metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tris­­(4-fluoro­benz­yl)tin(IV)]{μ-[(N,N-diiso­propylcar­bamo­thioyl)sulfanyl]acetato-κ2O:O′}]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 February 2010; accepted 13 February 2010; online 20 February 2010)

In the title compound, [Sn(C7H6F)3(C9H16NO2S2)]n, the Sn atom is coordinated in a slightly distorted, trans-C3SnO2 trigonal-bipyramidal environment. Symmetry-related Sn atoms are bridged by diisopropyl­dithio­carbamoylacetato ligands, forming a one-dimensional polymer along [001].

Related literature

Trialkyl­tin carboxyl­ates are generally carboxyl­ate-bridged polymers; see: Ng et al. (1988[Ng, S. W., Chen, W. & Kumar Das, V. G. (1988). J. Organomet. Chem. 345, 59-64.]). For the direct synthesis of substituted tribenzyl­tin chlorides, see: Sisido et al. (1961[Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538-541.]). For the synthesis of dithio­carbamoylacetic acids, see: Nachmias (1952[Nachmias, G. (1952). Ann. Chim. 12, 584-631.]). For background to the triorganotin derivatives of dithio­carbamylacetic acids, see: Ng & Kumar Das (1991[Ng, S. W. & Kumar Das, V. G. (1991). J. Organomet. Chem. 409, 143-156.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C7H6F)3(C9H16NO2S2)]

  • Mr = 680.39

  • Monoclinic, P 21 /c

  • a = 11.2496 (2) Å

  • b = 25.7598 (5) Å

  • c = 11.4216 (2) Å

  • β = 105.427 (1)°

  • V = 3190.58 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.759, Tmax = 0.909

  • 21159 measured reflections

  • 7090 independent reflections

  • 5217 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.159

  • S = 1.09

  • 7090 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 1.27 e Å−3

  • Δρmin = −1.18 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Part of the one-dimensional polymer of the title compound is shown in Fig. 1.

Related literature top

Trialkyltin carboxylates are generally carboxylate-bridged polymers; see: Ng et al. (1988). For the direct synthesis of substituted tribenzyltin chlorides, see: Sisido et al. (1961). For the synthesis of dithiocarbamoylacetic acids, see: Nachmias (1952). For background to the triorganotin derivatives of dithiocarbamylacetic acids, see: Ng & Kumar Das (1991).

Experimental top

Diisopropyldithiocarbomylacetic acid was synthesized from diisopropylamine, carbon disulfide and chloroacetic acid (Nachmias, 1952). Tri(p-fluorobenzyl)tin chloride was prepared by direct synthesis from p-fluorobenzyl chloride and tin powder in a mixture of toluene and water (Sisido et al., 1961). The triorganotin chloride was hydrolyzed with dilute sodium hydroxide solution to give tri(p-fluorobenzyl)tin hydroxide. The carboxylic acid (0.10 g, 0.43 mmol) and the organotin hydroxide (0.20 g, 0.43 mmol) were heated in ethanol (100 ml) for 1 hour. After filtering the mixture, colorless crystals were obtained upon slow evaporation of the filtrate.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C). The final difference Fourier map had a peak/hole in the vicinity of Sn1. The magnitudes decreased when the 2θ limit was lowered to 50 °. The Sn<-O bridging bond is somewhat long [Sn1-O1 2.500 (4)Å] and may lead to inefficient packing and hence the reason for the larger than normal voids in the structure [ca. 142 Å3].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of polymeric Sn(C7H6F)3(C9H16N2O2S2) at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius [symmetry code: (i) x, -y+1/2, z+1/2].
catena-Poly[[tris(4-fluorobenzyl)tin(IV)]{µ-[(N,N- diisopropylcarbamothioyl)sulfanyl]acetato-κ2O:O'}] top
Crystal data top
[Sn(C7H6F)3(C9H16NO2S2)]F(000) = 1384
Mr = 680.39Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5664 reflections
a = 11.2496 (2) Åθ = 2.4–28.3°
b = 25.7598 (5) ŵ = 0.98 mm1
c = 11.4216 (2) ÅT = 293 K
β = 105.427 (1)°Block, colorless
V = 3190.58 (10) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
7090 independent reflections
Radiation source: fine-focus sealed tube5217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.759, Tmax = 0.909k = 3133
21159 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0769P)2 + 3.6716P]
where P = (Fo2 + 2Fc2)/3
7090 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 1.27 e Å3
0 restraintsΔρmin = 1.18 e Å3
Crystal data top
[Sn(C7H6F)3(C9H16NO2S2)]V = 3190.58 (10) Å3
Mr = 680.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2496 (2) ŵ = 0.98 mm1
b = 25.7598 (5) ÅT = 293 K
c = 11.4216 (2) Å0.30 × 0.20 × 0.10 mm
β = 105.427 (1)°
Data collection top
Bruker SMART APEX
diffractometer
7090 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5217 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.909Rint = 0.050
21159 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.09Δρmax = 1.27 e Å3
7090 reflectionsΔρmin = 1.18 e Å3
352 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.66161 (3)0.225810 (13)0.57255 (3)0.03172 (13)
S10.70901 (16)0.42111 (6)0.37053 (14)0.0515 (4)
S20.45463 (17)0.38461 (7)0.35217 (17)0.0594 (4)
F11.1949 (5)0.1403 (3)0.9730 (5)0.131 (2)
F21.0347 (5)0.05335 (19)0.3995 (7)0.123 (2)
F30.1222 (4)0.1519 (2)0.2507 (4)0.0944 (15)
O10.6613 (4)0.26909 (14)0.3765 (3)0.0399 (9)
O20.6790 (3)0.32296 (14)0.2303 (3)0.0395 (8)
N10.5111 (5)0.47966 (18)0.2933 (4)0.0499 (12)
C10.8474 (5)0.2552 (2)0.6297 (5)0.0398 (12)
H1A0.87770.25870.55810.048*
H1B0.84440.28970.66260.048*
C20.9392 (5)0.2243 (2)0.7210 (5)0.0379 (12)
C31.0029 (6)0.1843 (3)0.6852 (6)0.0578 (17)
H30.98810.17600.60330.069*
C41.0897 (7)0.1561 (3)0.7722 (9)0.081 (2)
H41.13290.12910.74850.097*
C51.1106 (6)0.1685 (4)0.8913 (7)0.075 (2)
C61.0492 (6)0.2071 (3)0.9296 (6)0.065 (2)
H61.06400.21481.01180.078*
C70.9642 (5)0.2348 (3)0.8437 (5)0.0491 (15)
H70.92190.26170.86920.059*
C80.6182 (5)0.1582 (2)0.4614 (5)0.0432 (13)
H8A0.56950.13510.49690.052*
H8B0.56760.16850.38210.052*
C90.7277 (5)0.1289 (2)0.4448 (5)0.0434 (13)
C100.7677 (6)0.1362 (2)0.3425 (6)0.0534 (15)
H100.72430.15860.28240.064*
C110.8708 (7)0.1112 (3)0.3262 (8)0.070 (2)
H110.89770.11640.25680.084*
C120.9309 (7)0.0787 (3)0.4153 (10)0.078 (2)
C130.8933 (8)0.0695 (3)0.5164 (8)0.077 (2)
H130.93570.04600.57430.093*
C140.7925 (7)0.0953 (3)0.5329 (6)0.0645 (19)
H140.76760.09010.60340.077*
C150.4941 (5)0.2654 (2)0.5752 (5)0.0413 (13)
H15A0.48390.26590.65690.050*
H15B0.49620.30100.54780.050*
C160.3905 (5)0.2365 (2)0.4919 (5)0.0384 (13)
C170.3326 (6)0.1950 (3)0.5316 (5)0.0514 (15)
H170.35470.18610.61340.062*
C180.2426 (6)0.1667 (3)0.4506 (7)0.0626 (18)
H180.20410.13910.47790.075*
C190.2107 (6)0.1796 (3)0.3309 (6)0.0590 (17)
C200.2654 (6)0.2200 (3)0.2879 (6)0.0579 (18)
H200.24350.22820.20570.070*
C210.3534 (5)0.2481 (3)0.3690 (5)0.0484 (14)
H210.38980.27610.34040.058*
C220.6819 (5)0.3121 (2)0.3390 (5)0.0356 (12)
C230.7238 (6)0.3564 (2)0.4291 (5)0.0434 (13)
H23A0.80990.35070.47090.052*
H23B0.67760.35420.48950.052*
C240.5468 (6)0.4321 (2)0.3331 (5)0.0438 (13)
C250.6014 (7)0.5209 (2)0.2852 (6)0.0654 (19)
H250.68220.50910.33400.078*
C260.5775 (10)0.5729 (3)0.3367 (7)0.104 (4)
H26A0.57540.56860.41960.157*
H26B0.49980.58640.28990.157*
H26C0.64220.59670.33320.157*
C270.6113 (10)0.5271 (3)0.1567 (7)0.092 (3)
H27A0.62930.49400.12640.138*
H27B0.67630.55110.15570.138*
H27C0.53480.54000.10620.138*
C280.3806 (7)0.4941 (3)0.2433 (6)0.0628 (18)
H280.38110.52910.20980.075*
C290.3171 (9)0.4989 (4)0.3436 (8)0.106 (3)
H29A0.23240.50840.30960.159*
H29B0.35740.52510.40010.159*
H29C0.32100.46630.38500.159*
C300.3161 (7)0.4601 (3)0.1383 (7)0.078 (2)
H30A0.36250.45970.07880.117*
H30B0.23500.47360.10220.117*
H30C0.30980.42550.16680.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0307 (2)0.0347 (2)0.02739 (18)0.00011 (16)0.00355 (13)0.00373 (14)
S10.0613 (10)0.0373 (8)0.0522 (9)0.0002 (7)0.0088 (7)0.0025 (7)
S20.0637 (11)0.0510 (10)0.0694 (11)0.0104 (8)0.0281 (9)0.0142 (8)
F10.084 (3)0.184 (6)0.113 (4)0.071 (4)0.003 (3)0.070 (4)
F20.085 (3)0.071 (3)0.226 (7)0.025 (3)0.063 (4)0.010 (4)
F30.068 (3)0.118 (4)0.085 (3)0.044 (3)0.001 (2)0.019 (3)
O10.048 (2)0.036 (2)0.0333 (19)0.0021 (17)0.0058 (16)0.0027 (16)
O20.051 (2)0.039 (2)0.0285 (18)0.0038 (18)0.0116 (16)0.0028 (15)
N10.072 (4)0.038 (3)0.037 (2)0.011 (3)0.010 (2)0.003 (2)
C10.031 (3)0.050 (3)0.037 (3)0.006 (3)0.006 (2)0.004 (2)
C20.027 (3)0.050 (3)0.034 (3)0.002 (2)0.004 (2)0.005 (2)
C30.056 (4)0.063 (4)0.053 (4)0.008 (3)0.013 (3)0.009 (3)
C40.064 (5)0.068 (5)0.105 (7)0.031 (4)0.012 (4)0.001 (5)
C50.048 (4)0.102 (6)0.066 (5)0.022 (4)0.001 (3)0.034 (4)
C60.046 (4)0.111 (6)0.035 (3)0.015 (4)0.005 (3)0.014 (4)
C70.035 (3)0.073 (4)0.036 (3)0.006 (3)0.004 (2)0.006 (3)
C80.043 (3)0.043 (3)0.043 (3)0.009 (3)0.009 (2)0.014 (2)
C90.049 (3)0.033 (3)0.045 (3)0.007 (3)0.008 (3)0.011 (2)
C100.060 (4)0.040 (3)0.063 (4)0.003 (3)0.021 (3)0.002 (3)
C110.071 (5)0.050 (4)0.101 (6)0.001 (4)0.044 (4)0.003 (4)
C120.051 (4)0.039 (4)0.143 (8)0.010 (3)0.021 (5)0.013 (5)
C130.085 (6)0.041 (4)0.092 (6)0.020 (4)0.001 (5)0.001 (4)
C140.087 (5)0.041 (4)0.062 (4)0.007 (4)0.013 (4)0.001 (3)
C150.040 (3)0.047 (3)0.036 (3)0.006 (3)0.009 (2)0.002 (2)
C160.030 (3)0.048 (3)0.037 (3)0.012 (2)0.009 (2)0.004 (2)
C170.049 (4)0.064 (4)0.043 (3)0.003 (3)0.015 (3)0.010 (3)
C180.053 (4)0.068 (5)0.069 (5)0.013 (4)0.019 (3)0.011 (4)
C190.041 (3)0.070 (5)0.063 (4)0.011 (3)0.009 (3)0.007 (4)
C200.040 (3)0.088 (5)0.039 (3)0.004 (3)0.003 (3)0.003 (3)
C210.044 (3)0.060 (4)0.037 (3)0.008 (3)0.004 (3)0.007 (3)
C220.032 (3)0.040 (3)0.032 (3)0.007 (2)0.003 (2)0.000 (2)
C230.052 (3)0.041 (3)0.032 (3)0.007 (3)0.002 (2)0.002 (2)
C240.065 (4)0.036 (3)0.032 (3)0.003 (3)0.016 (3)0.003 (2)
C250.093 (5)0.037 (4)0.056 (4)0.002 (4)0.002 (4)0.004 (3)
C260.179 (10)0.046 (4)0.062 (5)0.012 (5)0.013 (6)0.010 (4)
C270.143 (8)0.066 (5)0.076 (5)0.024 (5)0.044 (6)0.006 (4)
C280.079 (5)0.054 (4)0.054 (4)0.021 (4)0.015 (3)0.009 (3)
C290.133 (8)0.113 (8)0.085 (6)0.074 (7)0.050 (6)0.019 (5)
C300.073 (5)0.088 (6)0.066 (5)0.010 (4)0.004 (4)0.023 (4)
Geometric parameters (Å, º) top
Sn1—C82.133 (5)C12—C131.352 (12)
Sn1—C152.151 (5)C13—C141.369 (10)
Sn1—C12.155 (5)C13—H130.9300
Sn1—O2i2.162 (3)C14—H140.9300
Sn1—O12.500 (4)C15—C161.493 (8)
S1—C241.782 (6)C15—H15A0.9700
S1—C231.787 (6)C15—H15B0.9700
S2—C241.655 (6)C16—C211.387 (8)
F1—C51.351 (8)C16—C171.389 (8)
F2—C121.391 (8)C17—C181.383 (9)
F3—C191.361 (7)C17—H170.9300
O1—C221.232 (6)C18—C191.359 (9)
O2—C221.265 (6)C18—H180.9300
O2—Sn1ii2.162 (3)C19—C201.366 (9)
N1—C241.332 (7)C20—C211.368 (8)
N1—C281.474 (8)C20—H200.9300
N1—C251.490 (9)C21—H210.9300
C1—C21.488 (7)C22—C231.525 (7)
C1—H1A0.9700C23—H23A0.9700
C1—H1B0.9700C23—H23B0.9700
C2—C31.378 (8)C25—C271.510 (10)
C2—C71.382 (8)C25—C261.516 (10)
C3—C41.396 (10)C25—H250.9800
C3—H30.9300C26—H26A0.9600
C4—C51.356 (11)C26—H26B0.9600
C4—H40.9300C26—H26C0.9600
C5—C61.349 (11)C27—H27A0.9600
C6—C71.373 (9)C27—H27B0.9600
C6—H60.9300C27—H27C0.9600
C7—H70.9300C28—C301.506 (10)
C8—C91.500 (8)C28—C291.508 (10)
C8—H8A0.9700C28—H280.9800
C8—H8B0.9700C29—H29A0.9600
C9—C101.372 (8)C29—H29B0.9600
C9—C141.380 (9)C29—H29C0.9600
C10—C111.382 (9)C30—H30A0.9600
C10—H100.9300C30—H30B0.9600
C11—C121.351 (11)C30—H30C0.9600
C11—H110.9300
C8—Sn1—C15109.5 (2)Sn1—C15—H15B110.3
C8—Sn1—C1121.1 (2)H15A—C15—H15B108.6
C15—Sn1—C1127.8 (2)C21—C16—C17117.0 (5)
C8—Sn1—O2i88.72 (19)C21—C16—C15120.8 (5)
C15—Sn1—O2i98.59 (18)C17—C16—C15122.1 (5)
C1—Sn1—O2i94.94 (17)C18—C17—C16120.7 (6)
C8—Sn1—O183.41 (18)C18—C17—H17119.6
C15—Sn1—O190.48 (18)C16—C17—H17119.6
C1—Sn1—O183.39 (17)C19—C18—C17119.7 (6)
O2i—Sn1—O1169.58 (13)C19—C18—H18120.2
C24—S1—C23103.0 (3)C17—C18—H18120.2
C22—O1—Sn1139.2 (3)C18—C19—F3120.0 (6)
C22—O2—Sn1ii131.5 (3)C18—C19—C20121.6 (6)
C24—N1—C28123.0 (6)F3—C19—C20118.4 (6)
C24—N1—C25121.9 (6)C21—C20—C19118.3 (6)
C28—N1—C25114.9 (5)C21—C20—H20120.9
C2—C1—Sn1117.4 (4)C19—C20—H20120.9
C2—C1—H1A107.9C20—C21—C16122.7 (6)
Sn1—C1—H1A107.9C20—C21—H21118.6
C2—C1—H1B107.9C16—C21—H21118.6
Sn1—C1—H1B107.9O1—C22—O2125.6 (5)
H1A—C1—H1B107.2O1—C22—C23119.4 (5)
C3—C2—C7117.8 (5)O2—C22—C23114.8 (5)
C3—C2—C1120.7 (5)C22—C23—S1117.6 (4)
C7—C2—C1121.5 (5)C22—C23—H23A107.9
C2—C3—C4119.8 (6)S1—C23—H23A107.9
C2—C3—H3120.1C22—C23—H23B107.9
C4—C3—H3120.1S1—C23—H23B107.9
C5—C4—C3119.6 (7)H23A—C23—H23B107.2
C5—C4—H4120.2N1—C24—S2125.6 (5)
C3—C4—H4120.2N1—C24—S1115.1 (5)
C4—C5—F1118.0 (8)S2—C24—S1119.3 (3)
C4—C5—C6122.1 (6)N1—C25—C27111.3 (6)
F1—C5—C6119.9 (7)N1—C25—C26114.3 (7)
C5—C6—C7118.1 (6)C27—C25—C26110.5 (6)
C5—C6—H6120.9N1—C25—H25106.7
C7—C6—H6120.9C27—C25—H25106.7
C6—C7—C2122.5 (6)C26—C25—H25106.7
C6—C7—H7118.8C25—C26—H26A109.5
C2—C7—H7118.8C25—C26—H26B109.5
C9—C8—Sn1114.9 (4)H26A—C26—H26B109.5
C9—C8—H8A108.5C25—C26—H26C109.5
Sn1—C8—H8A108.5H26A—C26—H26C109.5
C9—C8—H8B108.5H26B—C26—H26C109.5
Sn1—C8—H8B108.5C25—C27—H27A109.5
H8A—C8—H8B107.5C25—C27—H27B109.5
C10—C9—C14118.6 (6)H27A—C27—H27B109.5
C10—C9—C8120.3 (6)C25—C27—H27C109.5
C14—C9—C8121.1 (6)H27A—C27—H27C109.5
C9—C10—C11121.9 (7)H27B—C27—H27C109.5
C9—C10—H10119.1N1—C28—C30112.4 (6)
C11—C10—H10119.1N1—C28—C29110.5 (6)
C12—C11—C10117.2 (7)C30—C28—C29115.4 (8)
C12—C11—H11121.4N1—C28—H28105.9
C10—C11—H11121.4C30—C28—H28105.9
C11—C12—C13123.0 (7)C29—C28—H28105.9
C11—C12—F2117.5 (9)C28—C29—H29A109.5
C13—C12—F2119.5 (8)C28—C29—H29B109.5
C12—C13—C14119.4 (7)H29A—C29—H29B109.5
C12—C13—H13120.3C28—C29—H29C109.5
C14—C13—H13120.3H29A—C29—H29C109.5
C13—C14—C9120.0 (7)H29B—C29—H29C109.5
C13—C14—H14120.0C28—C30—H30A109.5
C9—C14—H14120.0C28—C30—H30B109.5
C16—C15—Sn1107.0 (3)H30A—C30—H30B109.5
C16—C15—H15A110.3C28—C30—H30C109.5
Sn1—C15—H15A110.3H30A—C30—H30C109.5
C16—C15—H15B110.3H30B—C30—H30C109.5
C8—Sn1—O1—C22176.6 (5)C1—Sn1—C15—C16162.0 (3)
C15—Sn1—O1—C2273.8 (5)O2i—Sn1—C15—C1694.8 (4)
C1—Sn1—O1—C2254.2 (5)O1—Sn1—C15—C1680.0 (4)
O2i—Sn1—O1—C22135.5 (7)Sn1—C15—C16—C2187.7 (6)
C8—Sn1—C1—C270.7 (5)Sn1—C15—C16—C1788.0 (6)
C15—Sn1—C1—C2125.7 (4)C21—C16—C17—C180.2 (9)
O2i—Sn1—C1—C220.8 (4)C15—C16—C17—C18175.6 (6)
O1—Sn1—C1—C2148.9 (4)C16—C17—C18—C190.3 (10)
Sn1—C1—C2—C386.3 (6)C17—C18—C19—F3180.0 (6)
Sn1—C1—C2—C794.2 (6)C17—C18—C19—C200.1 (11)
C7—C2—C3—C40.3 (10)C18—C19—C20—C210.6 (11)
C1—C2—C3—C4179.2 (6)F3—C19—C20—C21179.3 (6)
C2—C3—C4—C50.0 (12)C19—C20—C21—C161.2 (10)
C3—C4—C5—F1179.7 (7)C17—C16—C21—C201.0 (9)
C3—C4—C5—C60.5 (13)C15—C16—C21—C20174.9 (6)
C4—C5—C6—C70.8 (13)Sn1—O1—C22—O2177.0 (3)
F1—C5—C6—C7179.9 (7)Sn1—O1—C22—C231.7 (8)
C5—C6—C7—C20.5 (11)Sn1ii—O2—C22—O18.5 (8)
C3—C2—C7—C60.0 (9)Sn1ii—O2—C22—C23166.9 (3)
C1—C2—C7—C6179.5 (6)O1—C22—C23—S1162.0 (4)
C15—Sn1—C8—C9176.0 (4)O2—C22—C23—S122.3 (6)
C1—Sn1—C8—C99.6 (5)C24—S1—C23—C2272.4 (5)
O2i—Sn1—C8—C985.4 (4)C28—N1—C24—S29.3 (8)
O1—Sn1—C8—C987.8 (4)C25—N1—C24—S2176.7 (4)
Sn1—C8—C9—C1097.9 (6)C28—N1—C24—S1171.9 (4)
Sn1—C8—C9—C1480.2 (6)C25—N1—C24—S12.1 (7)
C14—C9—C10—C110.4 (10)C23—S1—C24—N1176.2 (4)
C8—C9—C10—C11177.7 (6)C23—S1—C24—S22.6 (4)
C9—C10—C11—C120.3 (11)C24—N1—C25—C27100.4 (7)
C10—C11—C12—C131.0 (12)C28—N1—C25—C2774.0 (8)
C10—C11—C12—F2180.0 (6)C24—N1—C25—C26133.4 (6)
C11—C12—C13—C142.2 (13)C28—N1—C25—C2652.1 (7)
F2—C12—C13—C14178.8 (7)C24—N1—C28—C3056.2 (8)
C12—C13—C14—C92.1 (12)C25—N1—C28—C30118.2 (7)
C10—C9—C14—C130.8 (10)C24—N1—C28—C2974.3 (8)
C8—C9—C14—C13178.9 (6)C25—N1—C28—C29111.4 (7)
C8—Sn1—C15—C163.1 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Sn(C7H6F)3(C9H16NO2S2)]
Mr680.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.2496 (2), 25.7598 (5), 11.4216 (2)
β (°) 105.427 (1)
V3)3190.58 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.759, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
21159, 7090, 5217
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.159, 1.09
No. of reflections7090
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.27, 1.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the University of Malaya (RG020/09AFR and PS338/2009C) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNachmias, G. (1952). Ann. Chim. 12, 584–631.  Google Scholar
First citationNg, S. W., Chen, W. & Kumar Das, V. G. (1988). J. Organomet. Chem. 345, 59–64.  CrossRef CAS Web of Science Google Scholar
First citationNg, S. W. & Kumar Das, V. G. (1991). J. Organomet. Chem. 409, 143-156.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538–541.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds