–28.4° |
b = 8.9082 (4) Å | µ = 1.33 mm−1 |
c = 10.1199 (5) Å | T = 296 K |
β = 104.309 (2)° | Block, colourless |
V = 846.75 (7) Å3 | 0.42 × 0.38 × 0.28 mm |
Z = 2 |
Bruker SMART CCD diffractometer | 2113 independent reflections |
Radiation source: sealed tube | 1911 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ϕ and ω scans | θmax = 28.4°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.606, Tmax = 0.708 | k = −11→11 |
12941 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.042 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0233P)2 + 0.1949P] where P = (Fo2 + 2Fc2)/3 |
2113 reflections | (Δ/σ)max = 0.001 |
155 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
[Cd(C8H8NO2)2(H2O)2] | V = 846.75 (7) Å3 |
Mr = 448.74 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.6934 (4) Å | µ = 1.33 mm−1 |
b = 8.9082 (4) Å | T = 296 K |
c = 10.1199 (5) Å | 0.42 × 0.38 × 0.28 mm |
β = 104.309 (2)° |
Bruker SMART CCD diffractometer | 2113 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1911 reflections with I > 2σ(I) |
Tmin = 0.606, Tmax = 0.708 | Rint = 0.021 |
12941 measured reflections |
R[F2 > 2σ(F2)] = 0.016 | 0 restraints |
wR(F2) = 0.042 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.30 e Å−3 |
2113 reflections | Δρmin = −0.22 e Å−3 |
155 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.5000 | 0.0000 | 0.0000 | 0.02437 (5) | |
N1 | 0.28876 (11) | 0.07564 (12) | 0.05233 (11) | 0.0301 (2) | |
O1 | 0.61972 (13) | 0.02896 (15) | 0.22844 (12) | 0.0382 (2) | |
O2 | 0.21558 (10) | 0.21211 (11) | 0.63186 (10) | 0.0359 (2) | |
O3 | 0.04577 (10) | 0.26152 (10) | 0.44405 (10) | 0.0352 (2) | |
C1 | 0.20346 (15) | 0.17483 (15) | −0.02640 (14) | 0.0329 (3) | |
C2 | 0.07951 (16) | 0.22538 (17) | 0.00161 (16) | 0.0379 (3) | |
C3 | 0.04061 (15) | 0.16952 (16) | 0.11451 (15) | 0.0357 (3) | |
C4 | 0.12544 (13) | 0.06336 (15) | 0.19621 (13) | 0.0284 (3) | |
C5 | 0.24972 (16) | 0.02120 (15) | 0.16092 (16) | 0.0303 (3) | |
C6 | 0.08326 (19) | −0.01072 (15) | 0.31409 (17) | 0.0345 (3) | |
C7 | 0.17242 (17) | 0.03087 (17) | 0.45527 (15) | 0.0325 (3) | |
C8 | 0.14245 (13) | 0.18100 (13) | 0.51422 (13) | 0.0260 (2) | |
H1 | 0.2335 (18) | 0.208 (2) | −0.1008 (18) | 0.042 (4)* | |
H2 | 0.0224 (18) | 0.296 (2) | −0.0590 (18) | 0.043 (4)* | |
H3 | −0.0467 (19) | 0.199 (2) | 0.1376 (18) | 0.050 (5)* | |
H5 | 0.314 (2) | −0.048 (2) | 0.2165 (19) | 0.044 (5)* | |
H6A | −0.022 (2) | 0.0146 (17) | 0.302 (2) | 0.045 (6)* | |
H6B | 0.0908 (17) | −0.1217 (19) | 0.3076 (17) | 0.039 (4)* | |
H7A | 0.274 (3) | 0.037 (3) | 0.460 (2) | 0.059 (6)* | |
H7B | 0.158 (2) | −0.041 (2) | 0.525 (2) | 0.045 (5)* | |
HO1A | 0.673 (2) | 0.105 (3) | 0.217 (2) | 0.066 (7)* | |
HO1B | 0.672 (3) | −0.041 (3) | 0.266 (3) | 0.065 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.02423 (8) | 0.02733 (8) | 0.02284 (8) | −0.00074 (4) | 0.00826 (5) | −0.00185 (4) |
N1 | 0.0303 (5) | 0.0323 (6) | 0.0310 (6) | 0.0030 (4) | 0.0137 (4) | 0.0022 (4) |
O1 | 0.0427 (6) | 0.0401 (6) | 0.0278 (5) | −0.0014 (5) | 0.0011 (5) | −0.0019 (4) |
O2 | 0.0375 (5) | 0.0343 (5) | 0.0338 (5) | 0.0007 (4) | 0.0047 (4) | −0.0022 (4) |
O3 | 0.0369 (5) | 0.0296 (5) | 0.0372 (5) | 0.0071 (4) | 0.0055 (4) | −0.0010 (4) |
C1 | 0.0388 (7) | 0.0314 (6) | 0.0303 (7) | 0.0007 (5) | 0.0120 (6) | 0.0035 (5) |
C2 | 0.0378 (7) | 0.0357 (7) | 0.0387 (8) | 0.0090 (6) | 0.0064 (6) | 0.0053 (6) |
C3 | 0.0293 (6) | 0.0380 (7) | 0.0413 (8) | 0.0047 (5) | 0.0119 (6) | −0.0040 (6) |
C4 | 0.0309 (6) | 0.0288 (6) | 0.0281 (6) | −0.0039 (5) | 0.0120 (5) | −0.0049 (5) |
C5 | 0.0317 (7) | 0.0316 (7) | 0.0295 (7) | 0.0043 (5) | 0.0114 (6) | 0.0036 (5) |
C6 | 0.0407 (8) | 0.0357 (8) | 0.0318 (8) | −0.0082 (5) | 0.0178 (6) | −0.0043 (5) |
C7 | 0.0385 (8) | 0.0323 (6) | 0.0286 (7) | 0.0063 (6) | 0.0120 (6) | 0.0010 (5) |
C8 | 0.0265 (6) | 0.0252 (6) | 0.0294 (6) | −0.0013 (4) | 0.0126 (5) | 0.0024 (5) |
Cd1—O3i | 2.2704 (9) | C1—H1 | 0.919 (18) |
Cd1—O3ii | 2.2705 (9) | C2—C3 | 1.381 (2) |
Cd1—O1 | 2.3306 (11) | C2—H2 | 0.954 (17) |
Cd1—O1iii | 2.3306 (11) | C3—C4 | 1.385 (2) |
Cd1—N1iii | 2.3374 (10) | C3—H3 | 0.969 (18) |
Cd1—N1 | 2.3374 (10) | C4—C5 | 1.3902 (18) |
N1—C1 | 1.3318 (17) | C4—C6 | 1.5055 (19) |
N1—C5 | 1.3385 (18) | C5—H5 | 0.96 (2) |
O1—HO1A | 0.88 (2) | C6—C7 | 1.522 (2) |
O1—HO1B | 0.83 (3) | C6—H6A | 1.03 (2) |
O2—C8 | 1.2568 (15) | C6—H6B | 0.995 (17) |
O3—C8 | 1.2522 (15) | C7—C8 | 1.5213 (19) |
O3—Cd1iv | 2.2705 (9) | C7—H7A | 0.98 (2) |
C1—C2 | 1.3766 (19) | C7—H7B | 0.99 (2) |
O3i—Cd1—O3ii | 180.0 | C1—C2—H2 | 118.7 (11) |
O3i—Cd1—O1 | 86.35 (4) | C3—C2—H2 | 122.4 (11) |
O3ii—Cd1—O1 | 93.65 (4) | C2—C3—C4 | 119.78 (12) |
O3i—Cd1—O1iii | 93.65 (4) | C2—C3—H3 | 122.3 (11) |
O3ii—Cd1—O1iii | 86.35 (4) | C4—C3—H3 | 117.9 (11) |
O1—Cd1—O1iii | 180.00 (3) | C3—C4—C5 | 117.09 (12) |
O3i—Cd1—N1iii | 91.31 (4) | C3—C4—C6 | 122.34 (12) |
O3ii—Cd1—N1iii | 88.69 (4) | C5—C4—C6 | 120.49 (13) |
O1—Cd1—N1iii | 90.42 (4) | N1—C5—C4 | 123.49 (13) |
O1iii—Cd1—N1iii | 89.58 (4) | N1—C5—H5 | 116.2 (11) |
O3i—Cd1—N1 | 88.69 (4) | C4—C5—H5 | 120.3 (11) |
O3ii—Cd1—N1 | 91.31 (4) | C4—C6—C7 | 115.77 (12) |
O1—Cd1—N1 | 89.58 (4) | C4—C6—H6A | 105.5 (12) |
O1iii—Cd1—N1 | 90.42 (4) | C7—C6—H6A | 112.2 (13) |
N1iii—Cd1—N1 | 180.00 (5) | C4—C6—H6B | 110.2 (10) |
C1—N1—C5 | 118.16 (11) | C7—C6—H6B | 105.7 (9) |
C1—N1—Cd1 | 120.32 (9) | H6A—C6—H6B | 107.3 (13) |
C5—N1—Cd1 | 121.52 (9) | C8—C7—C6 | 117.58 (12) |
Cd1—O1—HO1A | 97.1 (14) | C8—C7—H7A | 102.6 (13) |
Cd1—O1—HO1B | 118.0 (18) | C6—C7—H7A | 113.1 (14) |
HO1A—O1—HO1B | 109 (2) | C8—C7—H7B | 102.8 (12) |
C8—O3—Cd1iv | 124.02 (8) | C6—C7—H7B | 111.3 (12) |
N1—C1—C2 | 122.56 (13) | H7A—C7—H7B | 108.6 (17) |
N1—C1—H1 | 115.2 (11) | O3—C8—O2 | 125.36 (12) |
C2—C1—H1 | 122.3 (11) | O3—C8—C7 | 118.03 (12) |
C1—C2—C3 | 118.88 (13) | O2—C8—C7 | 116.59 (11) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1/2, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—HO1B···O2v | 0.83 (3) | 2.01 (3) | 2.8361 (16) | 174 (2) |
O1—HO1A···O2ii | 0.88 (2) | 1.94 (2) | 2.7546 (17) | 155 (2) |
Symmetry codes: (ii) x+1/2, −y+1/2, z−1/2; (v) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C8H8NO2)2(H2O)2] |
Mr | 448.74 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 9.6934 (4), 8.9082 (4), 10.1199 (5) |
β (°) | 104.309 (2) |
V (Å3) | 846.75 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.33 |
Crystal size (mm) | 0.42 × 0.38 × 0.28 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.606, 0.708 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12941, 2113, 1911 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.670 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.016, 0.042, 1.05 |
No. of reflections | 2113 |
No. of parameters | 155 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.30, −0.22 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).
Cd1—O3i | 2.2704 (9) | Cd1—N1 | 2.3374 (10) |
Cd1—O1 | 2.3306 (11) | ||
O3i—Cd1—O1 | 86.35 (4) | O1—Cd1—N1 | 89.58 (4) |
O3i—Cd1—N1ii | 91.31 (4) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—HO1B···O2iii | 0.83 (3) | 2.01 (3) | 2.8361 (16) | 174 (2) |
O1—HO1A···O2iv | 0.88 (2) | 1.94 (2) | 2.7546 (17) | 155 (2) |
Symmetry codes: (iii) −x+1, −y, −z+1; (iv) x+1/2, −y+1/2, z−1/2. |
Acknowledgements
This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2009–007996).
References
Batten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application, Cambridge: The Royal Society of Chemistry. Google Scholar
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Huh, H. S. & Lee, S. W. (2006). Bull. Korean Chem. Soc. 27, 1839–1843. CAS Google Scholar
Huh, H. S. & Lee, S. W. (2007). J. Mol. Struct. 829, 44–50. Web of Science CSD CrossRef CAS Google Scholar
Huh, H. S. & Lee, S. W. (2008). Bull. Korean Chem. Soc. 29, 2383–2389. CAS Google Scholar
Kim, S. H., Huh, H. S. & Lee, S. W. (2007). J. Mol. Struct. 841, 78–87. Web of Science CSD CrossRef CAS Google Scholar
Lu, J. Y. (2003). Coord. Chem. Rev. 246, 327–347. Web of Science CrossRef CAS Google Scholar
Martin, D. P., Springsteen, C. H. & LaDuca, R. L. (2007). Inorg. Chim. Acta, 360, 599–606. Web of Science CSD CrossRef CAS Google Scholar
Min, D. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 978–983. Web of Science CSD CrossRef CAS Google Scholar
Min, D., Yoon, S. S., Jung, D.-Y., Lee, C. Y., Kim, Y., Han, W. S. & Lee, S. W. (2001). Inorg. Chim. Acta, 324, 293–299. Web of Science CSD CrossRef CAS Google Scholar
Min, D., Yoon, S. S. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 143–146. Web of Science CSD CrossRef CAS Google Scholar
Perry IV, J. J., Perman, J. A. & Zaworotko, M. J. (2009). Chem. Soc. Rev. 38, 1400–1417. Web of Science CrossRef PubMed Google Scholar
Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y.-H., Suen, M.-C., Lee, H.-T. & Wang, J.-C. (2006). Polyhedron, 25, 2944–2952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination polymers have gained attention due to their desirable properties applicable to size-selective adsorption, gas storage, host–guest recognition, catalysis, and photoluminescence (Batten et al., 2009; Perry IV et al., 2009; Robin & Fromm, 2006). We have been continually interested in the preparation, structures, and properties of coordination polymers based on the linking ligands of pyridine carboxylate derivatives, in which the carboxylate groups are directly attached to the pyridine ring (Huh & Lee, 2006; Huh & Lee, 2007; Huh & Lee, 2008; Kim et al., 2007; Min et al., 2001; Min et al., 2002; Min & Lee, 2002).
Linking ligands containing both N-donors and O-donors are frequently used for the construction of coordination polymers (Lu, 2003). In particular, silver, copper, zinc, cobalt, and nickel coordination polymers containing 3-pyridinepropionic acid as a linking ligand have been reported (Wang et al., 2006; Martin et al., 2007). This ligand has an enthylene (–CH2–CH2–) spacer between the pyridyl and carboxylate groups and therefore is flexible. As an extension of our study, we investigated the preparation of cadmium coordination polymers by employing this ligand.
The title compound is isostructural with the zinc (Wang et al., 2006), cobalt, and nickel (Martin et al., 2007) analogs with the empirical formula [Cd(L)2(H2O)2] (L = 3-pyridinepropionic acid). The local coordination environment around the Cd atom and the atom-numbering scheme is shown in Fig. 1. The asymmetric unit consists of one half CdII ion, one L ligand, and one aqua ligand. The CdII ion lies on a crystallographic inversion center, and the remaining atoms occupy general positions. The coordination environment of the CdII ion is slightly-distorted octahedral. The monomer units [Cd(L)2(H2O)2] are linked by covalent bonds (Cd–N and Cd–O) to form a 2-D layer approximately in the (101) plane (Fig. 2) and then extended into a 3-D architecture by hydrogen bonding. Two carboxylate O atoms (O2 and O3) act differently. Whereas O2 acts as a H-bond acceptor to the aqua ligands in the neighboring units, O3 is coordinated to the Cd metal to contribute to the formation of the 2-D layer, in which the Cd···Cd separation is 9.0031 (1) Å.