metal-organic compounds
fac-(2-Amidoethyl-κ2C1,O)aquatrichloridotin(IV) 1,4,7,10,13,16-hexaoxacyclooctadecane (2/1)
aCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dDepartamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, and eCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: Edward.Tiekink@gmail.com
The 3H6NO)Cl3(H2O)]2·C12H24O6, comprises a six-coordinate tin complex and a 18-crown-6 molecule, the latter disposed about a centre of inversion. The tin atom is coordinated by three Cl atoms, that define a facial arrangement, a chelating C-,O- ligand, and a water molecule. The resulting CCl3O2 donor set defines a distorted octahedral geometry. The tin-bound aqua ligand forms O—H⋯O hydrogen bonds to the centrosymmetric 18-crown-6 molecule, resulting in a tri-molecular aggregate. These assemble into a supramolecular chain along the a axis being connected by N—H⋯O hydrogen bonds.
of the title compound, [Sn(CRelated literature
For background to amidoethyl tin compounds, see: Hutton & Oakes (1976). For the use of organotin compounds as PVC stabilisers, see: Lanigen & Weinberg (1976). For the crystal structures of amidoethyltin compounds, see: Harrison et al. (1979); Tiekink et al. (2006). For the crystal structures of alkyloxycarbonylethyltin compounds, see: de Lima et al. (2009); Milne et al. (2005). For a review on tin–crown ether compounds, see: Cusack & Smith (1990). For related structures of organotin(IV) and tin(IV) halide complexes with see: Cusack et al. (1983); Amini et al. (1984, 2002); Russo et al. (1984); Valle et al. (1984, 1985); Rivarola et al. (1986); Bott et al. (1987); Mitra et al. (1993); Yap et al. (1996); Wolff et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810005908/lh2997sup1.cif
contains datablocks general, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810005908/lh2997Isup2.hkl
The reaction between SnCl2, H2C═CHCONH2 and gaseous HCl in diethyl ether, as previously reported (Tiekink et al., 2006), produced (H2NCOCH2CH2-C,O)(ClCH2CH2CONH2-O)SnCl3. Solutions of 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) (0.26 g, 1 mmol) in EtOH (15 ml) and (H2NCOCH2CH2-C,O)(ClCH2CH2CONH2-O)SnCl3 (0.40 g, 1 mmol) in EtOH (20 ml) were mixed and gently heated for 15 min. The reaction mixture was cooled and maintained at room temperature. The crystals which slowly appeared on evaporation of the solvent were harvested after 1 week. M.pt.: partial at 463 K with complete melting at 469-471 K. IR (KBr, cm-1): 3441, 3349, 3273, 2919(br), 1650, 1573, 1456, 1352, 1297, 1254, 1094, 1037, 958, 915, 844, 702, 564.
The C-bound H atoms were geometrically placed (C–H = 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O- and N- bound and H atoms were located from difference maps and refined with O–H = 0.84±0.01 Å and N–H = 0.88±0.01 Å, and with Uiso(H) = 1.5Ueq(O, N). The maximum and minimum residual electron density peaks of 0.81 and 1.31 e Å-3, respectively, were located 1.29 Å and 0.79 Å from the H4a and Sn atoms, respectively.
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Sn(C3H6NO)Cl3(H2O)]2·C12H24O6 | F(000) = 888 |
Mr = 894.64 | Dx = 1.910 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9442 reflections |
a = 10.1260 (2) Å | θ = 2.9–27.5° |
b = 10.0893 (3) Å | µ = 2.17 mm−1 |
c = 15.8229 (4) Å | T = 120 K |
β = 105.814 (2)° | Prism, colourless |
V = 1555.35 (7) Å3 | 0.20 × 0.18 × 0.02 mm |
Z = 2 |
Nonius KappaCCD area-detector diffractometer | 3555 independent reflections |
Radiation source: Enraf Nonius FR591 rotating anode | 2981 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.062 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ϕ and ω scans | h = −13→12 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −13→13 |
Tmin = 0.638, Tmax = 0.746 | l = −20→20 |
19526 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0486P)2] where P = (Fo2 + 2Fc2)/3 |
3555 reflections | (Δ/σ)max = 0.002 |
184 parameters | Δρmax = 0.81 e Å−3 |
6 restraints | Δρmin = −1.31 e Å−3 |
[Sn(C3H6NO)Cl3(H2O)]2·C12H24O6 | V = 1555.35 (7) Å3 |
Mr = 894.64 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.1260 (2) Å | µ = 2.17 mm−1 |
b = 10.0893 (3) Å | T = 120 K |
c = 15.8229 (4) Å | 0.20 × 0.18 × 0.02 mm |
β = 105.814 (2)° |
Nonius KappaCCD area-detector diffractometer | 3555 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 2981 reflections with I > 2σ(I) |
Tmin = 0.638, Tmax = 0.746 | Rint = 0.062 |
19526 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 6 restraints |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 0.81 e Å−3 |
3555 reflections | Δρmin = −1.31 e Å−3 |
184 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.78251 (2) | 0.23444 (2) | 0.571426 (15) | 0.01204 (10) | |
Cl1 | 0.77631 (9) | 0.37992 (9) | 0.68869 (6) | 0.0199 (2) | |
Cl2 | 0.64299 (9) | 0.07335 (9) | 0.62109 (6) | 0.0231 (2) | |
Cl3 | 0.99961 (8) | 0.13617 (9) | 0.65225 (6) | 0.0200 (2) | |
O1 | 0.5890 (2) | 0.3331 (2) | 0.49675 (15) | 0.0146 (5) | |
O1W | 0.8950 (2) | 0.4054 (2) | 0.53264 (16) | 0.0139 (5) | |
H1W | 0.859 (3) | 0.436 (4) | 0.4824 (12) | 0.021* | |
H2W | 0.922 (4) | 0.471 (2) | 0.565 (2) | 0.021* | |
N1 | 0.4259 (3) | 0.3257 (3) | 0.3687 (2) | 0.0217 (7) | |
H1N | 0.377 (3) | 0.386 (3) | 0.387 (2) | 0.033* | |
H2N | 0.396 (4) | 0.290 (4) | 0.3164 (14) | 0.033* | |
C1 | 0.7646 (3) | 0.1561 (3) | 0.4426 (2) | 0.0155 (7) | |
H1A | 0.8272 | 0.2038 | 0.4148 | 0.019* | |
H1B | 0.7894 | 0.0610 | 0.4465 | 0.019* | |
C2 | 0.6165 (3) | 0.1739 (4) | 0.3884 (2) | 0.0191 (8) | |
H2A | 0.6154 | 0.1925 | 0.3267 | 0.023* | |
H2B | 0.5663 | 0.0899 | 0.3890 | 0.023* | |
C3 | 0.5422 (3) | 0.2844 (3) | 0.4209 (2) | 0.0157 (7) | |
O2 | 1.0228 (2) | 0.6214 (2) | 0.63876 (15) | 0.0146 (5) | |
O3 | 0.7765 (2) | 0.6756 (2) | 0.51861 (15) | 0.0146 (5) | |
O4 | 0.7319 (2) | 0.4951 (2) | 0.37156 (15) | 0.0140 (5) | |
C4 | 0.9395 (4) | 0.7297 (3) | 0.6529 (3) | 0.0172 (8) | |
H4A | 0.9985 | 0.8011 | 0.6861 | 0.021* | |
H4B | 0.8774 | 0.6993 | 0.6877 | 0.021* | |
C5 | 0.8571 (4) | 0.7812 (3) | 0.5659 (3) | 0.0175 (8) | |
H5A | 0.7967 | 0.8541 | 0.5745 | 0.021* | |
H5B | 0.9190 | 0.8161 | 0.5323 | 0.021* | |
C6 | 0.7026 (3) | 0.7148 (4) | 0.4323 (2) | 0.0165 (7) | |
H6A | 0.7659 | 0.7537 | 0.4012 | 0.020* | |
H6B | 0.6326 | 0.7820 | 0.4349 | 0.020* | |
C7 | 0.6351 (3) | 0.5932 (3) | 0.3852 (2) | 0.0156 (7) | |
H7A | 0.5772 | 0.5525 | 0.4195 | 0.019* | |
H7B | 0.5741 | 0.6196 | 0.3274 | 0.019* | |
C8 | 1.1285 (3) | 0.5885 (3) | 0.7162 (2) | 0.0148 (7) | |
H8A | 1.0876 | 0.5676 | 0.7648 | 0.018* | |
H8B | 1.1917 | 0.6646 | 0.7342 | 0.018* | |
C9 | 0.7943 (3) | 0.5295 (3) | 0.3033 (2) | 0.0149 (7) | |
H9A | 0.8578 | 0.6050 | 0.3223 | 0.018* | |
H9B | 0.7227 | 0.5562 | 0.2498 | 0.018* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.01329 (15) | 0.01173 (14) | 0.01132 (15) | −0.00019 (8) | 0.00373 (10) | 0.00053 (9) |
Cl1 | 0.0273 (5) | 0.0190 (5) | 0.0138 (5) | 0.0020 (4) | 0.0062 (4) | −0.0027 (3) |
Cl2 | 0.0223 (4) | 0.0194 (5) | 0.0303 (5) | −0.0025 (4) | 0.0118 (4) | 0.0071 (4) |
Cl3 | 0.0157 (4) | 0.0195 (5) | 0.0227 (5) | 0.0027 (3) | 0.0018 (4) | 0.0049 (4) |
O1 | 0.0164 (12) | 0.0174 (13) | 0.0101 (12) | 0.0007 (10) | 0.0036 (10) | −0.0028 (10) |
O1W | 0.0189 (12) | 0.0094 (12) | 0.0121 (13) | 0.0002 (10) | 0.0023 (10) | 0.0026 (10) |
N1 | 0.0165 (15) | 0.0297 (19) | 0.0176 (17) | 0.0027 (14) | 0.0023 (13) | −0.0074 (14) |
C1 | 0.0176 (17) | 0.0149 (18) | 0.0152 (18) | 0.0015 (14) | 0.0062 (14) | −0.0013 (14) |
C2 | 0.0167 (18) | 0.024 (2) | 0.017 (2) | −0.0039 (15) | 0.0054 (15) | −0.0063 (16) |
C3 | 0.0115 (16) | 0.0186 (18) | 0.0194 (19) | −0.0020 (14) | 0.0084 (14) | 0.0025 (15) |
O2 | 0.0135 (11) | 0.0160 (12) | 0.0129 (13) | 0.0015 (9) | 0.0011 (9) | −0.0024 (9) |
O3 | 0.0142 (12) | 0.0128 (12) | 0.0154 (13) | 0.0005 (10) | 0.0017 (10) | −0.0002 (10) |
O4 | 0.0149 (11) | 0.0138 (12) | 0.0135 (12) | 0.0011 (9) | 0.0044 (9) | 0.0023 (9) |
C4 | 0.0170 (18) | 0.0160 (18) | 0.0194 (19) | −0.0013 (14) | 0.0060 (15) | −0.0088 (14) |
C5 | 0.0166 (18) | 0.0110 (17) | 0.025 (2) | −0.0019 (14) | 0.0050 (15) | −0.0037 (15) |
C6 | 0.0166 (18) | 0.0162 (18) | 0.017 (2) | 0.0029 (14) | 0.0051 (15) | 0.0022 (14) |
C7 | 0.0129 (16) | 0.0199 (18) | 0.0147 (18) | 0.0032 (14) | 0.0052 (14) | 0.0029 (14) |
C8 | 0.0176 (17) | 0.0154 (17) | 0.0110 (17) | 0.0003 (14) | 0.0029 (14) | −0.0008 (14) |
C9 | 0.0155 (17) | 0.0174 (18) | 0.0128 (18) | −0.0002 (14) | 0.0058 (14) | 0.0035 (14) |
Sn—C1 | 2.147 (3) | O3—C6 | 1.423 (4) |
Sn—O1 | 2.228 (2) | O3—C5 | 1.424 (4) |
Sn—O1W | 2.243 (2) | O4—C9 | 1.434 (4) |
Sn—Cl1 | 2.3800 (9) | O4—C7 | 1.450 (4) |
Sn—Cl2 | 2.4208 (9) | C4—C5 | 1.496 (5) |
Sn—Cl3 | 2.4329 (9) | C4—H4A | 0.9900 |
O1—C3 | 1.263 (4) | C4—H4B | 0.9900 |
O1W—H1W | 0.84 (2) | C5—H5A | 0.9900 |
O1W—H2W | 0.84 (3) | C5—H5B | 0.9900 |
N1—C3 | 1.309 (5) | C6—C7 | 1.500 (5) |
N1—H1N | 0.88 (3) | C6—H6A | 0.9900 |
N1—H2N | 0.88 (3) | C6—H6B | 0.9900 |
C1—C2 | 1.522 (5) | C7—H7A | 0.9900 |
C1—H1A | 0.9900 | C7—H7B | 0.9900 |
C1—H1B | 0.9900 | C8—C9i | 1.502 (5) |
C2—C3 | 1.512 (5) | C8—H8A | 0.9900 |
C2—H2A | 0.9900 | C8—H8B | 0.9900 |
C2—H2B | 0.9900 | C9—C8i | 1.502 (5) |
O2—C8 | 1.429 (4) | C9—H9A | 0.9900 |
O2—C4 | 1.435 (4) | C9—H9B | 0.9900 |
C1—Sn—O1 | 80.00 (11) | C6—O3—C5 | 111.8 (3) |
C1—Sn—O1W | 86.63 (11) | C9—O4—C7 | 113.6 (2) |
O1—Sn—O1W | 87.14 (8) | O2—C4—C5 | 108.9 (3) |
C1—Sn—Cl1 | 162.49 (10) | O2—C4—H4A | 109.9 |
O1—Sn—Cl1 | 86.08 (6) | C5—C4—H4A | 109.9 |
O1W—Sn—Cl1 | 82.09 (6) | O2—C4—H4B | 109.9 |
C1—Sn—Cl2 | 98.92 (10) | C5—C4—H4B | 109.9 |
O1—Sn—Cl2 | 88.03 (6) | H4A—C4—H4B | 108.3 |
O1W—Sn—Cl2 | 171.91 (6) | O3—C5—C4 | 108.7 (3) |
Cl1—Sn—Cl2 | 91.10 (3) | O3—C5—H5A | 110.0 |
C1—Sn—Cl3 | 100.34 (10) | C4—C5—H5A | 110.0 |
O1—Sn—Cl3 | 177.30 (6) | O3—C5—H5B | 110.0 |
O1W—Sn—Cl3 | 90.20 (6) | C4—C5—H5B | 110.0 |
Cl1—Sn—Cl3 | 93.07 (3) | H5A—C5—H5B | 108.3 |
Cl2—Sn—Cl3 | 94.55 (3) | O3—C6—C7 | 107.4 (3) |
C3—O1—Sn | 112.2 (2) | O3—C6—H6A | 110.2 |
Sn—O1W—H1W | 115 (3) | C7—C6—H6A | 110.2 |
Sn—O1W—H2W | 123 (3) | O3—C6—H6B | 110.2 |
H1W—O1W—H2W | 106 (4) | C7—C6—H6B | 110.2 |
C3—N1—H1N | 120 (2) | H6A—C6—H6B | 108.5 |
C3—N1—H2N | 119 (2) | O4—C7—C6 | 113.4 (3) |
H1N—N1—H2N | 120.6 (19) | O4—C7—H7A | 108.9 |
C2—C1—Sn | 107.9 (2) | C6—C7—H7A | 108.9 |
C2—C1—H1A | 110.1 | O4—C7—H7B | 108.9 |
Sn—C1—H1A | 110.1 | C6—C7—H7B | 108.9 |
C2—C1—H1B | 110.1 | H7A—C7—H7B | 107.7 |
Sn—C1—H1B | 110.1 | O2—C8—C9i | 108.6 (3) |
H1A—C1—H1B | 108.4 | O2—C8—H8A | 110.0 |
C3—C2—C1 | 113.6 (3) | C9i—C8—H8A | 110.0 |
C3—C2—H2A | 108.9 | O2—C8—H8B | 110.0 |
C1—C2—H2A | 108.9 | C9i—C8—H8B | 110.0 |
C3—C2—H2B | 108.9 | H8A—C8—H8B | 108.4 |
C1—C2—H2B | 108.9 | O4—C9—C8i | 108.9 (3) |
H2A—C2—H2B | 107.7 | O4—C9—H9A | 109.9 |
O1—C3—N1 | 121.1 (3) | C8i—C9—H9A | 109.9 |
O1—C3—C2 | 121.2 (3) | O4—C9—H9B | 109.9 |
N1—C3—C2 | 117.7 (3) | C8i—C9—H9B | 109.9 |
C8—O2—C4 | 112.2 (3) | H9A—C9—H9B | 108.3 |
C1—Sn—O1—C3 | 12.0 (2) | Sn—O1—C3—C2 | −1.3 (4) |
O1W—Sn—O1—C3 | 99.0 (2) | C1—C2—C3—O1 | −15.9 (5) |
Cl1—Sn—O1—C3 | −178.7 (2) | C1—C2—C3—N1 | 165.8 (3) |
Cl2—Sn—O1—C3 | −87.5 (2) | C8—O2—C4—C5 | 165.3 (3) |
O1—Sn—C1—C2 | −18.7 (2) | C6—O3—C5—C4 | −175.7 (3) |
O1W—Sn—C1—C2 | −106.4 (2) | O2—C4—C5—O3 | 57.7 (4) |
Cl1—Sn—C1—C2 | −56.6 (4) | C5—O3—C6—C7 | 173.4 (3) |
Cl2—Sn—C1—C2 | 67.6 (2) | C9—O4—C7—C6 | −75.0 (4) |
Cl3—Sn—C1—C2 | 164.0 (2) | O3—C6—C7—O4 | −65.3 (3) |
Sn—C1—C2—C3 | 24.0 (4) | C4—O2—C8—C9i | 177.2 (3) |
Sn—O1—C3—N1 | 177.0 (3) | C7—O4—C9—C8i | −169.7 (3) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···O4 | 0.84 (2) | 1.96 (2) | 2.784 (3) | 166 (3) |
O1w—H2w···O2 | 0.84 (3) | 2.01 (3) | 2.839 (3) | 169 (4) |
N1—H1n···O3ii | 0.88 (3) | 2.51 (3) | 3.061 (4) | 121 (2) |
N1—H2n···Cl1iii | 0.88 (3) | 2.68 (3) | 3.516 (3) | 161 (3) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Sn(C3H6NO)Cl3(H2O)]2·C12H24O6 |
Mr | 894.64 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 10.1260 (2), 10.0893 (3), 15.8229 (4) |
β (°) | 105.814 (2) |
V (Å3) | 1555.35 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.17 |
Crystal size (mm) | 0.20 × 0.18 × 0.02 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.638, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19526, 3555, 2981 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.090, 1.12 |
No. of reflections | 3555 |
No. of parameters | 184 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.81, −1.31 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···O4 | 0.84 (2) | 1.96 (2) | 2.784 (3) | 166 (3) |
O1w—H2w···O2 | 0.84 (3) | 2.01 (3) | 2.839 (3) | 169 (4) |
N1—H1n···O3i | 0.88 (3) | 2.51 (3) | 3.061 (4) | 121 (2) |
N1—H2n···Cl1ii | 0.88 (3) | 2.68 (3) | 3.516 (3) | 161 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+1/2, z−1/2. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).
References
Amini, M. M., Foladi, S., Aghabozorg, H. & Ng, S. W. (2002). Main Group Met. Chem. 25, 643–645. CrossRef CAS Google Scholar
Amini, M. M., Rheingold, A. L., Taylor, R. W. & Zuckerman, J. J. (1984). J. Am. Chem. Soc. 106, 7289–7291. CSD CrossRef CAS Web of Science Google Scholar
Bott, S. G., Prinz, H., Alvanipour, A. & Atwood, J. L. (1987). J. Coord. Chem. 16, 303–309. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cusack, P. A., Petel, B. N. & Smith, P. J. (1983). Inorg. Chim. Acta, 76, L21–L22. CrossRef CAS Web of Science Google Scholar
Cusack, P. A. & Smith, P. J. (1990). Appl. Organomet. Chem. 4, 311–317. CrossRef CAS Web of Science Google Scholar
Harrison, P. G., King, T. J. & Healey, M. A. (1979). J. Organomet. Chem. 182, 17–36. CSD CrossRef CAS Web of Science Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Hutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123–133. CrossRef CAS Google Scholar
Lanigen, D. & Weinberg, E. L. (1976). Adv. Chem. Ser. 157, 134–142. Google Scholar
Lima, G. M. de, Milne, B. F. R., Pereira, R. P., Rocco, A. M., Skakle, J. M., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2009). J. Mol. Struct. 921, 244–250. Google Scholar
Milne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M. S., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2005). Appl. Organomet. Chem. 19, 363–371. Web of Science CSD CrossRef CAS Google Scholar
Mitra, A., Knobler, C. B. & Johnson, S. E. (1993). Inorg. Chem. 32, 1076–1077. CSD CrossRef CAS Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rivarola, E., Saiano, F., Fontana, A. & Russo, U. (1986). J. Organomet. Chem. 317, 285–289. CrossRef CAS Web of Science Google Scholar
Russo, U., Cassol, A. & Silvestri, A. (1984). J. Organomet. Chem. 260, 69–72. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, m971–m973. Web of Science CSD CrossRef IUCr Journals Google Scholar
Valle, G., Cassol, A. & Russo, U. (1984). Inorg. Chim. Acta, 82, 81–84. CSD CrossRef CAS Web of Science Google Scholar
Valle, G., Ruisi, G. & Russo, U. (1985). Inorg.Chim. Acta, 99, L21–L23. CSD CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
Wolff, M., Harmening, T., Pöttgen, R. & Feldmann, C. (2009). Inorg. Chem. 48, 3153–3156. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yap, G. P. A., Amini, M. M., Ng, S. W., Counterman, A. E. & Rheingold, A. L. (1996). Main Group Chem. 1, 359–363. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Functionally substituted-alkyl-tin compounds, X3SnCR2CH2COY and X2Sn(CR2CH2COY)2 (X = halide, R = H or alkyl; Y = OR', R' or NH2, R' = alkyl or aryl), are available from reactions, first reported in the 1970's (Hutton & Oakes, 1976), of R2C=CHCOY, HX and SnX2 (for X3SnCR2CH2COY compounds) or HX and tin (for X2Sn(CR2CH2COY)2 compounds). Original interest with these compounds was primarily concerned with their industrial potential as precursors of PVC stabilizers (Lanigen & Weinberg, 1976) but also with regard to their coordination chemistry. Although the potential for use in PVC stabilization has not been realized commercially, the interest in the coordination chemistry, especially of compounds containing SnCR2CH2CO2R moieties, has been maintained over the succeeding decades: of particular interest has been the coordination modes of the CR2CH2COY ligands (de Lima et al., 2009; Milne et al., 2005; Harrison et al., 1979). Much less study has been made of amidoethyl-tin species. i.e., tin compounds containing the CH2CH2CONH2 group. Only two structures of amidoethyltin derivatives have been previously reported, namely of (H2NHCOCH2CH2-C,O)2SnCl2 (Harrison et al., 1979) and (H2NCOCH2CH2-C,O)(ClCH2CH2CONH2-O)SnCl3 (Tiekink et al., 2006). We now wish to report the crystal structure of fac-aqua-trichloro(2-amidoethyl-C,O)tin 1,4,7,10,13,16-hexaoxacyclooctadecane (2/1), (I). Crown ether complexes of tin and organotin halides have been variously reported (Cusack et al. 1983; Amini et al., 1984; Valle et al., 1984; Russo et al., 1984; Valle et al., 1985; Rivarola et al., 1986; Bott et al., 1987; Cusack & Smith, 1990; Mitra et al., 1993; Yap et al., 1996; Amini et al., 2002; Wolff et al., 2009).
The asymmetric unit of (I) comprises a tin complex and half a 18-crown-6 molecule as the latter is situated about a centre of inversion, Fig. 1. The tin atom is coordinated by three Cl atoms, that define a facial arrangement, a C-,O-chelating ligand, and an aqua ligand. The resulting CCl3O2 donor set defines a distorted octahedral geometry. The Cl atoms trans to O-donors form longer Sn–Cl bond distances [Sn–Cl2 = 2.4208 (9) and Sn–Cl3 = 2.4329 (9) Å] than the Cl atom trans to the C1 atom [Sn–Cl1 = 2.3800 (9) Å]. The five-membered SnC3O chelate ring is not planar as seen in the values of the Sn–C1–C2–C3 and C1–C2–C3–O1 torsion angles of 24.0 (4) and -15.9 (5) °, respectively.
The components of the structure are connected via Oaqua–H···Oether hydrogen bonds to form a tri-molecular aggregate, Table 1 and Fig. 1. These in turn are connected via N–H···Oether hydrogen bonds so that all ether-O atoms participate in hydrogen bonding interactions, Table 1. The resulting supramolecular aggregate is a linear chain formed along the a axis, Fig. 2. These are connected into the 3-D crystal structure via N–H···Cl interactions, Fig. 3.