metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m312-m313

fac-(2-Amido­ethyl-κ2C1,O)aqua­tri­chlorido­tin(IV) 1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane (2/1)

aCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dDepartamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, and eCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 10 February 2010; accepted 13 February 2010; online 20 February 2010)

The asymmetric unit of the title compound, [Sn(C3H6NO)Cl3(H2O)]2·C12H24O6, comprises a six-coordinate tin complex and a 18-crown-6 mol­ecule, the latter disposed about a centre of inversion. The tin atom is coordinated by three Cl atoms, that define a facial arrangement, a chelating C-,O- ligand, and a water mol­ecule. The resulting CCl3O2 donor set defines a distorted octa­hedral geometry. The tin-bound aqua ligand forms O—H⋯O hydrogen bonds to the centrosymmetric 18-crown-6 mol­ecule, resulting in a tri-mol­ecular aggregate. These assemble into a supra­molecular chain along the a axis being connected by N—H⋯O hydrogen bonds.

Related literature

For background to amido­ethyl tin compounds, see: Hutton & Oakes (1976[Hutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123-133.]). For the use of organotin compounds as PVC stabilisers, see: Lanigen & Weinberg (1976[Lanigen, D. & Weinberg, E. L. (1976). Adv. Chem. Ser. 157, 134-142.]). For the crystal structures of amido­ethyl­tin compounds, see: Harrison et al. (1979[Harrison, P. G., King, T. J. & Healey, M. A. (1979). J. Organomet. Chem. 182, 17-36.]); Tiekink et al. (2006[Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, m971-m973.]). For the crystal structures of alkyl­oxycarbonyl­ethyl­tin compounds, see: de Lima et al. (2009[Lima, G. M. de, Milne, B. F. R., Pereira, R. P., Rocco, A. M., Skakle, J. M., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2009). J. Mol. Struct. 921, 244-250.]); Milne et al. (2005[Milne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M. S., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2005). Appl. Organomet. Chem. 19, 363-371.]). For a review on tin–crown ether compounds, see: Cusack & Smith (1990[Cusack, P. A. & Smith, P. J. (1990). Appl. Organomet. Chem. 4, 311-317.]). For related structures of organotin(IV) and tin(IV) halide complexes with crown ethers, see: Cusack et al. (1983[Cusack, P. A., Petel, B. N. & Smith, P. J. (1983). Inorg. Chim. Acta, 76, L21-L22.]); Amini et al. (1984[Amini, M. M., Rheingold, A. L., Taylor, R. W. & Zuckerman, J. J. (1984). J. Am. Chem. Soc. 106, 7289-7291.], 2002[Amini, M. M., Foladi, S., Aghabozorg, H. & Ng, S. W. (2002). Main Group Met. Chem. 25, 643-645.]); Russo et al. (1984[Russo, U., Cassol, A. & Silvestri, A. (1984). J. Organomet. Chem. 260, 69-72.]); Valle et al. (1984[Valle, G., Cassol, A. & Russo, U. (1984). Inorg. Chim. Acta, 82, 81-84.], 1985[Valle, G., Ruisi, G. & Russo, U. (1985). Inorg.Chim. Acta, 99, L21-L23.]); Rivarola et al. (1986[Rivarola, E., Saiano, F., Fontana, A. & Russo, U. (1986). J. Organomet. Chem. 317, 285-289.]); Bott et al. (1987[Bott, S. G., Prinz, H., Alvanipour, A. & Atwood, J. L. (1987). J. Coord. Chem. 16, 303-309.]); Mitra et al. (1993[Mitra, A., Knobler, C. B. & Johnson, S. E. (1993). Inorg. Chem. 32, 1076-1077.]); Yap et al. (1996[Yap, G. P. A., Amini, M. M., Ng, S. W., Counterman, A. E. & Rheingold, A. L. (1996). Main Group Chem. 1, 359-363.]); Wolff et al. (2009[Wolff, M., Harmening, T., Pöttgen, R. & Feldmann, C. (2009). Inorg. Chem. 48, 3153-3156.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C3H6NO)Cl3(H2O)]2·C12H24O6

  • Mr = 894.64

  • Monoclinic, P 21 /n

  • a = 10.1260 (2) Å

  • b = 10.0893 (3) Å

  • c = 15.8229 (4) Å

  • β = 105.814 (2)°

  • V = 1555.35 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 120 K

  • 0.20 × 0.18 × 0.02 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.638, Tmax = 0.746

  • 19526 measured reflections

  • 3555 independent reflections

  • 2981 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.090

  • S = 1.12

  • 3555 reflections

  • 184 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −1.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯O4 0.84 (2) 1.96 (2) 2.784 (3) 166 (3)
O1w—H2w⋯O2 0.84 (3) 2.01 (3) 2.839 (3) 169 (4)
N1—H1n⋯O3i 0.88 (3) 2.51 (3) 3.061 (4) 121 (2)
N1—H2n⋯Cl1ii 0.88 (3) 2.68 (3) 3.516 (3) 161 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Functionally substituted-alkyl-tin compounds, X3SnCR2CH2COY and X2Sn(CR2CH2COY)2 (X = halide, R = H or alkyl; Y = OR', R' or NH2, R' = alkyl or aryl), are available from reactions, first reported in the 1970's (Hutton & Oakes, 1976), of R2C=CHCOY, HX and SnX2 (for X3SnCR2CH2COY compounds) or HX and tin (for X2Sn(CR2CH2COY)2 compounds). Original interest with these compounds was primarily concerned with their industrial potential as precursors of PVC stabilizers (Lanigen & Weinberg, 1976) but also with regard to their coordination chemistry. Although the potential for use in PVC stabilization has not been realized commercially, the interest in the coordination chemistry, especially of compounds containing SnCR2CH2CO2R moieties, has been maintained over the succeeding decades: of particular interest has been the coordination modes of the CR2CH2COY ligands (de Lima et al., 2009; Milne et al., 2005; Harrison et al., 1979). Much less study has been made of amidoethyl-tin species. i.e., tin compounds containing the CH2CH2CONH2 group. Only two structures of amidoethyltin derivatives have been previously reported, namely of (H2NHCOCH2CH2-C,O)2SnCl2 (Harrison et al., 1979) and (H2NCOCH2CH2-C,O)(ClCH2CH2CONH2-O)SnCl3 (Tiekink et al., 2006). We now wish to report the crystal structure of fac-aqua-trichloro(2-amidoethyl-C,O)tin 1,4,7,10,13,16-hexaoxacyclooctadecane (2/1), (I). Crown ether complexes of tin and organotin halides have been variously reported (Cusack et al. 1983; Amini et al., 1984; Valle et al., 1984; Russo et al., 1984; Valle et al., 1985; Rivarola et al., 1986; Bott et al., 1987; Cusack & Smith, 1990; Mitra et al., 1993; Yap et al., 1996; Amini et al., 2002; Wolff et al., 2009).

The asymmetric unit of (I) comprises a tin complex and half a 18-crown-6 molecule as the latter is situated about a centre of inversion, Fig. 1. The tin atom is coordinated by three Cl atoms, that define a facial arrangement, a C-,O-chelating ligand, and an aqua ligand. The resulting CCl3O2 donor set defines a distorted octahedral geometry. The Cl atoms trans to O-donors form longer Sn–Cl bond distances [Sn–Cl2 = 2.4208 (9) and Sn–Cl3 = 2.4329 (9) Å] than the Cl atom trans to the C1 atom [Sn–Cl1 = 2.3800 (9) Å]. The five-membered SnC3O chelate ring is not planar as seen in the values of the Sn–C1–C2–C3 and C1–C2–C3–O1 torsion angles of 24.0 (4) and -15.9 (5) °, respectively.

The components of the structure are connected via Oaqua–H···Oether hydrogen bonds to form a tri-molecular aggregate, Table 1 and Fig. 1. These in turn are connected via N–H···Oether hydrogen bonds so that all ether-O atoms participate in hydrogen bonding interactions, Table 1. The resulting supramolecular aggregate is a linear chain formed along the a axis, Fig. 2. These are connected into the 3-D crystal structure via N–H···Cl interactions, Fig. 3.

Related literature top

For background to amidoethyl tin compounds, see: Hutton & Oakes (1976). For the use of organotin compounds as PVC stabilisers, see: Lanigen & Weinberg (1976). For the crystal structures of amidoethyltin compounds, see: Harrison et al. (1979); Tiekink et al. (2006). For the crystal structures of alkyloxycarbonylethyltin compounds, see: de Lima et al. (2009); Milne et al. (2005). For a review on tin–crown ether compounds, see: Cusack & Smith (1990). For related structures of organotin(IV) and tin(IV) halide complexes with crown ethers, see: Cusack et al. (1983); Amini et al. (1984, 2002); Russo et al. (1984); Valle et al. (1984, 1985); Rivarola et al. (1986); Bott et al. (1987); Cusa Mitra et al. (1993); Yap et al. (1996); Wolff et al. (2009).

Experimental top

The reaction between SnCl2, H2CCHCONH2 and gaseous HCl in diethyl ether, as previously reported (Tiekink et al., 2006), produced (H2NCOCH2CH2-C,O)(ClCH2CH2CONH2-O)SnCl3. Solutions of 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) (0.26 g, 1 mmol) in EtOH (15 ml) and (H2NCOCH2CH2-C,O)(ClCH2CH2CONH2-O)SnCl3 (0.40 g, 1 mmol) in EtOH (20 ml) were mixed and gently heated for 15 min. The reaction mixture was cooled and maintained at room temperature. The crystals which slowly appeared on evaporation of the solvent were harvested after 1 week. M.pt.: partial sublimation at 463 K with complete melting at 469-471 K. IR (KBr, cm-1): 3441, 3349, 3273, 2919(br), 1650, 1573, 1456, 1352, 1297, 1254, 1094, 1037, 958, 915, 844, 702, 564.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O- and N- bound and H atoms were located from difference maps and refined with O–H = 0.84±0.01 Å and N–H = 0.88±0.01 Å, and with Uiso(H) = 1.5Ueq(O, N). The maximum and minimum residual electron density peaks of 0.81 and 1.31 e Å-3, respectively, were located 1.29 Å and 0.79 Å from the H4a and Sn atoms, respectively.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of a tri-molecular aggregate in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. A view of a supramolecular chain in (I), aligned along the a axis, whereby the tri-molecular aggregates sustained by O–H···O hydrogen bonds (orange dashed lines) illustrated in Fig. 1, are connected via N–H···O hydrogen bonds (blue dashed lines). Colour code: Sn, orange; Cl, cyan; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. View in projection down the a axis of the unit cell contents in (I). The N–H···Cl interactions connecting the supramolecular chains illustrated in Fig. 2 are shown as green dashed lines. Colour code: Sn, orange; Cl, cyan; O, red; N, blue; C, grey; and H, green.
fac-(2-Amidoethyl-κ2C1,O)aquatrichloridotin(IV)–1,4,7,10,13,16-hexaoxacyclooctadecane (2/1) top
Crystal data top
[Sn(C3H6NO)Cl3(H2O)]2·C12H24O6F(000) = 888
Mr = 894.64Dx = 1.910 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9442 reflections
a = 10.1260 (2) Åθ = 2.9–27.5°
b = 10.0893 (3) ŵ = 2.17 mm1
c = 15.8229 (4) ÅT = 120 K
β = 105.814 (2)°Prism, colourless
V = 1555.35 (7) Å30.20 × 0.18 × 0.02 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
3555 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2981 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.062
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1313
Tmin = 0.638, Tmax = 0.746l = 2020
19526 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0486P)2]
where P = (Fo2 + 2Fc2)/3
3555 reflections(Δ/σ)max = 0.002
184 parametersΔρmax = 0.81 e Å3
6 restraintsΔρmin = 1.31 e Å3
Crystal data top
[Sn(C3H6NO)Cl3(H2O)]2·C12H24O6V = 1555.35 (7) Å3
Mr = 894.64Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.1260 (2) ŵ = 2.17 mm1
b = 10.0893 (3) ÅT = 120 K
c = 15.8229 (4) Å0.20 × 0.18 × 0.02 mm
β = 105.814 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3555 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2981 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.746Rint = 0.062
19526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0306 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.81 e Å3
3555 reflectionsΔρmin = 1.31 e Å3
184 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.78251 (2)0.23444 (2)0.571426 (15)0.01204 (10)
Cl10.77631 (9)0.37992 (9)0.68869 (6)0.0199 (2)
Cl20.64299 (9)0.07335 (9)0.62109 (6)0.0231 (2)
Cl30.99961 (8)0.13617 (9)0.65225 (6)0.0200 (2)
O10.5890 (2)0.3331 (2)0.49675 (15)0.0146 (5)
O1W0.8950 (2)0.4054 (2)0.53264 (16)0.0139 (5)
H1W0.859 (3)0.436 (4)0.4824 (12)0.021*
H2W0.922 (4)0.471 (2)0.565 (2)0.021*
N10.4259 (3)0.3257 (3)0.3687 (2)0.0217 (7)
H1N0.377 (3)0.386 (3)0.387 (2)0.033*
H2N0.396 (4)0.290 (4)0.3164 (14)0.033*
C10.7646 (3)0.1561 (3)0.4426 (2)0.0155 (7)
H1A0.82720.20380.41480.019*
H1B0.78940.06100.44650.019*
C20.6165 (3)0.1739 (4)0.3884 (2)0.0191 (8)
H2A0.61540.19250.32670.023*
H2B0.56630.08990.38900.023*
C30.5422 (3)0.2844 (3)0.4209 (2)0.0157 (7)
O21.0228 (2)0.6214 (2)0.63876 (15)0.0146 (5)
O30.7765 (2)0.6756 (2)0.51861 (15)0.0146 (5)
O40.7319 (2)0.4951 (2)0.37156 (15)0.0140 (5)
C40.9395 (4)0.7297 (3)0.6529 (3)0.0172 (8)
H4A0.99850.80110.68610.021*
H4B0.87740.69930.68770.021*
C50.8571 (4)0.7812 (3)0.5659 (3)0.0175 (8)
H5A0.79670.85410.57450.021*
H5B0.91900.81610.53230.021*
C60.7026 (3)0.7148 (4)0.4323 (2)0.0165 (7)
H6A0.76590.75370.40120.020*
H6B0.63260.78200.43490.020*
C70.6351 (3)0.5932 (3)0.3852 (2)0.0156 (7)
H7A0.57720.55250.41950.019*
H7B0.57410.61960.32740.019*
C81.1285 (3)0.5885 (3)0.7162 (2)0.0148 (7)
H8A1.08760.56760.76480.018*
H8B1.19170.66460.73420.018*
C90.7943 (3)0.5295 (3)0.3033 (2)0.0149 (7)
H9A0.85780.60500.32230.018*
H9B0.72270.55620.24980.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01329 (15)0.01173 (14)0.01132 (15)0.00019 (8)0.00373 (10)0.00053 (9)
Cl10.0273 (5)0.0190 (5)0.0138 (5)0.0020 (4)0.0062 (4)0.0027 (3)
Cl20.0223 (4)0.0194 (5)0.0303 (5)0.0025 (4)0.0118 (4)0.0071 (4)
Cl30.0157 (4)0.0195 (5)0.0227 (5)0.0027 (3)0.0018 (4)0.0049 (4)
O10.0164 (12)0.0174 (13)0.0101 (12)0.0007 (10)0.0036 (10)0.0028 (10)
O1W0.0189 (12)0.0094 (12)0.0121 (13)0.0002 (10)0.0023 (10)0.0026 (10)
N10.0165 (15)0.0297 (19)0.0176 (17)0.0027 (14)0.0023 (13)0.0074 (14)
C10.0176 (17)0.0149 (18)0.0152 (18)0.0015 (14)0.0062 (14)0.0013 (14)
C20.0167 (18)0.024 (2)0.017 (2)0.0039 (15)0.0054 (15)0.0063 (16)
C30.0115 (16)0.0186 (18)0.0194 (19)0.0020 (14)0.0084 (14)0.0025 (15)
O20.0135 (11)0.0160 (12)0.0129 (13)0.0015 (9)0.0011 (9)0.0024 (9)
O30.0142 (12)0.0128 (12)0.0154 (13)0.0005 (10)0.0017 (10)0.0002 (10)
O40.0149 (11)0.0138 (12)0.0135 (12)0.0011 (9)0.0044 (9)0.0023 (9)
C40.0170 (18)0.0160 (18)0.0194 (19)0.0013 (14)0.0060 (15)0.0088 (14)
C50.0166 (18)0.0110 (17)0.025 (2)0.0019 (14)0.0050 (15)0.0037 (15)
C60.0166 (18)0.0162 (18)0.017 (2)0.0029 (14)0.0051 (15)0.0022 (14)
C70.0129 (16)0.0199 (18)0.0147 (18)0.0032 (14)0.0052 (14)0.0029 (14)
C80.0176 (17)0.0154 (17)0.0110 (17)0.0003 (14)0.0029 (14)0.0008 (14)
C90.0155 (17)0.0174 (18)0.0128 (18)0.0002 (14)0.0058 (14)0.0035 (14)
Geometric parameters (Å, º) top
Sn—C12.147 (3)O3—C61.423 (4)
Sn—O12.228 (2)O3—C51.424 (4)
Sn—O1W2.243 (2)O4—C91.434 (4)
Sn—Cl12.3800 (9)O4—C71.450 (4)
Sn—Cl22.4208 (9)C4—C51.496 (5)
Sn—Cl32.4329 (9)C4—H4A0.9900
O1—C31.263 (4)C4—H4B0.9900
O1W—H1W0.84 (2)C5—H5A0.9900
O1W—H2W0.84 (3)C5—H5B0.9900
N1—C31.309 (5)C6—C71.500 (5)
N1—H1N0.88 (3)C6—H6A0.9900
N1—H2N0.88 (3)C6—H6B0.9900
C1—C21.522 (5)C7—H7A0.9900
C1—H1A0.9900C7—H7B0.9900
C1—H1B0.9900C8—C9i1.502 (5)
C2—C31.512 (5)C8—H8A0.9900
C2—H2A0.9900C8—H8B0.9900
C2—H2B0.9900C9—C8i1.502 (5)
O2—C81.429 (4)C9—H9A0.9900
O2—C41.435 (4)C9—H9B0.9900
C1—Sn—O180.00 (11)C6—O3—C5111.8 (3)
C1—Sn—O1W86.63 (11)C9—O4—C7113.6 (2)
O1—Sn—O1W87.14 (8)O2—C4—C5108.9 (3)
C1—Sn—Cl1162.49 (10)O2—C4—H4A109.9
O1—Sn—Cl186.08 (6)C5—C4—H4A109.9
O1W—Sn—Cl182.09 (6)O2—C4—H4B109.9
C1—Sn—Cl298.92 (10)C5—C4—H4B109.9
O1—Sn—Cl288.03 (6)H4A—C4—H4B108.3
O1W—Sn—Cl2171.91 (6)O3—C5—C4108.7 (3)
Cl1—Sn—Cl291.10 (3)O3—C5—H5A110.0
C1—Sn—Cl3100.34 (10)C4—C5—H5A110.0
O1—Sn—Cl3177.30 (6)O3—C5—H5B110.0
O1W—Sn—Cl390.20 (6)C4—C5—H5B110.0
Cl1—Sn—Cl393.07 (3)H5A—C5—H5B108.3
Cl2—Sn—Cl394.55 (3)O3—C6—C7107.4 (3)
C3—O1—Sn112.2 (2)O3—C6—H6A110.2
Sn—O1W—H1W115 (3)C7—C6—H6A110.2
Sn—O1W—H2W123 (3)O3—C6—H6B110.2
H1W—O1W—H2W106 (4)C7—C6—H6B110.2
C3—N1—H1N120 (2)H6A—C6—H6B108.5
C3—N1—H2N119 (2)O4—C7—C6113.4 (3)
H1N—N1—H2N120.6 (19)O4—C7—H7A108.9
C2—C1—Sn107.9 (2)C6—C7—H7A108.9
C2—C1—H1A110.1O4—C7—H7B108.9
Sn—C1—H1A110.1C6—C7—H7B108.9
C2—C1—H1B110.1H7A—C7—H7B107.7
Sn—C1—H1B110.1O2—C8—C9i108.6 (3)
H1A—C1—H1B108.4O2—C8—H8A110.0
C3—C2—C1113.6 (3)C9i—C8—H8A110.0
C3—C2—H2A108.9O2—C8—H8B110.0
C1—C2—H2A108.9C9i—C8—H8B110.0
C3—C2—H2B108.9H8A—C8—H8B108.4
C1—C2—H2B108.9O4—C9—C8i108.9 (3)
H2A—C2—H2B107.7O4—C9—H9A109.9
O1—C3—N1121.1 (3)C8i—C9—H9A109.9
O1—C3—C2121.2 (3)O4—C9—H9B109.9
N1—C3—C2117.7 (3)C8i—C9—H9B109.9
C8—O2—C4112.2 (3)H9A—C9—H9B108.3
C1—Sn—O1—C312.0 (2)Sn—O1—C3—C21.3 (4)
O1W—Sn—O1—C399.0 (2)C1—C2—C3—O115.9 (5)
Cl1—Sn—O1—C3178.7 (2)C1—C2—C3—N1165.8 (3)
Cl2—Sn—O1—C387.5 (2)C8—O2—C4—C5165.3 (3)
O1—Sn—C1—C218.7 (2)C6—O3—C5—C4175.7 (3)
O1W—Sn—C1—C2106.4 (2)O2—C4—C5—O357.7 (4)
Cl1—Sn—C1—C256.6 (4)C5—O3—C6—C7173.4 (3)
Cl2—Sn—C1—C267.6 (2)C9—O4—C7—C675.0 (4)
Cl3—Sn—C1—C2164.0 (2)O3—C6—C7—O465.3 (3)
Sn—C1—C2—C324.0 (4)C4—O2—C8—C9i177.2 (3)
Sn—O1—C3—N1177.0 (3)C7—O4—C9—C8i169.7 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O40.84 (2)1.96 (2)2.784 (3)166 (3)
O1w—H2w···O20.84 (3)2.01 (3)2.839 (3)169 (4)
N1—H1n···O3ii0.88 (3)2.51 (3)3.061 (4)121 (2)
N1—H2n···Cl1iii0.88 (3)2.68 (3)3.516 (3)161 (3)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Sn(C3H6NO)Cl3(H2O)]2·C12H24O6
Mr894.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.1260 (2), 10.0893 (3), 15.8229 (4)
β (°) 105.814 (2)
V3)1555.35 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.20 × 0.18 × 0.02
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.638, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
19526, 3555, 2981
Rint0.062
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.090, 1.12
No. of reflections3555
No. of parameters184
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 1.31

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O40.84 (2)1.96 (2)2.784 (3)166 (3)
O1w—H2w···O20.84 (3)2.01 (3)2.839 (3)169 (4)
N1—H1n···O3i0.88 (3)2.51 (3)3.061 (4)121 (2)
N1—H2n···Cl1ii0.88 (3)2.68 (3)3.516 (3)161 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationAmini, M. M., Foladi, S., Aghabozorg, H. & Ng, S. W. (2002). Main Group Met. Chem. 25, 643–645.  CrossRef CAS Google Scholar
First citationAmini, M. M., Rheingold, A. L., Taylor, R. W. & Zuckerman, J. J. (1984). J. Am. Chem. Soc. 106, 7289–7291.  CSD CrossRef CAS Web of Science Google Scholar
First citationBott, S. G., Prinz, H., Alvanipour, A. & Atwood, J. L. (1987). J. Coord. Chem. 16, 303–309.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCusack, P. A., Petel, B. N. & Smith, P. J. (1983). Inorg. Chim. Acta, 76, L21–L22.  CrossRef CAS Web of Science Google Scholar
First citationCusack, P. A. & Smith, P. J. (1990). Appl. Organomet. Chem. 4, 311–317.  CrossRef CAS Web of Science Google Scholar
First citationHarrison, P. G., King, T. J. & Healey, M. A. (1979). J. Organomet. Chem. 182, 17–36.  CSD CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123–133.  CrossRef CAS Google Scholar
First citationLanigen, D. & Weinberg, E. L. (1976). Adv. Chem. Ser. 157, 134–142.  Google Scholar
First citationLima, G. M. de, Milne, B. F. R., Pereira, R. P., Rocco, A. M., Skakle, J. M., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2009). J. Mol. Struct. 921, 244–250.  Google Scholar
First citationMilne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M. S., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2005). Appl. Organomet. Chem. 19, 363–371.  Web of Science CSD CrossRef CAS Google Scholar
First citationMitra, A., Knobler, C. B. & Johnson, S. E. (1993). Inorg. Chem. 32, 1076–1077.  CSD CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRivarola, E., Saiano, F., Fontana, A. & Russo, U. (1986). J. Organomet. Chem. 317, 285–289.  CrossRef CAS Web of Science Google Scholar
First citationRusso, U., Cassol, A. & Silvestri, A. (1984). J. Organomet. Chem. 260, 69–72.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, m971–m973.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationValle, G., Cassol, A. & Russo, U. (1984). Inorg. Chim. Acta, 82, 81–84.  CSD CrossRef CAS Web of Science Google Scholar
First citationValle, G., Ruisi, G. & Russo, U. (1985). Inorg.Chim. Acta, 99, L21–L23.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationWolff, M., Harmening, T., Pöttgen, R. & Feldmann, C. (2009). Inorg. Chem. 48, 3153–3156.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYap, G. P. A., Amini, M. M., Ng, S. W., Counterman, A. E. & Rheingold, A. L. (1996). Main Group Chem. 1, 359–363.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m312-m313
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds