organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o623-o624

2-Amino-5-methyl­pyridinium 3-amino­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 3 February 2010; accepted 9 February 2010; online 13 February 2010)

In the title compound, C6H9N2+·C7H6NO2, the H atom of the N—H group and an H atom of the 2-amino group from the cation are involved in inter­molecular N—H⋯O hydrogen bonds with the O atoms of the carboxyl­ate group of the anion, forming an R22(8) ring motif. These ring motifs are, in turn, connected by further N—H⋯O hydrogen bonds, forming a two-dimensional network. The crystal structure is further stabilized by ππ stacking inter­actions involving the benzene and pyridinium rings with a centroid–centroid distance of 3.7594 (8) Å.

Related literature

For background to the chemistry of substituted pyridines see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]); Feng et al. (2005[Feng, H., Sun, C.-R., Li, L., Jin, Z.-M. & Tu, B. (2005). Acta Cryst. E61, o1983-o1984.]); Xuan et al. (2003[Xuan, R.-C., Wan, Y.-H., Hu, W.-X., Yang, Z.-Y., Cheng, D.-P. & Xuan, R.-R. (2003). Acta Cryst. E59, o1704-o1706.]); Jin et al. (2005[Jin, Z.-M., Tu, B., He, L., Hu, M.-L. & Zou, J.-W. (2005). Acta Cryst. C61, m197-m199.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H6NO2

  • Mr = 245.28

  • Monoclinic, P 21 /c

  • a = 10.0739 (2) Å

  • b = 10.9620 (2) Å

  • c = 11.9641 (2) Å

  • β = 113.148 (1)°

  • V = 1214.83 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.72 × 0.34 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.988

  • 13305 measured reflections

  • 3541 independent reflections

  • 2576 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.138

  • S = 1.07

  • 3541 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 1.017 (17) 1.682 (17) 2.6901 (14) 170.6 (17)
N2—H1N2⋯O1i 0.939 (16) 1.886 (16) 2.8207 (15) 173.3 (14)
N2—H2N2⋯O2ii 0.920 (17) 1.947 (17) 2.8650 (16) 175.3 (16)
N3—H1N3⋯O1iii 0.903 (19) 2.18 (2) 3.027 (2) 156.0 (17)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977), 2-amino-5-methylpyridinium phosphate (Feng et al., 2005), 2-amino-5-methylpyridinium 3-(4- hydroxy-3-methoxyphenyl)-2-propenoate monohydrate (Xuan et al., 2003) and 2-amino-5-methylpyridinium (2-amino-5-methylpyridine)trichlorozincate(II) (Jin et al., 2005) have been reported in the literature. In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title salt is presented here.

The asymmetric unit (Fig. 1) contains a 2-amino-5-methylpyridinium cation and a 3-aminobenzoate anion. The proton transfer from the carboxyl group to atom N1 of 2-amino-5-methylpyridine resulted in the widening of C2—N1—C1 angle of the pyridinium ring to 122.40 (10)°, compared to the corresponding angle of 117.4° (no standard uncertainty available) in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.002 (1)Å for atom N1. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal structure (Fig. 2), the protonated N1 atom and 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The symmetry-related 3-aminobenzoate molecules are linked through N3—H1N3···O1(-x+1, -y+1, -z+2) hydrogen-bonding to form a R22(14) ring motif (Table 1). The cystal structure is further stabilized by π···π stacking interaction between the pyridine rings (C1–C5/N1) and benzene ring (C7–C12) with centroid- to-centroid distance of 3.7594 (8)Å [symmetry codes: 1-x, 1/2+y, 3/2-z and 1-x, -1/2+y, 3/2-z ].

Related literature top

For background to the chemistry of substituted pyridines see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Nahringbauer & Kvick (1977); Feng et al. (2005); Xuan et al. (2003); Jin et al. (2005). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and 3-aminobenzoic acid (68 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

The methyl H atoms were positioned geometrically and were refined using a riding model, with Uiso(H) = 1.5Ueq(C). A rotating group model was used for the methyl group. The remaining H atoms were located in a difference map and refined freely [N–H = 0.92 (2)–1.02 (2)Å, C–H = 0.96–1.00 (2)Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.
2-amino-5-methylpyridinium 3-aminobenzoate top
Crystal data top
C6H9N2+·C7H6NO2F(000) = 520
Mr = 245.28Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3778 reflections
a = 10.0739 (2) Åθ = 2.6–29.9°
b = 10.9620 (2) ŵ = 0.09 mm1
c = 11.9641 (2) ÅT = 296 K
β = 113.148 (1)°Plate, brown
V = 1214.83 (4) Å30.72 × 0.34 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3541 independent reflections
Radiation source: fine-focus sealed tube2576 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 30.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1014
Tmin = 0.936, Tmax = 0.988k = 1513
13305 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.1203P]
where P = (Fo2 + 2Fc2)/3
3541 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H9N2+·C7H6NO2V = 1214.83 (4) Å3
Mr = 245.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0739 (2) ŵ = 0.09 mm1
b = 10.9620 (2) ÅT = 296 K
c = 11.9641 (2) Å0.72 × 0.34 × 0.13 mm
β = 113.148 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3541 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2576 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.988Rint = 0.029
13305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.20 e Å3
3541 reflectionsΔρmin = 0.26 e Å3
212 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03024 (11)0.31395 (9)0.56765 (8)0.0363 (2)
N20.07229 (13)0.27732 (11)0.70650 (10)0.0477 (3)
C10.12267 (13)0.37351 (11)0.52889 (10)0.0377 (3)
C20.01813 (13)0.34187 (11)0.67327 (10)0.0364 (3)
C30.10505 (14)0.43720 (12)0.74341 (10)0.0418 (3)
C40.19709 (14)0.49686 (12)0.70412 (11)0.0430 (3)
C50.20896 (13)0.46594 (11)0.59348 (10)0.0390 (3)
C60.31252 (16)0.53099 (14)0.55236 (13)0.0546 (4)
H6A0.29790.50450.47190.082*
H6B0.40970.51280.60690.082*
H6C0.29640.61730.55190.082*
O10.74312 (11)0.37847 (9)1.02381 (8)0.0506 (3)
O20.87300 (12)0.35863 (9)0.91200 (8)0.0552 (3)
N30.44474 (16)0.75758 (13)0.87306 (15)0.0620 (4)
C70.61001 (13)0.58920 (11)0.90248 (10)0.0380 (3)
C80.54279 (13)0.69494 (11)0.84017 (11)0.0396 (3)
C90.57809 (14)0.73551 (12)0.74452 (11)0.0415 (3)
C100.67681 (15)0.67294 (12)0.71301 (11)0.0424 (3)
C110.74400 (14)0.56839 (12)0.77538 (10)0.0392 (3)
C120.70967 (12)0.52632 (10)0.87065 (9)0.0343 (3)
C130.78005 (13)0.41271 (11)0.94066 (9)0.0371 (3)
H10.1227 (15)0.3450 (13)0.4509 (14)0.049 (4)*
H30.0993 (15)0.4581 (13)0.8200 (13)0.048 (4)*
H40.2602 (17)0.5628 (15)0.7561 (14)0.061 (4)*
H70.5865 (15)0.5593 (13)0.9703 (13)0.046 (4)*
H90.5270 (16)0.8131 (14)0.6969 (14)0.056 (4)*
H100.7025 (16)0.7023 (13)0.6453 (14)0.053 (4)*
H110.8116 (16)0.5214 (14)0.7520 (13)0.050 (4)*
H1N10.0365 (17)0.2494 (16)0.5130 (15)0.062 (5)*
H1N20.1357 (17)0.2226 (15)0.6504 (14)0.056 (4)*
H2N20.0953 (16)0.3031 (14)0.7699 (15)0.055 (4)*
H1N30.4107 (18)0.7223 (17)0.9247 (17)0.067 (5)*
H2N30.395 (2)0.8179 (18)0.8245 (18)0.077 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0421 (5)0.0357 (5)0.0327 (4)0.0030 (4)0.0163 (4)0.0047 (4)
N20.0578 (7)0.0513 (7)0.0429 (5)0.0101 (6)0.0294 (5)0.0079 (5)
C10.0405 (6)0.0398 (6)0.0341 (5)0.0004 (5)0.0162 (5)0.0022 (4)
C20.0412 (6)0.0359 (6)0.0336 (5)0.0034 (5)0.0163 (4)0.0009 (4)
C30.0457 (7)0.0433 (7)0.0359 (5)0.0016 (6)0.0156 (5)0.0092 (5)
C40.0420 (7)0.0386 (6)0.0448 (6)0.0020 (5)0.0132 (5)0.0103 (5)
C50.0372 (6)0.0371 (6)0.0421 (6)0.0004 (5)0.0148 (5)0.0003 (5)
C60.0516 (8)0.0563 (9)0.0584 (8)0.0131 (7)0.0242 (6)0.0058 (6)
O10.0655 (6)0.0505 (6)0.0456 (5)0.0114 (5)0.0323 (4)0.0126 (4)
O20.0757 (7)0.0558 (6)0.0455 (5)0.0294 (5)0.0362 (5)0.0148 (4)
N30.0660 (9)0.0531 (8)0.0837 (9)0.0201 (7)0.0475 (8)0.0152 (7)
C70.0419 (6)0.0377 (6)0.0380 (5)0.0000 (5)0.0197 (5)0.0003 (5)
C80.0363 (6)0.0370 (6)0.0461 (6)0.0003 (5)0.0169 (5)0.0025 (5)
C90.0404 (7)0.0366 (6)0.0441 (6)0.0001 (5)0.0130 (5)0.0053 (5)
C100.0463 (7)0.0442 (7)0.0387 (5)0.0021 (6)0.0187 (5)0.0062 (5)
C110.0426 (7)0.0414 (7)0.0376 (5)0.0025 (5)0.0200 (5)0.0007 (5)
C120.0378 (6)0.0339 (6)0.0308 (5)0.0006 (5)0.0130 (4)0.0014 (4)
C130.0465 (7)0.0354 (6)0.0300 (5)0.0033 (5)0.0156 (4)0.0008 (4)
Geometric parameters (Å, º) top
N1—C21.3515 (14)O1—C131.2490 (14)
N1—C11.3593 (16)O2—C131.2642 (15)
N1—H1N11.018 (17)N3—C81.3811 (18)
N2—C21.3316 (16)N3—H1N30.904 (19)
N2—H1N20.938 (17)N3—H2N30.89 (2)
N2—H2N20.921 (17)C7—C121.3888 (17)
C1—C51.3607 (17)C7—C81.4003 (17)
C1—H10.984 (15)C7—H70.986 (15)
C2—C31.4090 (17)C8—C91.3977 (18)
C3—C41.3605 (19)C9—C101.3771 (19)
C3—H30.968 (14)C9—H91.040 (16)
C4—C51.4163 (17)C10—C111.3897 (18)
C4—H41.001 (16)C10—H100.995 (15)
C5—C61.4974 (19)C11—C121.3933 (16)
C6—H6A0.9600C11—H110.978 (15)
C6—H6B0.9600C12—C131.5126 (16)
C6—H6C0.9600
C2—N1—C1122.40 (10)H6B—C6—H6C109.5
C2—N1—H1N1118.6 (9)C8—N3—H1N3119.2 (11)
C1—N1—H1N1118.9 (9)C8—N3—H2N3117.7 (13)
C2—N2—H1N2118.7 (10)H1N3—N3—H2N3119.6 (17)
C2—N2—H2N2120.4 (10)C12—C7—C8121.01 (11)
H1N2—N2—H2N2117.6 (13)C12—C7—H7119.6 (8)
N1—C1—C5122.30 (11)C8—C7—H7119.4 (8)
N1—C1—H1115.2 (8)N3—C8—C9121.04 (12)
C5—C1—H1122.5 (8)N3—C8—C7120.67 (12)
N2—C2—N1118.85 (11)C9—C8—C7118.28 (12)
N2—C2—C3123.65 (11)C10—C9—C8120.61 (11)
N1—C2—C3117.48 (11)C10—C9—H9120.8 (9)
C4—C3—C2119.94 (11)C8—C9—H9118.6 (9)
C4—C3—H3121.1 (8)C9—C10—C11121.03 (12)
C2—C3—H3119.0 (8)C9—C10—H10120.6 (9)
C3—C4—C5121.83 (11)C11—C10—H10118.4 (9)
C3—C4—H4119.0 (9)C10—C11—C12119.16 (12)
C5—C4—H4119.1 (9)C10—C11—H11121.8 (8)
C1—C5—C4116.05 (12)C12—C11—H11119.0 (8)
C1—C5—C6122.69 (11)C7—C12—C11119.91 (11)
C4—C5—C6121.25 (11)C7—C12—C13119.26 (10)
C5—C6—H6A109.5C11—C12—C13120.83 (11)
C5—C6—H6B109.5O1—C13—O2124.01 (11)
H6A—C6—H6B109.5O1—C13—C12117.84 (11)
C5—C6—H6C109.5O2—C13—C12118.15 (10)
H6A—C6—H6C109.5
C2—N1—C1—C50.37 (18)N3—C8—C9—C10179.50 (12)
C1—N1—C2—N2178.35 (11)C7—C8—C9—C100.18 (18)
C1—N1—C2—C30.48 (17)C8—C9—C10—C110.16 (19)
N2—C2—C3—C4178.51 (12)C9—C10—C11—C120.43 (19)
N1—C2—C3—C40.26 (18)C8—C7—C12—C110.00 (18)
C2—C3—C4—C50.1 (2)C8—C7—C12—C13179.81 (10)
N1—C1—C5—C40.01 (18)C10—C11—C12—C70.35 (18)
N1—C1—C5—C6179.17 (12)C10—C11—C12—C13179.84 (11)
C3—C4—C5—C10.20 (19)C7—C12—C13—O11.32 (17)
C3—C4—C5—C6178.97 (12)C11—C12—C13—O1178.87 (11)
C12—C7—C8—N3179.42 (12)C7—C12—C13—O2178.33 (10)
C12—C7—C8—C90.26 (18)C11—C12—C13—O21.48 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i1.017 (17)1.682 (17)2.6901 (14)170.6 (17)
N2—H1N2···O1i0.939 (16)1.886 (16)2.8207 (15)173.3 (14)
N2—H2N2···O2ii0.920 (17)1.947 (17)2.8650 (16)175.3 (16)
N3—H1N3···O1iii0.903 (19)2.18 (2)3.027 (2)156.0 (17)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H6NO2
Mr245.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.0739 (2), 10.9620 (2), 11.9641 (2)
β (°) 113.148 (1)
V3)1214.83 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.72 × 0.34 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.936, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
13305, 3541, 2576
Rint0.029
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.138, 1.07
No. of reflections3541
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i1.017 (17)1.682 (17)2.6901 (14)170.6 (17)
N2—H1N2···O1i0.939 (16)1.886 (16)2.8207 (15)173.3 (14)
N2—H2N2···O2ii0.920 (17)1.947 (17)2.8650 (16)175.3 (16)
N3—H1N3···O1iii0.903 (19)2.18 (2)3.027 (2)156.0 (17)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z; (iii) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, H., Sun, C.-R., Li, L., Jin, Z.-M. & Tu, B. (2005). Acta Cryst. E61, o1983–o1984.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationJin, Z.-M., Tu, B., He, L., Hu, M.-L. & Zou, J.-W. (2005). Acta Cryst. C61, m197–m199.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXuan, R.-C., Wan, Y.-H., Hu, W.-X., Yang, Z.-Y., Cheng, D.-P. & Xuan, R.-R. (2003). Acta Cryst. E59, o1704–o1706.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o623-o624
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds