organic compounds
7-Chloro-4-[(E)-2-(4-methoxybenzylidene)hydrazin-1-yl]quinoline monohydrate
aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com
The organic molecule in the title hydrate, C17H14ClN3O·H2O, has a small but significant twist from planarity, as seen in the dihedral angle of 12.10 (17)° between the quinoline and benzene rings. The conformation about the C=N bond is E. Chains along the b axis are formed in the aided by water–quinoline O—H⋯N (× 2) and hydrazone–water N—H⋯O hydrogen bonds. Layers of these chains stack along the a axis via C—H⋯π and π–π interactions [ring centroid–ring centroid distance = 3.674 (2) Å]. C—H⋯O interactions are also present.
Related literature
For background to the pharmacological activity of quinoline derivatives, see: Warshakoon et al. (2006). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007); de Souza et al. (2005). For related structures, see: Kaiser et al. (2009); de Souza et al. (2009, 2010).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810006598/lh5002sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810006598/lh5002Isup2.hkl
A solution of 7-chloro-4-quinolinylhydrazine (0.2 g, 1.03 mmol) and 4-methoxybenzaldehyde (1.24 mmol) in ethanol (5 ml) was stirred at room temperature until TLC indicated complete consumption of the hydrazine. The reaction mixture was rotary evaporated, the residue washed well with cold Et2O (3 x 10 ml), and recrystallised from moist ethanol, yield 85%, m.pt. 417–418 K. IR [KBr, cm-1] ν: 3120 (NH), 1565(N═C). MS/ESI: m/z [M—H]+: 310.8.
The N- and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C,N). The water-bound H atoms were located from a difference map and refined with Uiso(H) = 1.5Ueq(O).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the components comprising the asymmetric unit in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. | |
Fig. 2. View of the supramolecular chain in (I) showing the O–H···N and N–H···O hydrogen bonding as orange and blue dashed lines, respectively. The C–H···O contacts are represented as green dashed lines. Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green. | |
Fig. 3. A view of the stacking of layers in (I); O–H···N hydrogen bonding is shown as orange dashed lines. The layers are linked by π–π (purple dashed lines) and C–H···π contacts (pink dashed lines). Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green. |
C17H14ClN3O·H2O | Z = 2 |
Mr = 329.78 | F(000) = 344 |
Triclinic, P1 | Dx = 1.413 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0086 (6) Å | Cell parameters from 27436 reflections |
b = 9.2384 (8) Å | θ = 2.9–27.5° |
c = 13.3701 (12) Å | µ = 0.26 mm−1 |
α = 100.026 (4)° | T = 120 K |
β = 103.903 (5)° | Needle, colourless |
γ = 107.000 (5)° | 0.12 × 0.04 × 0.02 mm |
V = 775.27 (12) Å3 |
Nonius KappaCCD area-detector diffractometer | 2702 independent reflections |
Radiation source: Enraf Nonius FR591 rotating anode | 2037 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.064 |
Detector resolution: 9.091 pixels mm-1 | θmax = 25.0°, θmin = 3.1° |
ϕ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −10→10 |
Tmin = 0.686, Tmax = 1.000 | l = −15→15 |
10514 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.150 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0109P)2 + 2.93P] where P = (Fo2 + 2Fc2)/3 |
2702 reflections | (Δ/σ)max = 0.001 |
215 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
C17H14ClN3O·H2O | γ = 107.000 (5)° |
Mr = 329.78 | V = 775.27 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.0086 (6) Å | Mo Kα radiation |
b = 9.2384 (8) Å | µ = 0.26 mm−1 |
c = 13.3701 (12) Å | T = 120 K |
α = 100.026 (4)° | 0.12 × 0.04 × 0.02 mm |
β = 103.903 (5)° |
Nonius KappaCCD area-detector diffractometer | 2702 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 2037 reflections with I > 2σ(I) |
Tmin = 0.686, Tmax = 1.000 | Rint = 0.064 |
10514 measured reflections |
R[F2 > 2σ(F2)] = 0.069 | 0 restraints |
wR(F2) = 0.150 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.30 e Å−3 |
2702 reflections | Δρmin = −0.36 e Å−3 |
215 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.12492 (19) | 0.53097 (12) | 0.13214 (8) | 0.0337 (3) | |
O1 | 0.3226 (4) | 0.0839 (3) | 1.1296 (2) | 0.0268 (7) | |
N1 | 0.2963 (5) | 0.7665 (4) | 0.5289 (2) | 0.0233 (7) | |
N2 | 0.2484 (5) | 0.3358 (4) | 0.6035 (2) | 0.0226 (7) | |
H2N | 0.2193 | 0.2506 | 0.5527 | 0.027* | |
N3 | 0.2774 (5) | 0.3291 (4) | 0.7081 (2) | 0.0220 (7) | |
C1 | 0.3251 (6) | 0.7500 (4) | 0.6279 (3) | 0.0247 (9) | |
H1 | 0.3611 | 0.8418 | 0.6835 | 0.030* | |
C2 | 0.3074 (6) | 0.6112 (4) | 0.6569 (3) | 0.0217 (9) | |
H2 | 0.3239 | 0.6092 | 0.7292 | 0.026* | |
C3 | 0.2653 (6) | 0.4750 (4) | 0.5796 (3) | 0.0178 (8) | |
C4 | 0.2376 (6) | 0.4842 (4) | 0.4712 (3) | 0.0188 (8) | |
C5 | 0.2011 (6) | 0.3562 (4) | 0.3853 (3) | 0.0203 (8) | |
H5 | 0.1959 | 0.2576 | 0.3985 | 0.024* | |
C6 | 0.1728 (6) | 0.3715 (4) | 0.2828 (3) | 0.0215 (8) | |
H6 | 0.1518 | 0.2852 | 0.2259 | 0.026* | |
C7 | 0.1753 (6) | 0.5170 (4) | 0.2634 (3) | 0.0211 (8) | |
C8 | 0.2147 (6) | 0.6443 (4) | 0.3441 (3) | 0.0225 (9) | |
H8 | 0.2180 | 0.7417 | 0.3292 | 0.027* | |
C9 | 0.2507 (6) | 0.6313 (4) | 0.4502 (3) | 0.0201 (8) | |
C10 | 0.2358 (6) | 0.1919 (5) | 0.7224 (3) | 0.0235 (9) | |
H10 | 0.1879 | 0.1044 | 0.6620 | 0.028* | |
C11 | 0.2591 (6) | 0.1642 (4) | 0.8281 (3) | 0.0199 (8) | |
C12 | 0.2046 (6) | 0.0122 (4) | 0.8385 (3) | 0.0222 (9) | |
H12 | 0.1524 | −0.0724 | 0.7759 | 0.027* | |
C13 | 0.2235 (6) | −0.0212 (4) | 0.9368 (3) | 0.0214 (8) | |
H13 | 0.1854 | −0.1267 | 0.9415 | 0.026* | |
C14 | 0.2985 (6) | 0.1016 (4) | 1.0276 (3) | 0.0217 (8) | |
C15 | 0.3569 (6) | 0.2567 (4) | 1.0201 (3) | 0.0229 (9) | |
H15 | 0.4099 | 0.3408 | 1.0830 | 0.027* | |
C16 | 0.3379 (6) | 0.2878 (4) | 0.9220 (3) | 0.0227 (9) | |
H16 | 0.3781 | 0.3934 | 0.9176 | 0.027* | |
C17 | 0.2580 (7) | −0.0735 (4) | 1.1403 (3) | 0.0268 (9) | |
H17A | 0.1093 | −0.1280 | 1.0997 | 0.040* | |
H17B | 0.2787 | −0.0709 | 1.2158 | 0.040* | |
H17C | 0.3418 | −0.1291 | 1.1127 | 0.040* | |
O1W | 0.7337 (5) | 0.9550 (3) | 0.5298 (2) | 0.0309 (7) | |
H1W | 0.736 (8) | 1.039 (6) | 0.511 (4) | 0.046* | |
H2W | 0.610 (8) | 0.908 (6) | 0.530 (4) | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0524 (7) | 0.0299 (6) | 0.0200 (5) | 0.0158 (5) | 0.0098 (5) | 0.0088 (4) |
O1 | 0.0346 (17) | 0.0247 (15) | 0.0202 (14) | 0.0082 (13) | 0.0077 (12) | 0.0084 (11) |
N1 | 0.0272 (19) | 0.0234 (17) | 0.0200 (17) | 0.0102 (15) | 0.0088 (14) | 0.0031 (13) |
N2 | 0.0285 (19) | 0.0215 (17) | 0.0191 (17) | 0.0116 (15) | 0.0062 (14) | 0.0047 (13) |
N3 | 0.0258 (19) | 0.0246 (18) | 0.0207 (17) | 0.0122 (15) | 0.0103 (14) | 0.0084 (14) |
C1 | 0.025 (2) | 0.021 (2) | 0.026 (2) | 0.0067 (17) | 0.0097 (18) | 0.0019 (16) |
C2 | 0.025 (2) | 0.024 (2) | 0.0171 (19) | 0.0085 (17) | 0.0100 (17) | 0.0035 (16) |
C3 | 0.0147 (19) | 0.0195 (19) | 0.0205 (19) | 0.0066 (15) | 0.0067 (16) | 0.0058 (15) |
C4 | 0.0126 (19) | 0.0185 (19) | 0.024 (2) | 0.0037 (15) | 0.0070 (16) | 0.0050 (15) |
C5 | 0.020 (2) | 0.0164 (19) | 0.024 (2) | 0.0070 (16) | 0.0057 (16) | 0.0047 (15) |
C6 | 0.018 (2) | 0.020 (2) | 0.025 (2) | 0.0038 (16) | 0.0088 (16) | 0.0041 (16) |
C7 | 0.021 (2) | 0.023 (2) | 0.021 (2) | 0.0075 (17) | 0.0077 (16) | 0.0073 (16) |
C8 | 0.024 (2) | 0.0175 (19) | 0.027 (2) | 0.0078 (16) | 0.0077 (17) | 0.0071 (16) |
C9 | 0.016 (2) | 0.0194 (19) | 0.024 (2) | 0.0046 (16) | 0.0096 (16) | 0.0033 (16) |
C10 | 0.024 (2) | 0.028 (2) | 0.020 (2) | 0.0108 (17) | 0.0086 (17) | 0.0053 (16) |
C11 | 0.018 (2) | 0.0199 (19) | 0.023 (2) | 0.0068 (16) | 0.0085 (16) | 0.0071 (16) |
C12 | 0.024 (2) | 0.022 (2) | 0.023 (2) | 0.0102 (17) | 0.0098 (17) | 0.0062 (16) |
C13 | 0.023 (2) | 0.0154 (19) | 0.028 (2) | 0.0066 (16) | 0.0109 (17) | 0.0061 (16) |
C14 | 0.022 (2) | 0.023 (2) | 0.022 (2) | 0.0076 (17) | 0.0093 (17) | 0.0085 (16) |
C15 | 0.022 (2) | 0.019 (2) | 0.024 (2) | 0.0066 (17) | 0.0041 (17) | 0.0036 (16) |
C16 | 0.024 (2) | 0.0168 (19) | 0.026 (2) | 0.0044 (16) | 0.0073 (17) | 0.0093 (16) |
C17 | 0.032 (2) | 0.025 (2) | 0.028 (2) | 0.0113 (18) | 0.0109 (18) | 0.0114 (17) |
O1W | 0.0347 (18) | 0.0205 (15) | 0.0434 (18) | 0.0117 (14) | 0.0171 (15) | 0.0123 (13) |
Cl1—C7 | 1.740 (4) | C7—C8 | 1.360 (5) |
O1—C14 | 1.377 (4) | C8—C9 | 1.413 (5) |
O1—C17 | 1.435 (5) | C8—H8 | 0.9500 |
N1—C1 | 1.332 (5) | C10—C11 | 1.458 (5) |
N1—C9 | 1.385 (5) | C10—H10 | 0.9500 |
N2—C3 | 1.357 (5) | C11—C12 | 1.385 (5) |
N2—N3 | 1.380 (4) | C11—C16 | 1.409 (5) |
N2—H2N | 0.8800 | C12—C13 | 1.386 (5) |
N3—C10 | 1.274 (5) | C12—H12 | 0.9500 |
C1—C2 | 1.383 (5) | C13—C14 | 1.379 (5) |
C1—H1 | 0.9500 | C13—H13 | 0.9500 |
C2—C3 | 1.386 (5) | C14—C15 | 1.400 (5) |
C2—H2 | 0.9500 | C15—C16 | 1.374 (5) |
C3—C4 | 1.435 (5) | C15—H15 | 0.9500 |
C4—C9 | 1.417 (5) | C16—H16 | 0.9500 |
C4—C5 | 1.411 (5) | C17—H17A | 0.9800 |
C5—C6 | 1.374 (5) | C17—H17B | 0.9800 |
C5—H5 | 0.9500 | C17—H17C | 0.9800 |
C6—C7 | 1.409 (5) | O1W—H1W | 0.85 (5) |
C6—H6 | 0.9500 | O1W—H2W | 0.85 (5) |
C14—O1—C17 | 117.0 (3) | N1—C9—C8 | 116.8 (3) |
C1—N1—C9 | 115.5 (3) | C4—C9—C8 | 119.7 (3) |
C3—N2—N3 | 119.4 (3) | N3—C10—C11 | 122.5 (3) |
C3—N2—H2N | 120.3 | N3—C10—H10 | 118.8 |
N3—N2—H2N | 120.3 | C11—C10—H10 | 118.8 |
C10—N3—N2 | 115.5 (3) | C12—C11—C16 | 117.8 (3) |
N1—C1—C2 | 125.9 (4) | C12—C11—C10 | 119.9 (3) |
N1—C1—H1 | 117.0 | C16—C11—C10 | 122.3 (3) |
C2—C1—H1 | 117.0 | C11—C12—C13 | 122.5 (4) |
C1—C2—C3 | 119.5 (3) | C11—C12—H12 | 118.8 |
C1—C2—H2 | 120.3 | C13—C12—H12 | 118.8 |
C3—C2—H2 | 120.3 | C14—C13—C12 | 118.8 (3) |
N2—C3—C2 | 122.1 (3) | C14—C13—H13 | 120.6 |
N2—C3—C4 | 120.0 (3) | C12—C13—H13 | 120.6 |
C2—C3—C4 | 117.9 (3) | O1—C14—C13 | 124.4 (3) |
C9—C4—C5 | 118.4 (3) | O1—C14—C15 | 115.4 (3) |
C9—C4—C3 | 117.7 (3) | C13—C14—C15 | 120.2 (3) |
C5—C4—C3 | 123.9 (3) | C16—C15—C14 | 120.2 (4) |
C6—C5—C4 | 121.3 (3) | C16—C15—H15 | 119.9 |
C6—C5—H5 | 119.3 | C14—C15—H15 | 119.9 |
C4—C5—H5 | 119.3 | C15—C16—C11 | 120.5 (3) |
C5—C6—C7 | 119.0 (3) | C15—C16—H16 | 119.8 |
C5—C6—H6 | 120.5 | C11—C16—H16 | 119.8 |
C7—C6—H6 | 120.5 | O1—C17—H17A | 109.5 |
C8—C7—C6 | 121.6 (3) | O1—C17—H17B | 109.5 |
C8—C7—Cl1 | 120.0 (3) | H17A—C17—H17B | 109.5 |
C6—C7—Cl1 | 118.3 (3) | O1—C17—H17C | 109.5 |
C7—C8—C9 | 119.8 (3) | H17A—C17—H17C | 109.5 |
C7—C8—H8 | 120.1 | H17B—C17—H17C | 109.5 |
C9—C8—H8 | 120.1 | H1W—O1W—H2W | 108 (5) |
N1—C9—C4 | 123.5 (3) | ||
C3—N2—N3—C10 | 172.4 (3) | C3—C4—C9—N1 | 2.5 (5) |
C9—N1—C1—C2 | −2.0 (6) | C5—C4—C9—C8 | 3.8 (5) |
N1—C1—C2—C3 | 3.1 (6) | C3—C4—C9—C8 | −177.0 (3) |
N3—N2—C3—C2 | −1.1 (5) | C7—C8—C9—N1 | 178.1 (3) |
N3—N2—C3—C4 | 179.4 (3) | C7—C8—C9—C4 | −2.4 (6) |
C1—C2—C3—N2 | 179.3 (3) | N2—N3—C10—C11 | 179.7 (3) |
C1—C2—C3—C4 | −1.2 (5) | N3—C10—C11—C12 | 177.7 (4) |
N2—C3—C4—C9 | 178.2 (3) | N3—C10—C11—C16 | −2.8 (6) |
C2—C3—C4—C9 | −1.3 (5) | C16—C11—C12—C13 | 0.5 (6) |
N2—C3—C4—C5 | −2.7 (5) | C10—C11—C12—C13 | 180.0 (4) |
C2—C3—C4—C5 | 177.8 (3) | C11—C12—C13—C14 | 0.3 (6) |
C9—C4—C5—C6 | −1.8 (5) | C17—O1—C14—C13 | −2.2 (5) |
C3—C4—C5—C6 | 179.1 (4) | C17—O1—C14—C15 | 178.0 (3) |
C4—C5—C6—C7 | −1.6 (6) | C12—C13—C14—O1 | 179.4 (4) |
C5—C6—C7—C8 | 3.1 (6) | C12—C13—C14—C15 | −0.9 (6) |
C5—C6—C7—Cl1 | −176.5 (3) | O1—C14—C15—C16 | −179.5 (3) |
C6—C7—C8—C9 | −1.1 (6) | C13—C14—C15—C16 | 0.7 (6) |
Cl1—C7—C8—C9 | 178.5 (3) | C14—C15—C16—C11 | 0.1 (6) |
C1—N1—C9—C4 | −0.9 (5) | C12—C11—C16—C15 | −0.7 (6) |
C1—N1—C9—C8 | 178.6 (3) | C10—C11—C16—C15 | 179.8 (4) |
C5—C4—C9—N1 | −176.7 (3) |
Cg is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···N1i | 0.85 (5) | 2.02 (5) | 2.867 (4) | 172 (5) |
N2—H2n···O1wii | 0.88 | 2.18 | 3.007 (4) | 157 |
O1w—H2w···N1 | 0.85 (5) | 2.20 (5) | 3.047 (5) | 175 (5) |
C5—H5···O1wii | 0.95 | 2.45 | 3.380 (5) | 165 |
C17—H17a···Cgiii | 0.98 | 2.65 | 3.508 (5) | 147 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C17H14ClN3O·H2O |
Mr | 329.78 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 7.0086 (6), 9.2384 (8), 13.3701 (12) |
α, β, γ (°) | 100.026 (4), 103.903 (5), 107.000 (5) |
V (Å3) | 775.27 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.12 × 0.04 × 0.02 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.686, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10514, 2702, 2037 |
Rint | 0.064 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.069, 0.150, 1.02 |
No. of reflections | 2702 |
No. of parameters | 215 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.36 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Cg is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···N1i | 0.85 (5) | 2.02 (5) | 2.867 (4) | 172 (5) |
N2—H2n···O1wii | 0.88 | 2.18 | 3.007 (4) | 157 |
O1w—H2w···N1 | 0.85 (5) | 2.20 (5) | 3.047 (5) | 175 (5) |
C5—H5···O1wii | 0.95 | 2.45 | 3.380 (5) | 165 |
C17—H17a···Cgiii | 0.98 | 2.65 | 3.508 (5) | 147 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y, −z+2. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).
References
Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194–198. CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140. Web of Science CSD CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Souza, M. V. N. de (2005). Mini-Rev. Med. Chem. 5, 1009–1017. Google Scholar
Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o152–o153. Web of Science CSD CrossRef IUCr Journals Google Scholar
Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3120–o3121. Web of Science CSD CrossRef IUCr Journals Google Scholar
Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207–5211. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinoline derivatives display biological activity (Warshakoon et al., 2006) and in this context attract interest as potential anti-malarial agents (Andrade et al. 2007; de Souza et al., 2005). Complementing biological studies are structural investigations (Kaiser et al., 2009; de Souza et al., 2009; de Souza et al., 2010), and the crystal structure of the title hydrate, (I), was investigated as a part of these on-going studies.
The molecular structure of the organic component of (I), Fig. 1, shows a small twist from planarity with the dihedral angle formed between the quinoline (maximum deviation = 0.039 (4) Å for the C6 atom) and benzene rings being 12.10 (17) °. The major deviation of a torsion angle from 0 or 180 ° is found in the C3–N2–N3–C10 torsion angle of 172.4 (3) °. The conformation about the C10═N3 bond [1.274 (5) Å] is E. The crystal packing is stabilised by a variety of hydrogen bonding interactions, Table 1. The water molecule accepts a hydrogen bond from the hydrazone-N2 atom and forms donor interactions with symmetry related quinoline-N1 atoms, the latter leading to eight-membered {···OHO···N}2 synthons. The resulting supramolecular chain along the b axis, Fig. 2, is reinforced by a C–H···O contact, Table 1. The chains are arranged in layers in the bc plane with the most significant interactions between the layers being of the type π–π with the closest of these occurring between centrosymmetrically related N1,C1—C4,C9 rings [ring centroid(N1,C1—C4,C9)···ring centroid(N1,C1—C4,C9)i distance = 3.674 (2) Å for i: -x, 1-y, 1-z], Fig. 3. In addition to these interactions, C–H···π contacts also occur between layers, Table 1.