organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{(1R,3S)-2-Benzyl-6,7-dimeth­­oxy-1-phenyl-1,2,3,4-tetra­hydro­isoquinolin-3-yl}di­phenyl­methanol

aSchool of Chemistry, University of KwaZulu-Natal, Durban, 4000, South Africa, and bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban, 4000, South Africa
*Correspondence e-mail: govenderthav@ukzn.ac.za

(Received 24 January 2010; accepted 9 February 2010; online 17 February 2010)

In the title compound, C37H35NO3, a precursor to novel chiral catalysts, the N-containing six-membered ring assumes a half-chair conformation. Inter­molecular C—H⋯O hydrogen bonds link the mol­ecules in the crystal structure.

Related literature

For the synthesis of the title compound, see: Chakka et al. (2010[Chakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Eur. J. Org. Chem. pp. 972-980]). For related structures, see: Aubry et al. (2006[Aubry, S., Pellet-Rostaing, S., Faure, R. & Lemaire, M. (2006). J. Heterocycl. Chem, 43, 139-148.]). For a related structure with the same chiral centres and configuration, see: Naicker et al. (2009[Naicker, T., McKay, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Acta Cryst. E65, o3278.]). For proline diaryl alcohols, see: Diner et al. (2008[Diner, P., Kjaersgaard, A., Lie, M. A. & Jorgensen, K. A. (2008). Chem. Eur. J. 14, 122-127.]); Seebach et al. (2008[Seebach, D., Grosělj, U., Badine, D. M., Schweizer, W. B. & Beck, A. K. (2008). Helv. Chim. Acta, 91, 1999-2034]).

[Scheme 1]

Experimental

Crystal data
  • C37H35NO3

  • Mr = 541.66

  • Monoclinic, P 21

  • a = 11.9706 (5) Å

  • b = 10.1934 (4) Å

  • c = 13.1515 (5) Å

  • β = 116.546 (2)°

  • V = 1435.58 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 173 K

  • 0.22 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa Duo APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.876, Tmax = 0.930

  • 15262 measured reflections

  • 2514 independent reflections

  • 2451 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.10

  • 2514 reflections

  • 375 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O2i 0.95 2.44 3.385 (2) 171
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (2, Fig. 3) is a precursor in the synthesis of novel chiral ligands involving a tetrahydroisoquinoline backbone. Recently, we have reported the application of these ligands as useful catalysts for transfer hydrogenation reactions (Chakka et al., 2010).

Compound 2 contains four phenyl rings and the absolute stereochemistry was confirmed to be R,S at C1 and C9 positions as shown in Fig. 1, respectively (Aubry et al., 2006). The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. The H atom of methanol does not form hydrogen bonds (Table 1 & Fig. 2). According to the Cambridge structural data base this is the first tetrahydroisoquinoline derivative with diaryl substitution at the C10 position. The structure displays a gauche or sc (synclinal) conformation around the O3—C10—C9—N1 bond with the OH group almost over the piperidine ring with a torsion angle of -77.0 (2)°. Due to the lack of analogous structures this observation was compared to proline diaryl alcohols (Seebach et al., 2008) which display a similar conformation around the exocyclic C9—C10 bond. Given the success of proline diaryl alcohols as a chiral catalyst (Diner et al., 2008) this comparison is particularly useful for catalysts bearing a tetrahydroisoquinoline framework as this feature could have a significant effect on the stereocontrol of the catalyst.

We recently reported a crystal structure of a similar molecule to the title compound (Naicker et al., 2009) which has an ester moiety at the C10 position and the N-containing six membered ring assumes a half boat conformation. The N-containing six membered ring in the title compound exists in a half chair conformation (see Fig. 1). A possible reason for this difference in conformation could be the introduction of large phenyl ring substitiuents at the C10 position. The efficiency of these tetrahydroisoquinoline catalysts is currently being tested in our laboratory.

Related literature top

For the synthesis of the title compound, see: Chakka et al. (2010). For related structures, see: Aubry et al. (2006); Naicker et al. (2009). For proline diaryl alcohols, see: Diner et al. (2008); Seebach et al. (2008).

Experimental top

To a solution of compound 1 (Fig. 3) (500 mg, 1.19 mmol) in THF (10 ml), freshly prepared Grignard reagent of phenyl magnesium bromide (2.17 g, 11.9 mmol) was added under a nitrogen atmosphere at ambient temperature. Completion of the reaction was monitored with TLC by quenching 0.1 ml aliquots of the reaction mixture with saturated ammonium chloride solution at 0 °C using ethyl acetate/hexane as the solvent (40 : 60 Rf 0.5). Thereafter the reaction mixture was filtered and the solvent was evaporated under reduced pressure to afford the crude product. This was purified by column chromatography using ethyl acetate/hexane (40:60) as the eluent to yield 80 % (0.52 g) pure tetrahydroisoquinoline diphenyl alcohol 2 as a white solid. 1H NMR (600 MHz,CDCl3,δ, p.p.m): 7.38 (d, J = 7.26 Hz, 2H), 7.32–7.16 (m, 9H), 6.54 (s, 1H), 6.26 (s, 1H), 5.19 (s, 1H), 3.85–3.72 (m, 6H), 3.61 (s,6H), 3.23 (dd, J = 5.10, 15.66 Hz, 1H), 2.98 (dd, J = 3.00, 15.72, Hz, 1H). Light yellow crystals suitable for X-ray diffraction were obtained by slow evaporation of 2 in dichloromethane at room temperature.

Refinement top

The H atom of O3 was located in difference Fourier map and freely refined. All H atoms and C atoms were positioned geometrically and refined using a riding model, with C—H = 1.00 (CH), 0.99 (CH2), 0.98 (CH3) and 0.93 (aromatic CH) Å. Uiso(H) = 1.5Ueq (C) for methyl H atoms and 1.2Ueq(C) for other all H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. The C—H···O interactions (dotted lines) in the crystal structure of the title compound along the a axis. [Symmetry codes: i) x, y, z -1 ; ii) x, y, z + 1.]
[Figure 3] Fig. 3. Reaction scheme.
{(1R,3S)-2-benzyl-6,7-dimethoxy-1-phenyl-1,2,3,4- tetrahydroisoquinolin-3-yl}diphenylmethanol top
Crystal data top
C37H35NO3F(000) = 576
Mr = 541.66Dx = 1.253 Mg m3
Monoclinic, P21Melting point: 478 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54184 Å
a = 11.9706 (5) ÅCell parameters from 15260 reflections
b = 10.1934 (4) Åθ = 4.1–64.1°
c = 13.1515 (5) ŵ = 0.62 mm1
β = 116.546 (2)°T = 173 K
V = 1435.58 (10) Å3Needle, light-yellow
Z = 20.22 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa Duo APEXII
diffractometer
2514 independent reflections
Radiation source: fine-focus sealed tube2451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
0.5° ϕ scans and ω scansθmax = 64.1°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1313
Tmin = 0.876, Tmax = 0.930k = 1111
15262 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.1556P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2514 reflectionsΔρmax = 0.14 e Å3
375 parametersΔρmin = 0.12 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (4)
Crystal data top
C37H35NO3V = 1435.58 (10) Å3
Mr = 541.66Z = 2
Monoclinic, P21Cu Kα radiation
a = 11.9706 (5) ŵ = 0.62 mm1
b = 10.1934 (4) ÅT = 173 K
c = 13.1515 (5) Å0.22 × 0.14 × 0.12 mm
β = 116.546 (2)°
Data collection top
Bruker Kappa Duo APEXII
diffractometer
2514 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2451 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.930Rint = 0.025
15262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.14 e Å3
2514 reflectionsΔρmin = 0.12 e Å3
375 parameters
Special details top

Experimental. Half sphere of data collected using SAINT strategy (Bruker, 2006). Crystal to detector distance = 50 mm; combination of ϕ and ω scans of 0.5°, 70 s per °, 2 iterations.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22854 (13)0.26734 (16)1.12303 (10)0.0431 (3)
O20.04675 (14)0.12697 (17)0.98256 (12)0.0500 (4)
O30.05661 (12)0.42417 (16)0.44410 (11)0.0404 (3)
H3O0.004 (3)0.362 (3)0.413 (2)0.075 (9)*
N10.25806 (13)0.46610 (15)0.69414 (12)0.0293 (3)
C10.32465 (16)0.43732 (19)0.81717 (14)0.0301 (4)
H10.33450.52320.85710.036*
C20.24903 (16)0.34980 (18)0.85715 (15)0.0308 (4)
C30.27894 (17)0.34611 (19)0.97314 (15)0.0329 (4)
H30.34860.39481.02550.040*
C40.20987 (17)0.2737 (2)1.01278 (15)0.0346 (4)
C50.10937 (17)0.1980 (2)0.93545 (16)0.0366 (4)
C60.08020 (17)0.2006 (2)0.82194 (15)0.0348 (4)
H60.01230.14940.77020.042*
C70.14841 (16)0.27720 (19)0.78076 (15)0.0315 (4)
C80.10892 (16)0.2823 (2)0.65460 (15)0.0327 (4)
H8A0.03160.33500.61690.039*
H8B0.09060.19240.62290.039*
C90.21113 (16)0.34278 (18)0.63028 (14)0.0294 (4)
H90.28270.27980.66120.035*
C100.17522 (16)0.35837 (19)0.50136 (15)0.0310 (4)
C110.16612 (15)0.22675 (19)0.44078 (15)0.0307 (4)
C120.19679 (17)0.1051 (2)0.49339 (15)0.0339 (4)
H120.22660.09940.57340.041*
C130.18466 (18)0.0085 (2)0.43084 (18)0.0384 (4)
H130.20540.09100.46830.046*
C140.14278 (19)0.0023 (2)0.31498 (18)0.0409 (5)
H140.13380.08020.27240.049*
C150.11407 (19)0.1175 (2)0.26129 (16)0.0434 (5)
H150.08620.12270.18150.052*
C160.12580 (18)0.2302 (2)0.32337 (16)0.0394 (5)
H160.10590.31230.28530.047*
C170.27291 (17)0.44212 (19)0.48694 (14)0.0334 (4)
C180.2411 (2)0.5509 (2)0.41693 (18)0.0489 (5)
H180.15630.57800.37890.059*
C190.3321 (3)0.6211 (3)0.4016 (2)0.0626 (7)
H190.30910.69520.35270.075*
C200.4552 (3)0.5837 (3)0.4569 (2)0.0636 (7)
H200.51720.63170.44630.076*
C210.4880 (2)0.4767 (3)0.5273 (2)0.0553 (6)
H210.57290.45040.56560.066*
C220.39822 (18)0.4074 (2)0.54256 (18)0.0409 (5)
H220.42240.33400.59230.049*
C230.45677 (16)0.38930 (19)0.84700 (14)0.0314 (4)
C240.50143 (18)0.2662 (2)0.89154 (16)0.0392 (4)
H240.44960.20760.90750.047*
C250.6210 (2)0.2279 (2)0.9130 (2)0.0513 (5)
H250.65000.14280.94240.062*
C260.6982 (2)0.3123 (3)0.8920 (2)0.0532 (6)
H260.77970.28520.90580.064*
C270.65631 (19)0.4367 (3)0.85060 (19)0.0526 (6)
H270.70970.49660.83810.063*
C280.53601 (18)0.4734 (2)0.82747 (18)0.0447 (5)
H280.50710.55830.79750.054*
C290.3369 (2)0.3293 (3)1.20594 (16)0.0490 (5)
H29A0.33990.31811.28110.074*
H29B0.33440.42301.18850.074*
H29C0.41120.28961.20550.074*
C300.0409 (2)0.0329 (3)0.9135 (2)0.0639 (7)
H30A0.07840.01060.95730.096*
H30B0.00120.03240.88800.096*
H30C0.10640.07650.84730.096*
C310.16184 (17)0.5677 (2)0.67155 (17)0.0359 (4)
H31A0.11150.54490.71170.043*
H31B0.10520.57090.58910.043*
C320.22097 (17)0.7003 (2)0.71081 (16)0.0391 (5)
C330.1997 (2)0.7730 (3)0.7892 (2)0.0552 (6)
H330.14790.73910.82060.066*
C340.2552 (3)0.8977 (3)0.8222 (2)0.0750 (9)
H340.24160.94790.87650.090*
C350.3287 (3)0.9462 (3)0.7760 (2)0.0765 (9)
H350.36471.03100.79730.092*
C360.3507 (2)0.8743 (3)0.6998 (2)0.0637 (7)
H360.40250.90880.66860.076*
C370.2985 (2)0.7520 (2)0.66755 (19)0.0495 (5)
H370.31560.70210.61510.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0513 (8)0.0493 (8)0.0319 (6)0.0119 (7)0.0214 (6)0.0048 (6)
O20.0593 (9)0.0570 (10)0.0414 (7)0.0261 (8)0.0294 (7)0.0056 (7)
O30.0328 (7)0.0446 (8)0.0367 (7)0.0091 (7)0.0094 (5)0.0015 (7)
N10.0304 (7)0.0272 (8)0.0309 (7)0.0005 (6)0.0143 (6)0.0002 (6)
C10.0332 (9)0.0264 (9)0.0315 (8)0.0034 (8)0.0154 (7)0.0028 (8)
C20.0342 (9)0.0278 (9)0.0335 (9)0.0016 (8)0.0179 (7)0.0032 (8)
C30.0372 (9)0.0308 (10)0.0325 (8)0.0048 (8)0.0171 (7)0.0061 (8)
C40.0431 (10)0.0336 (10)0.0317 (8)0.0012 (9)0.0209 (8)0.0022 (8)
C50.0419 (10)0.0360 (11)0.0384 (9)0.0066 (9)0.0239 (8)0.0022 (9)
C60.0363 (9)0.0347 (10)0.0359 (9)0.0082 (8)0.0185 (8)0.0058 (8)
C70.0341 (9)0.0292 (9)0.0348 (9)0.0022 (8)0.0184 (7)0.0037 (8)
C80.0340 (9)0.0334 (10)0.0324 (9)0.0038 (8)0.0164 (7)0.0041 (8)
C90.0306 (8)0.0272 (9)0.0320 (9)0.0002 (7)0.0153 (7)0.0010 (7)
C100.0299 (9)0.0320 (10)0.0321 (9)0.0035 (8)0.0146 (7)0.0032 (8)
C110.0274 (8)0.0360 (10)0.0326 (9)0.0043 (8)0.0169 (7)0.0012 (8)
C120.0354 (9)0.0362 (10)0.0313 (9)0.0015 (8)0.0160 (7)0.0006 (8)
C130.0367 (10)0.0337 (11)0.0480 (11)0.0005 (8)0.0218 (9)0.0014 (9)
C140.0415 (10)0.0444 (12)0.0462 (11)0.0106 (9)0.0281 (9)0.0145 (9)
C150.0504 (11)0.0527 (13)0.0334 (9)0.0138 (11)0.0245 (9)0.0082 (10)
C160.0465 (10)0.0420 (12)0.0331 (9)0.0069 (9)0.0208 (8)0.0017 (9)
C170.0421 (10)0.0290 (10)0.0332 (8)0.0022 (8)0.0206 (8)0.0022 (8)
C180.0616 (13)0.0418 (12)0.0446 (11)0.0023 (11)0.0248 (10)0.0105 (10)
C190.100 (2)0.0388 (13)0.0616 (14)0.0096 (14)0.0470 (14)0.0111 (12)
C200.0764 (18)0.0510 (16)0.0845 (18)0.0174 (13)0.0548 (15)0.0012 (14)
C210.0490 (12)0.0551 (15)0.0755 (16)0.0087 (12)0.0401 (12)0.0028 (13)
C220.0422 (10)0.0355 (11)0.0525 (11)0.0002 (9)0.0278 (9)0.0036 (9)
C230.0319 (9)0.0327 (10)0.0274 (8)0.0035 (8)0.0113 (7)0.0033 (7)
C240.0394 (10)0.0300 (10)0.0444 (10)0.0043 (9)0.0154 (8)0.0038 (9)
C250.0447 (11)0.0395 (12)0.0604 (13)0.0066 (10)0.0151 (10)0.0008 (10)
C260.0353 (10)0.0587 (16)0.0612 (14)0.0057 (11)0.0174 (10)0.0032 (12)
C270.0374 (11)0.0624 (16)0.0598 (13)0.0038 (11)0.0233 (10)0.0089 (13)
C280.0377 (10)0.0435 (12)0.0524 (11)0.0004 (9)0.0197 (9)0.0118 (10)
C290.0525 (12)0.0600 (14)0.0337 (10)0.0104 (11)0.0185 (9)0.0055 (10)
C300.0733 (16)0.0710 (18)0.0550 (13)0.0382 (15)0.0354 (12)0.0082 (13)
C310.0318 (9)0.0307 (10)0.0434 (10)0.0024 (8)0.0152 (8)0.0016 (8)
C320.0346 (9)0.0282 (10)0.0416 (10)0.0059 (8)0.0057 (8)0.0012 (9)
C330.0553 (13)0.0428 (13)0.0526 (12)0.0115 (11)0.0108 (10)0.0074 (11)
C340.093 (2)0.0450 (16)0.0549 (14)0.0174 (15)0.0041 (14)0.0155 (12)
C350.0830 (19)0.0335 (14)0.0658 (16)0.0077 (13)0.0091 (14)0.0039 (13)
C360.0584 (14)0.0397 (13)0.0640 (15)0.0079 (11)0.0014 (11)0.0134 (12)
C370.0462 (11)0.0364 (12)0.0537 (12)0.0007 (10)0.0113 (9)0.0092 (10)
Geometric parameters (Å, º) top
O1—C41.366 (2)C18—C191.392 (3)
O1—C291.416 (3)C18—H180.9500
O2—C51.373 (2)C19—C201.374 (4)
O2—C301.412 (3)C19—H190.9500
O3—C101.441 (2)C20—C211.370 (4)
O3—H3O0.91 (3)C20—H200.9500
N1—C91.476 (2)C21—C221.373 (3)
N1—C311.477 (2)C21—H210.9500
N1—C11.479 (2)C22—H220.9500
C1—C21.522 (2)C23—C281.385 (3)
C1—C231.530 (2)C23—C241.387 (3)
C1—H11.0000C24—C251.386 (3)
C2—C71.388 (3)C24—H240.9500
C2—C31.403 (2)C25—C261.378 (3)
C3—C41.373 (3)C25—H250.9500
C3—H30.9500C26—C271.382 (4)
C4—C51.408 (3)C26—H260.9500
C5—C61.373 (3)C27—C281.384 (3)
C6—C71.402 (3)C27—H270.9500
C6—H60.9500C28—H280.9500
C7—C81.509 (2)C29—H29A0.9800
C8—C91.526 (2)C29—H29B0.9800
C8—H8A0.9900C29—H29C0.9800
C8—H8B0.9900C30—H30A0.9800
C9—C101.560 (2)C30—H30B0.9800
C9—H91.0000C30—H30C0.9800
C10—C171.527 (3)C31—C321.506 (3)
C10—C111.539 (3)C31—H31A0.9900
C11—C121.387 (3)C31—H31B0.9900
C11—C161.397 (3)C32—C331.382 (3)
C12—C131.390 (3)C32—C371.391 (3)
C12—H120.9500C33—C341.410 (4)
C13—C141.376 (3)C33—H330.9500
C13—H130.9500C34—C351.365 (5)
C14—C151.375 (3)C34—H340.9500
C14—H140.9500C35—C361.360 (4)
C15—C161.379 (3)C35—H350.9500
C15—H150.9500C36—C371.373 (3)
C16—H160.9500C36—H360.9500
C17—C181.382 (3)C37—H370.9500
C17—C221.389 (3)
C4—O1—C29117.08 (15)C17—C18—C19120.6 (2)
C5—O2—C30117.80 (15)C17—C18—H18119.7
C10—O3—H3O108 (2)C19—C18—H18119.7
C9—N1—C31114.74 (13)C20—C19—C18120.3 (2)
C9—N1—C1109.60 (14)C20—C19—H19119.8
C31—N1—C1110.47 (14)C18—C19—H19119.8
N1—C1—C2112.41 (14)C21—C20—C19119.6 (2)
N1—C1—C23109.51 (13)C21—C20—H20120.2
C2—C1—C23115.48 (15)C19—C20—H20120.2
N1—C1—H1106.3C20—C21—C22120.2 (2)
C2—C1—H1106.3C20—C21—H21119.9
C23—C1—H1106.3C22—C21—H21119.9
C7—C2—C3119.34 (16)C21—C22—C17121.5 (2)
C7—C2—C1121.35 (15)C21—C22—H22119.2
C3—C2—C1119.28 (16)C17—C22—H22119.2
C4—C3—C2121.52 (17)C28—C23—C24118.13 (18)
C4—C3—H3119.2C28—C23—C1118.02 (17)
C2—C3—H3119.2C24—C23—C1123.85 (17)
O1—C4—C3125.99 (17)C25—C24—C23120.6 (2)
O1—C4—C5114.97 (16)C25—C24—H24119.7
C3—C4—C5119.04 (16)C23—C24—H24119.7
C6—C5—O2125.18 (17)C26—C25—C24120.5 (2)
C6—C5—C4119.63 (16)C26—C25—H25119.7
O2—C5—C4115.18 (16)C24—C25—H25119.7
C5—C6—C7121.47 (17)C25—C26—C27119.6 (2)
C5—C6—H6119.3C25—C26—H26120.2
C7—C6—H6119.3C27—C26—H26120.2
C2—C7—C6118.96 (16)C26—C27—C28119.6 (2)
C2—C7—C8121.43 (16)C26—C27—H27120.2
C6—C7—C8119.58 (15)C28—C27—H27120.2
C7—C8—C9110.96 (14)C27—C28—C23121.6 (2)
C7—C8—H8A109.4C27—C28—H28119.2
C9—C8—H8A109.4C23—C28—H28119.2
C7—C8—H8B109.4O1—C29—H29A109.5
C9—C8—H8B109.4O1—C29—H29B109.5
H8A—C8—H8B108.0H29A—C29—H29B109.5
N1—C9—C8111.20 (14)O1—C29—H29C109.5
N1—C9—C10112.43 (15)H29A—C29—H29C109.5
C8—C9—C10114.31 (14)H29B—C29—H29C109.5
N1—C9—H9106.1O2—C30—H30A109.5
C8—C9—H9106.1O2—C30—H30B109.5
C10—C9—H9106.1H30A—C30—H30B109.5
O3—C10—C17107.77 (15)O2—C30—H30C109.5
O3—C10—C11108.05 (14)H30A—C30—H30C109.5
C17—C10—C11107.71 (14)H30B—C30—H30C109.5
O3—C10—C9110.11 (14)N1—C31—C32110.84 (14)
C17—C10—C9109.74 (14)N1—C31—H31A109.5
C11—C10—C9113.28 (15)C32—C31—H31A109.5
C12—C11—C16117.22 (18)N1—C31—H31B109.5
C12—C11—C10125.39 (15)C32—C31—H31B109.5
C16—C11—C10117.37 (17)H31A—C31—H31B108.1
C11—C12—C13121.01 (16)C33—C32—C37118.8 (2)
C11—C12—H12119.5C33—C32—C31121.4 (2)
C13—C12—H12119.5C37—C32—C31119.80 (19)
C14—C13—C12120.46 (19)C32—C33—C34119.6 (3)
C14—C13—H13119.8C32—C33—H33120.2
C12—C13—H13119.8C34—C33—H33120.2
C13—C14—C15119.53 (19)C35—C34—C33119.9 (3)
C13—C14—H14120.2C35—C34—H34120.1
C15—C14—H14120.2C33—C34—H34120.1
C14—C15—C16119.97 (17)C36—C35—C34120.6 (3)
C14—C15—H15120.0C36—C35—H35119.7
C16—C15—H15120.0C34—C35—H35119.7
C15—C16—C11121.8 (2)C35—C36—C37120.4 (3)
C15—C16—H16119.1C35—C36—H36119.8
C11—C16—H16119.1C37—C36—H36119.8
C18—C17—C22117.82 (18)C36—C37—C32120.8 (3)
C18—C17—C10122.22 (17)C36—C37—H37119.6
C22—C17—C10119.94 (17)C32—C37—H37119.6
C9—N1—C1—C249.61 (18)C16—C11—C12—C131.6 (3)
C31—N1—C1—C277.77 (18)C10—C11—C12—C13179.67 (18)
C9—N1—C1—C2380.17 (17)C11—C12—C13—C140.6 (3)
C31—N1—C1—C23152.45 (15)C12—C13—C14—C150.7 (3)
N1—C1—C2—C717.4 (2)C13—C14—C15—C160.8 (3)
C23—C1—C2—C7109.28 (19)C14—C15—C16—C110.2 (3)
N1—C1—C2—C3160.34 (16)C12—C11—C16—C151.4 (3)
C23—C1—C2—C373.0 (2)C10—C11—C16—C15179.74 (17)
C7—C2—C3—C40.9 (3)O3—C10—C17—C187.7 (2)
C1—C2—C3—C4176.84 (17)C11—C10—C17—C18108.7 (2)
C29—O1—C4—C37.4 (3)C9—C10—C17—C18127.62 (19)
C29—O1—C4—C5172.86 (19)O3—C10—C17—C22174.30 (16)
C2—C3—C4—O1177.54 (18)C11—C10—C17—C2269.3 (2)
C2—C3—C4—C52.2 (3)C9—C10—C17—C2254.4 (2)
C30—O2—C5—C611.0 (3)C22—C17—C18—C191.2 (3)
C30—O2—C5—C4169.7 (2)C10—C17—C18—C19176.8 (2)
O1—C4—C5—C6178.01 (18)C17—C18—C19—C200.6 (4)
C3—C4—C5—C61.8 (3)C18—C19—C20—C210.0 (4)
O1—C4—C5—O21.3 (3)C19—C20—C21—C220.1 (4)
C3—C4—C5—O2178.95 (18)C20—C21—C22—C170.7 (3)
O2—C5—C6—C7179.27 (19)C18—C17—C22—C211.3 (3)
C4—C5—C6—C70.0 (3)C10—C17—C22—C21176.81 (19)
C3—C2—C7—C60.8 (3)N1—C1—C23—C2861.0 (2)
C1—C2—C7—C6178.51 (17)C2—C1—C23—C28170.93 (16)
C3—C2—C7—C8177.34 (17)N1—C1—C23—C24118.47 (18)
C1—C2—C7—C80.4 (3)C2—C1—C23—C249.6 (2)
C5—C6—C7—C21.2 (3)C28—C23—C24—C251.6 (3)
C5—C6—C7—C8176.95 (18)C1—C23—C24—C25177.84 (18)
C2—C7—C8—C915.5 (2)C23—C24—C25—C261.0 (3)
C6—C7—C8—C9166.40 (17)C24—C25—C26—C270.9 (4)
C31—N1—C9—C857.74 (19)C25—C26—C27—C282.0 (4)
C1—N1—C9—C867.21 (17)C26—C27—C28—C231.4 (4)
C31—N1—C9—C1071.89 (18)C24—C23—C28—C270.4 (3)
C1—N1—C9—C10163.16 (14)C1—C23—C28—C27179.1 (2)
C7—C8—C9—N148.4 (2)C9—N1—C31—C32162.95 (15)
C7—C8—C9—C10177.03 (16)C1—N1—C31—C3272.56 (19)
N1—C9—C10—O377.04 (18)N1—C31—C32—C33122.4 (2)
C8—C9—C10—O351.0 (2)N1—C31—C32—C3757.8 (2)
N1—C9—C10—C1741.44 (19)C37—C32—C33—C340.8 (3)
C8—C9—C10—C17169.44 (15)C31—C32—C33—C34178.93 (19)
N1—C9—C10—C11161.84 (14)C32—C33—C34—C350.5 (4)
C8—C9—C10—C1170.15 (19)C33—C34—C35—C361.2 (4)
O3—C10—C11—C12127.94 (18)C34—C35—C36—C370.5 (4)
C17—C10—C11—C12115.89 (18)C35—C36—C37—C320.9 (3)
C9—C10—C11—C125.7 (2)C33—C32—C37—C361.6 (3)
O3—C10—C11—C1653.3 (2)C31—C32—C37—C36178.20 (18)
C17—C10—C11—C1662.88 (19)O3—C10—C9—N177.04 (18)
C9—C10—C11—C16175.57 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.952.443.385 (2)171
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC37H35NO3
Mr541.66
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)11.9706 (5), 10.1934 (4), 13.1515 (5)
β (°) 116.546 (2)
V3)1435.58 (10)
Z2
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.22 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa Duo APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.876, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
15262, 2514, 2451
Rint0.025
(sin θ/λ)max1)0.583
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.10
No. of reflections2514
No. of parameters375
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.952.443.385 (2)171.3
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors wish to thank Dr Hong Su of the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection and Dr M Bala of the School of Chemistry at University of KwaZulu-Natal for his assistance with preparation of this manuscript.

References

First citationAubry, S., Pellet-Rostaing, S., Faure, R. & Lemaire, M. (2006). J. Heterocycl. Chem, 43, 139–148.  CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Eur. J. Org. Chem. pp. 972–980  CrossRef Google Scholar
First citationDiner, P., Kjaersgaard, A., Lie, M. A. & Jorgensen, K. A. (2008). Chem. Eur. J. 14, 122–127.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNaicker, T., McKay, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Acta Cryst. E65, o3278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeebach, D., Grosělj, U., Badine, D. M., Schweizer, W. B. & Beck, A. K. (2008). Helv. Chim. Acta, 91, 1999–2034  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.   Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds