organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1E,3E,5E,7E)-4,4′-(Octa-1,3,5,7-tetra­ene-1,8-di­yl)di­pyridine

aDepartment of Chemistry, GC University Lahore 54000, Pakistan, bDepartment of Chemistry, Pennsylvania State University, Hazleton, PA 18202, USA, cDepartment of Chemistry, Pennsylvania State University, Worthington Scranton, PA 18512, USA, and dDepartment of Chemistry, Georgetown University, 37th and O St. NW, Washington, DC 20057, USA
*Correspondence e-mail: kth7@georgetown.edu

(Received 9 December 2009; accepted 25 January 2010; online 3 February 2010)

The title compound, C18H16N2, crystallizes with one and a half independent mol­ecules in the asymmetric unit, with the half-mol­ecule being completed by crystallographic inversion symmetry. Both independent mol­ecules are almost planar, with the non-H atoms exhibiting r.m.s. deviations from the least-squares mol­ecular plane of 0.175 and 0.118 Å, respectively.

Related literature

For the synthesis, see: Woitellier et al. (1989[Woitellier, S., Launay, J. P. & Spangler, C. W. (1989). Inorg. Chem. 28, 758-762.]). For the use of the diene and the triene in the synthesis of ladderanes via template-directed photochemistry, see: Gao et al. (2004[Gao, X., Friscic, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232-36.]). For a related structure, see: Bader (2009[Bader, M. M. (2009). Acta Cryst. E65, o2006.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2

  • Mr = 260.33

  • Monoclinic, P 21 /c

  • a = 5.5565 (12) Å

  • b = 17.950 (4) Å

  • c = 21.542 (5) Å

  • β = 94.809 (5)°

  • V = 2141.0 (8) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.50 × 0.23 × 0.20 mm

Data collection
  • Siemens SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2001[Bruker (2001). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.986

  • 13659 measured reflections

  • 4727 independent reflections

  • 2195 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.102

  • S = 0.87

  • 4727 reflections

  • 343 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1 189-191.])'; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The present bispyridyl tetraene is in continuation to our previously reported crystal structure of the bispyridyl triene analog (Bader, 2009). The diene and triene have been used in the synthesis of ladderanes via template directed photochemistry (Gao et al., 2004). The electron transfer properties of metal complexes of bispyridyl polyenes have also been studied and the crystal structure of a metal complex of the title compound was reported (Woitellier et al., 1989).

The title compound crystallizes in the monoclinic crystal system such that there are one and one-half molecules in the asymmetric unit, molecules A and B, respectively. Molecule B resides about an inverison center. The bond lengths of molecules A and B are comparable to the previously published structure of the triene derivative, namely 4-[(1E,3E,5E)-6-(4-pyridyl)hexa-1,3,5-trienyl]pyridine (Bader, 2009) and also the previously reported metal complex of the title compound (Woitellier et al., 1989). Molecules A and B both deviate significantly from planarity (Fig. 3). The root mean square deviation of the carbon and nitrogen atoms from the least squares plane defined by such atoms in molecule A measures 0.175 Å, with N3 deviating from the plane by as much as 0.33 Å. The dihedral angle between the two planar pyridine rings of molecule A measures 7.53(0.11)°. Similarly, the root mean square deviation of the carbon and nitrogen atoms from the least squares plane defined by such atoms in molecule B measures 0.118 Å, with C25 being located 0.17 Å from the plane.

Related literature top

For the synthesis, see: Woitellier et al. (1989). For the use of the diene and the triene in the synthesis of ladderanes via template-directed photochemistry, see: Gao et al. (2004). For a related structure, see: Bader (2009).

Experimental top

The compound was synthesized following the literature method (Woitellier et al., 1989).

Refinement top

The C—H = 0.942–0.996 Å, H-atoms were located in difference map and refined: with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and X-SEED (Barbour, 2001)'; software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The labelled thermal ellipsoids plot with 50% probability level.
[Figure 2] Fig. 2. Unit cell packing for the title compound. Hydrogen atoms have been omitted for clarity.
[Figure 3] Fig. 3. Planarity comparison for unique molecules A and B.
(1E,3E,5E,7E)-4,4'-(Octa-1,3,5,7-tetraene-1,8- diyl)dipyridine top
Crystal data top
C18H16N2F(000) = 828
Mr = 260.33Dx = 1.211 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1908 reflections
a = 5.5565 (12) Åθ = 2.3–24.0°
b = 17.950 (4) ŵ = 0.07 mm1
c = 21.542 (5) ÅT = 173 K
β = 94.809 (5)°Needle, brown
V = 2141.0 (8) Å30.50 × 0.23 × 0.20 mm
Z = 6
Data collection top
Siemens SMART 1K
diffractometer
2195 reflections with I > 2σ(I)
ω scansRint = 0.061
Absorption correction: multi-scan
(SADABS; Bruker 2001)
θmax = 27.2°, θmin = 1.9°
Tmin = 0.979, Tmax = 0.986h = 57
13659 measured reflectionsk = 2023
4727 independent reflectionsl = 2721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2) + (0.0357P)2]
where P = (Fo2 + 2Fc2)/3
4727 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H16N2V = 2141.0 (8) Å3
Mr = 260.33Z = 6
Monoclinic, P21/cMo Kα radiation
a = 5.5565 (12) ŵ = 0.07 mm1
b = 17.950 (4) ÅT = 173 K
c = 21.542 (5) Å0.50 × 0.23 × 0.20 mm
β = 94.809 (5)°
Data collection top
Siemens SMART 1K
diffractometer
4727 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2001)
2195 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.986Rint = 0.061
13659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.15 e Å3
4727 reflectionsΔρmin = 0.17 e Å3
343 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3021 (3)0.65494 (9)0.12504 (7)0.0448 (4)
N21.1856 (3)0.05066 (10)0.59878 (8)0.0536 (5)
N30.7464 (3)0.29359 (9)0.24722 (7)0.0469 (4)
C10.4416 (4)0.59659 (12)0.13700 (9)0.0436 (5)
C20.3757 (3)0.54235 (11)0.18034 (9)0.0384 (5)
C30.1522 (3)0.54509 (10)0.21419 (8)0.0343 (5)
C40.0079 (3)0.60627 (11)0.20284 (8)0.0376 (5)
C50.0885 (4)0.65812 (12)0.15892 (9)0.0433 (5)
C60.0763 (4)0.48508 (11)0.25731 (9)0.0385 (5)
C70.1333 (4)0.47926 (11)0.29196 (8)0.0385 (5)
C80.2023 (4)0.41530 (11)0.32953 (8)0.0381 (5)
C90.4162 (4)0.40603 (11)0.36246 (8)0.0389 (5)
C100.4835 (4)0.33966 (11)0.39705 (8)0.0379 (5)
C110.6999 (4)0.32671 (11)0.42754 (8)0.0386 (5)
C120.7613 (4)0.25807 (11)0.45946 (8)0.0375 (5)
C130.9763 (4)0.24363 (11)0.48963 (8)0.0383 (5)
C141.0455 (3)0.17596 (10)0.52440 (8)0.0346 (5)
C150.8974 (4)0.11369 (11)0.52742 (9)0.0418 (5)
C160.9740 (4)0.05425 (12)0.56460 (10)0.0480 (6)
C171.3282 (4)0.11009 (13)0.59511 (10)0.0526 (6)
C181.2671 (3)0.17204 (12)0.55905 (9)0.0436 (5)
C190.5479 (4)0.25131 (12)0.24915 (9)0.0444 (5)
C200.4693 (3)0.20009 (11)0.20450 (9)0.0391 (5)
C210.5991 (3)0.18927 (10)0.15268 (8)0.0346 (5)
C220.8084 (3)0.23195 (11)0.15099 (9)0.0415 (5)
C230.8709 (4)0.28191 (12)0.19777 (10)0.0459 (5)
C240.5221 (3)0.14039 (11)0.10062 (9)0.0388 (5)
C250.3179 (4)0.10021 (10)0.09310 (9)0.0388 (5)
C260.2444 (4)0.05851 (11)0.03763 (9)0.0409 (5)
C270.0375 (4)0.01998 (10)0.02796 (8)0.0410 (5)
H10.601 (3)0.5947 (10)0.1124 (7)0.049*
H20.481 (3)0.5029 (10)0.1877 (8)0.049*
H40.151 (3)0.6145 (9)0.2237 (7)0.049*
H50.016 (3)0.6982 (10)0.1492 (7)0.049*
H60.194 (3)0.4458 (10)0.2585 (8)0.049*
H70.258 (3)0.5183 (10)0.2906 (7)0.049*
H80.077 (3)0.3763 (10)0.3290 (7)0.049*
H90.539 (3)0.4467 (10)0.3614 (7)0.049*
H100.361 (3)0.3004 (10)0.3966 (7)0.049*
H110.826 (3)0.3624 (10)0.4272 (8)0.049*
H120.633 (3)0.2204 (10)0.4577 (7)0.049*
H131.103 (3)0.2809 (10)0.4894 (7)0.049*
H150.739 (3)0.1129 (10)0.5057 (8)0.049*
H160.864 (3)0.0118 (10)0.5671 (8)0.049*
H171.483 (3)0.1070 (10)0.6207 (8)0.049*
H181.381 (3)0.2120 (10)0.5576 (7)0.049*
H190.457 (3)0.2596 (9)0.2858 (7)0.049*
H200.319 (3)0.1734 (10)0.2092 (7)0.049*
H220.903 (3)0.2249 (9)0.1158 (7)0.049*
H231.019 (3)0.3124 (10)0.1963 (7)0.049*
H240.628 (3)0.1390 (9)0.0662 (8)0.049*
H250.207 (3)0.1001 (9)0.1263 (7)0.049*
H260.355 (3)0.0600 (9)0.0042 (8)0.049*
H270.071 (3)0.0190 (9)0.0619 (7)0.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0449 (11)0.0430 (12)0.0459 (10)0.0082 (9)0.0007 (9)0.0022 (8)
N20.0463 (11)0.0473 (12)0.0672 (13)0.0057 (9)0.0044 (10)0.0136 (9)
N30.0500 (11)0.0411 (11)0.0501 (11)0.0068 (9)0.0065 (9)0.0035 (8)
C10.0402 (13)0.0470 (15)0.0424 (13)0.0078 (11)0.0024 (10)0.0058 (11)
C20.0378 (12)0.0369 (13)0.0405 (12)0.0004 (9)0.0029 (10)0.0054 (10)
C30.0378 (11)0.0324 (12)0.0330 (11)0.0023 (9)0.0049 (9)0.0040 (9)
C40.0335 (11)0.0393 (13)0.0400 (12)0.0003 (10)0.0028 (9)0.0024 (10)
C50.0424 (13)0.0398 (14)0.0480 (13)0.0016 (10)0.0059 (11)0.0071 (11)
C60.0437 (13)0.0315 (13)0.0401 (12)0.0002 (9)0.0029 (10)0.0028 (9)
C70.0488 (13)0.0311 (13)0.0358 (12)0.0022 (9)0.0034 (10)0.0012 (9)
C80.0476 (13)0.0310 (12)0.0357 (11)0.0008 (9)0.0040 (10)0.0001 (9)
C90.0520 (13)0.0308 (13)0.0336 (11)0.0021 (10)0.0022 (10)0.0011 (9)
C100.0508 (14)0.0306 (13)0.0321 (11)0.0005 (9)0.0025 (10)0.0023 (9)
C110.0504 (14)0.0326 (13)0.0330 (11)0.0035 (10)0.0033 (10)0.0007 (9)
C120.0480 (13)0.0311 (13)0.0335 (11)0.0002 (9)0.0033 (10)0.0022 (9)
C130.0449 (13)0.0324 (13)0.0373 (11)0.0021 (9)0.0023 (10)0.0011 (9)
C140.0358 (11)0.0353 (12)0.0333 (11)0.0026 (9)0.0061 (9)0.0032 (9)
C150.0415 (12)0.0382 (13)0.0454 (13)0.0001 (10)0.0022 (10)0.0002 (10)
C160.0471 (14)0.0398 (14)0.0572 (14)0.0024 (11)0.0062 (11)0.0082 (11)
C170.0419 (14)0.0562 (17)0.0590 (15)0.0076 (12)0.0009 (11)0.0135 (12)
C180.0401 (13)0.0400 (14)0.0505 (13)0.0019 (10)0.0030 (11)0.0037 (11)
C190.0505 (14)0.0421 (14)0.0416 (13)0.0030 (11)0.0100 (10)0.0022 (10)
C200.0375 (12)0.0356 (13)0.0444 (12)0.0053 (9)0.0050 (10)0.0029 (10)
C210.0400 (11)0.0290 (12)0.0345 (11)0.0022 (9)0.0022 (9)0.0049 (9)
C220.0436 (13)0.0411 (14)0.0408 (12)0.0033 (10)0.0082 (10)0.0017 (10)
C230.0424 (13)0.0440 (14)0.0514 (14)0.0091 (10)0.0039 (11)0.0035 (11)
C240.0457 (13)0.0344 (12)0.0372 (12)0.0035 (10)0.0090 (10)0.0019 (9)
C250.0463 (13)0.0298 (12)0.0407 (13)0.0033 (10)0.0053 (10)0.0005 (10)
C260.0510 (14)0.0332 (13)0.0386 (13)0.0036 (10)0.0045 (10)0.0014 (10)
C270.0510 (14)0.0309 (12)0.0409 (13)0.0030 (10)0.0031 (10)0.0015 (9)
Geometric parameters (Å, º) top
N1—C11.341 (2)C12—H120.982 (17)
N1—C51.341 (2)C13—C141.462 (2)
N2—C171.335 (2)C13—H130.972 (17)
N2—C161.335 (2)C14—C181.387 (2)
N3—C231.334 (2)C14—C151.393 (2)
N3—C191.342 (2)C15—C161.380 (3)
C1—C21.377 (3)C15—H150.962 (16)
C1—H10.996 (16)C16—H160.981 (17)
C2—C31.387 (2)C17—C181.382 (3)
C2—H20.942 (17)C17—H170.984 (16)
C3—C41.394 (2)C18—H180.960 (17)
C3—C61.461 (3)C19—C201.375 (3)
C4—C51.375 (2)C19—H190.983 (16)
C4—H40.968 (16)C20—C211.392 (2)
C5—H50.960 (17)C20—H200.974 (17)
C6—C71.334 (2)C21—C221.396 (2)
C6—H60.964 (17)C21—C241.460 (2)
C7—C81.438 (2)C22—C231.372 (3)
C7—H70.986 (17)C22—H220.966 (16)
C8—C91.343 (2)C23—H230.990 (17)
C8—H80.987 (17)C24—C251.343 (2)
C9—C101.438 (3)C24—H240.985 (16)
C9—H91.000 (17)C25—C261.440 (2)
C10—C111.341 (2)C25—H250.983 (16)
C10—H100.981 (17)C26—C271.343 (2)
C11—C121.438 (2)C26—H260.986 (16)
C11—H110.951 (17)C27—C27i1.434 (4)
C12—C131.337 (2)C27—H270.985 (16)
C1—N1—C5115.34 (17)C18—C14—C15115.83 (19)
C17—N2—C16115.36 (19)C18—C14—C13120.08 (18)
C23—N3—C19114.71 (18)C15—C14—C13124.05 (17)
N1—C1—C2123.89 (19)C16—C15—C14119.54 (19)
N1—C1—H1115.4 (10)C16—C15—H15119.8 (11)
C2—C1—H1120.7 (10)C14—C15—H15120.6 (11)
C1—C2—C3120.4 (2)N2—C16—C15124.9 (2)
C1—C2—H2120.7 (11)N2—C16—H16117.1 (10)
C3—C2—H2118.8 (11)C15—C16—H16118.0 (10)
C2—C3—C4116.02 (18)N2—C17—C18123.9 (2)
C2—C3—C6120.39 (18)N2—C17—H17114.7 (11)
C4—C3—C6123.57 (17)C18—C17—H17121.5 (11)
C5—C4—C3119.67 (18)C17—C18—C14120.5 (2)
C5—C4—H4116.6 (10)C17—C18—H18119.2 (10)
C3—C4—H4123.7 (10)C14—C18—H18120.3 (10)
N1—C5—C4124.6 (2)N3—C19—C20124.76 (19)
N1—C5—H5116.0 (10)N3—C19—H19114.6 (10)
C4—C5—H5119.2 (10)C20—C19—H19120.6 (10)
C7—C6—C3127.26 (19)C19—C20—C21119.91 (18)
C7—C6—H6119.5 (10)C19—C20—H20118.8 (10)
C3—C6—H6113.3 (10)C21—C20—H20121.3 (10)
C6—C7—C8123.8 (2)C20—C21—C22115.66 (18)
C6—C7—H7120.6 (10)C20—C21—C24124.18 (18)
C8—C7—H7115.5 (10)C22—C21—C24120.07 (17)
C9—C8—C7125.36 (19)C23—C22—C21119.98 (19)
C9—C8—H8120.8 (10)C23—C22—H22122.8 (10)
C7—C8—H8113.8 (10)C21—C22—H22117.2 (10)
C8—C9—C10123.8 (2)N3—C23—C22124.97 (19)
C8—C9—H9118.2 (10)N3—C23—H23115.3 (10)
C10—C9—H9117.9 (10)C22—C23—H23119.8 (10)
C11—C10—C9125.5 (2)C25—C24—C21127.29 (18)
C11—C10—H10118.3 (10)C25—C24—H24116.6 (10)
C9—C10—H10116.1 (10)C21—C24—H24116.0 (10)
C10—C11—C12123.34 (19)C24—C25—C26123.86 (19)
C10—C11—H11120.8 (11)C24—C25—H25119.3 (10)
C12—C11—H11115.8 (11)C26—C25—H25116.8 (10)
C13—C12—C11124.4 (2)C27—C26—C25125.16 (19)
C13—C12—H12120.2 (10)C27—C26—H26118.6 (10)
C11—C12—H12115.4 (10)C25—C26—H26116.3 (10)
C12—C13—C14126.60 (19)C26—C27—C27i124.9 (3)
C12—C13—H13118.8 (10)C26—C27—H27117.6 (10)
C14—C13—H13114.6 (10)C27i—C27—H27117.5 (10)
C5—N1—C1—C20.4 (3)C13—C14—C15—C16176.12 (18)
N1—C1—C2—C31.0 (3)C17—N2—C16—C150.3 (3)
C1—C2—C3—C42.1 (3)C14—C15—C16—N20.6 (3)
C1—C2—C3—C6176.14 (17)C16—N2—C17—C180.1 (3)
C2—C3—C4—C51.7 (3)N2—C17—C18—C140.9 (3)
C6—C3—C4—C5176.43 (18)C15—C14—C18—C171.7 (3)
C1—N1—C5—C40.8 (3)C13—C14—C18—C17176.04 (18)
C3—C4—C5—N10.3 (3)C23—N3—C19—C201.0 (3)
C2—C3—C6—C7178.71 (19)N3—C19—C20—C210.1 (3)
C4—C3—C6—C70.7 (3)C19—C20—C21—C221.2 (3)
C3—C6—C7—C8174.69 (18)C19—C20—C21—C24175.40 (18)
C6—C7—C8—C9176.5 (2)C20—C21—C22—C231.6 (3)
C7—C8—C9—C10176.75 (17)C24—C21—C22—C23175.19 (17)
C8—C9—C10—C11176.03 (19)C19—N3—C23—C220.6 (3)
C9—C10—C11—C12177.47 (17)C21—C22—C23—N30.7 (3)
C10—C11—C12—C13179.32 (19)C20—C21—C24—C251.7 (3)
C11—C12—C13—C14177.90 (17)C22—C21—C24—C25174.80 (18)
C12—C13—C14—C18172.99 (19)C21—C24—C25—C26174.09 (18)
C12—C13—C14—C154.5 (3)C24—C25—C26—C27177.56 (19)
C18—C14—C15—C161.5 (3)C25—C26—C27—C27i178.4 (2)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC18H16N2
Mr260.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)5.5565 (12), 17.950 (4), 21.542 (5)
β (°) 94.809 (5)
V3)2141.0 (8)
Z6
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.23 × 0.20
Data collection
DiffractometerSiemens SMART 1K
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2001)
Tmin, Tmax0.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
13659, 4727, 2195
Rint0.061
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.102, 0.87
No. of reflections4727
No. of parameters343
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and X-SEED (Barbour, 2001)', WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Footnotes

Current address: Department of Chemistry, Georgetown University, 37th and O St. NW, Washington, DC 20057, USA.

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a fellowship to MNA under the Inter­national Research Support Initiative Programme (IRSIP).

References

First citationBader, M. M. (2009). Acta Cryst. E65, o2006.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGao, X., Friscic, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoitellier, S., Launay, J. P. & Spangler, C. W. (1989). Inorg. Chem. 28, 758–762.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds