organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-6-benzyl­amino-1-methyl-5-nitro-1,2,3,4-tetra­hydro­pyrimidine

aCentre for Bioinformatics, Pondicherry University, Puducherry 605 014, India, bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, and cSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: krishstrucbio@gmail.com

(Received 18 January 2010; accepted 28 January 2010; online 3 February 2010)

In the title compound, C19H22N4O2, the tetra­hydro­pyrimidine ring adopts an envelope conformation (with the N atom connected to the benzyl group representing the flap). This benzyl group occupies a quasi-axial position. The two benzyl groups lie over the tetra­hydro­pyridimidine ring. The amino group is a hydrogen-bond donor to the nitro group.

Related literature

For the biological activity of tetra­hydro­pyrimidine derivatives, see: Atwal et al. (1991[Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O Reilly, B. C. (1991). J. Med. Chem. 34, 806-811.]); Jauk et al. (2000[Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules. 5, 227-239.]); Messer et al. (1997[Messer, W. S., Abuh, Y. F., Liu, Y., Periyasamy, S., Ngur, D. O., Edgar, M. A. N., ElAssadi, A. A., Sbeih, S., Dunbar, P. G., Roknich, S., Rho, T., Fang, Z., Ojo, B., Zhang, H., Huzl, J. J. & Nagy, P. I. (1997). J. Med. Chem. 40, 1230-1246.]). For the synthesis of the title compound, see: Chanda et al. (2004[Chanda, K., Dutta, M. C., Kishore, K. & Vishwakarma, J. N. (2004). Molbank 2004, M367.]). For conformational anlysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22N4O2

  • Mr = 338.41

  • Trigonal, [R \overline 3]

  • a = 29.2634 (12) Å

  • c = 10.4916 (8) Å

  • V = 7780.8 (7) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.28 × 0.23 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with an Eos (Nova) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.979, Tmax = 0.983

  • 28183 measured reflections

  • 3973 independent reflections

  • 2683 reflections with I > 2σ(I)

  • Rint = 0.044

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.160

  • S = 1.08

  • 3973 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2 0.86 1.98 2.591 (2) 127

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Dihydropyrimidines are reported to have broad range of therapeutic and pharmacological properties, such as Antihypertensive (Atwal et al., 1991)and calcium channel modulators (Jauk et al., 2000). Tetrahydropyrimidine derivatives found to be useful in treating cognitive and memory deficits associated with low acetylcholine levels, as found in Alzheimer disease (Messer et al., 1997). Upon, considering the importance of di and tetrahydropyrimidine derivatives, we had synthesized and undertaken the single-crystal determination of the title compound.

The compound was crystallized using a solution of hexane-ethylacetate in the ratio of 7:3. The title compound, (I) was centrosymmetric. It has trigonal crystal system with hexagonal axes. It contains two planar aromatic (A & B) and one pyrimidine (C) rings (Fig. 1). The six-member (N1, C1, N2, C2,C3, C4) tetrahydropyrimidine ring adopts sofa conformation, with puckering parameters q2 = 0.4124 Å, q3 = -0.2504 Å, Q = 0.4825 Å, θ= 121.27° and ϕ =-176.41° (Cremer & Pople, 1975). Tetrahydropyrimidine ring makes dihedral angles of -176.86° with benzyl ring A and 50.26° with benzyl ring B and this contributes to the formation of sofa conformation. C11—H11 and Cg(Cg: centroid of C13, C14, C15, C16, C17) of two benzyl rings form the intermolecular C—H···π interactions with a distance of 2.862 Å. As expected, this distance was considerably lower than those observed between C—H and C of two benzyl rings which ranges from 2.884 Å to 3.449 Å. Furthermore, intermolecular hydrogen bond interactions was also observed betweeen N3 ···O2(3.056 Å), O2 ···O2 (2.882 Å), C12 ···O2 (3.184 Å) and C19 ···O1 (3.232 Å). Along with C—H ···π interaction, the intermolecular hydrogen-bonding interaction helps in stabilizing the packing of molecules in the unit cell. In addition to this, intramolecular hydrogen bonds between N3 and O2 (2.591 Å) was also observed and this interaction helps in the formation of extended three-dimensional network(Table 1). The crystal packing also shows a hydrophobic core formation between the benzyl (B) rings of each adjacent six molecules (C16-H16···H16-C16, with a distance of 2.486 Å) (Fig. 2).

Related literature top

For the biological activity of tetrahydropyrimidine derivatives, see: Atwal et al. (1991); Jauk et al. (2000); Messer et al. (1997). For the synthesis of the title compound, see: Chanda et al. (2004). For conformational anlysis, see: Cremer & Pople (1975).

Experimental top

A mixture of benzylamine (214 mg, 2.0 mmol) and paraformaldehyde (60 mg, 2.0 mmol) was stirred in methanol (2 ml) for 5 min and a solution of 1-methylamino-1-methylthio-2-nitroethylene (148 mg, 1.0 mmol) in methanol (1 mL)was added. Then, the resulting mixture was refluxed by heating at 80 oC for 2 h. After completion of the reaction (monitored byTLC), the reaction mixture was cooled in ice-water. Resulting crude solid was filtered and washed with MeOH(2 * 2 mL) to give N,1-Dibenzyl-3-methyl-5-nitro-1,2,3,6- tetrahydropyrimidin-4-amine(208 mg, 61%, mp = 137.5 oC) and 1,3-Dibenzyl-N-methyl-5-nitro-1,2,3,6- tetrahydropyrimidin-4-amine(105 mg, 31%, mp = 128.5 oC) (Chanda et al. 2004). X-ray worthy crystals was obtained by recrystallizing from a solution of hexane-ethyl acetate (7:3)and the X-ray data was collected at 292 K on a Oxford diffraction-Nova-1 with graphite mono chromate Mo/Kα radiation (0.71073 Å).

Refinement top

The structure was solved by direct method using SHELXS– 97 and refinement was done by full-matrix least-squares procedure on F2 using SHELXL– 97. The non-hydrogen atoms were refined anisotropically whereas hydrogen atoms were refined isotropically. The H atoms were geometrically placed (N—H = 0.86 Å, and C—H=0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5 Ueq (parent atom).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : The crystal packing of (I), showing intra and intermolecular hydrogen bonding interactions represented as dashed lines. The hydrophobic core is formed by six adjacent benzyl (B) rings.
3-Benzyl-6-benzylamino-1-methyl-5-nitro-1,2,3,4-tetrahydropyrimidine top
Crystal data top
C19H22N4O2Dx = 1.300 Mg m3
Mr = 338.41Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 28183 reflections
Hall symbol: -R 3θ = 1.4–28.0°
a = 29.2634 (12) ŵ = 0.09 mm1
c = 10.4916 (8) ÅT = 292 K
V = 7780.8 (7) Å3Rectangle, yellow
Z = 180.28 × 0.23 × 0.19 mm
F(000) = 3240
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Eos (Nova) detector
3973 independent reflections
Radiation source: Enhance (Mo) X-ray Source2683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 28.0°, θmin = 1.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 3838
Tmin = 0.979, Tmax = 0.983k = 3838
28183 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0687P)2 + 3.8739P]
where P = (Fo2 + 2Fc2)/3
3973 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H22N4O2Z = 18
Mr = 338.41Mo Kα radiation
Trigonal, R3µ = 0.09 mm1
a = 29.2634 (12) ÅT = 292 K
c = 10.4916 (8) Å0.28 × 0.23 × 0.19 mm
V = 7780.8 (7) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Eos (Nova) detector
3973 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2683 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.044
28183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
3973 reflectionsΔρmin = 0.24 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.39006 (6)0.15310 (6)0.51966 (16)0.0398 (4)
H30.36000.14950.54060.048*
N20.42905 (6)0.10207 (6)0.47194 (16)0.0402 (4)
O20.31664 (6)0.11208 (6)0.69111 (16)0.0545 (4)
N40.33057 (6)0.07772 (7)0.71280 (16)0.0417 (4)
C20.39627 (7)0.11153 (7)0.54251 (18)0.0328 (4)
O10.30683 (6)0.04390 (7)0.79948 (16)0.0617 (5)
N10.43266 (7)0.04487 (7)0.63639 (18)0.0456 (4)
C40.37971 (8)0.03212 (8)0.6772 (2)0.0493 (5)
H4A0.37660.02650.76870.059*
H4B0.35380.00040.63660.059*
C30.36820 (7)0.07530 (7)0.64406 (19)0.0364 (4)
C60.52871 (8)0.09734 (8)0.68224 (19)0.0410 (5)
C130.48157 (8)0.22891 (7)0.5254 (2)0.0431 (5)
C120.42799 (8)0.20390 (8)0.4635 (2)0.0449 (5)
H12A0.41420.22780.47070.054*
H12B0.43170.19890.37350.054*
C50.47407 (8)0.08550 (9)0.7173 (2)0.0489 (5)
H5A0.46720.07390.80530.059*
H5B0.47240.11770.71080.059*
C10.43797 (9)0.05758 (9)0.5043 (2)0.0484 (5)
H1A0.41300.02660.45700.058*
H1B0.47320.06660.47700.058*
C70.54609 (9)0.06237 (9)0.7111 (2)0.0515 (5)
H70.52280.03000.74810.062*
C140.48633 (10)0.23062 (9)0.6569 (2)0.0556 (6)
H140.45610.21580.70700.067*
C80.59728 (10)0.07457 (11)0.6862 (2)0.0595 (6)
H80.60810.05040.70590.071*
C110.56396 (10)0.14432 (9)0.6243 (2)0.0561 (6)
H110.55290.16800.60120.067*
C90.63221 (10)0.12213 (11)0.6324 (2)0.0613 (7)
H90.66700.13090.61800.074*
C100.61539 (11)0.15683 (10)0.5999 (3)0.0665 (7)
H100.63870.18880.56150.080*
C180.52736 (10)0.25208 (9)0.4537 (3)0.0607 (7)
H180.52550.25210.36520.073*
C170.57623 (10)0.27535 (10)0.5138 (4)0.0783 (9)
H170.60680.29070.46500.094*
C160.57985 (12)0.27599 (11)0.6432 (4)0.0806 (9)
H160.61270.29150.68240.097*
C150.53505 (12)0.25380 (11)0.7148 (3)0.0744 (8)
H150.53740.25430.80320.089*
C190.44266 (10)0.12018 (9)0.3407 (2)0.0525 (6)
H19A0.41580.12600.30510.079*
H19B0.44520.09390.29150.079*
H19C0.47590.15250.33910.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0340 (8)0.0380 (9)0.0488 (10)0.0191 (7)0.0041 (7)0.0058 (7)
N20.0425 (9)0.0402 (9)0.0393 (9)0.0217 (8)0.0041 (7)0.0024 (7)
O20.0521 (9)0.0546 (9)0.0664 (10)0.0338 (8)0.0166 (8)0.0059 (8)
N40.0327 (8)0.0406 (9)0.0442 (10)0.0125 (7)0.0024 (7)0.0018 (8)
C20.0275 (9)0.0326 (9)0.0357 (9)0.0130 (8)0.0045 (7)0.0036 (8)
O10.0496 (9)0.0641 (10)0.0609 (10)0.0205 (8)0.0212 (8)0.0233 (8)
N10.0432 (10)0.0437 (10)0.0553 (11)0.0258 (8)0.0043 (8)0.0004 (8)
C40.0415 (11)0.0362 (11)0.0665 (14)0.0166 (9)0.0010 (10)0.0095 (10)
C30.0321 (9)0.0340 (10)0.0404 (10)0.0144 (8)0.0007 (8)0.0014 (8)
C60.0437 (11)0.0414 (11)0.0397 (10)0.0226 (9)0.0038 (9)0.0033 (9)
C130.0464 (12)0.0277 (9)0.0542 (12)0.0178 (9)0.0123 (10)0.0026 (9)
C120.0513 (12)0.0389 (11)0.0482 (12)0.0251 (10)0.0113 (10)0.0120 (9)
C50.0481 (12)0.0572 (13)0.0480 (12)0.0313 (11)0.0037 (10)0.0041 (10)
C10.0517 (13)0.0476 (12)0.0546 (13)0.0313 (11)0.0073 (10)0.0140 (10)
C70.0521 (13)0.0479 (13)0.0568 (13)0.0267 (11)0.0049 (11)0.0094 (10)
C140.0532 (14)0.0462 (13)0.0585 (14)0.0182 (11)0.0079 (11)0.0032 (11)
C80.0637 (15)0.0754 (17)0.0582 (14)0.0490 (14)0.0021 (12)0.0021 (12)
C110.0643 (15)0.0424 (12)0.0629 (15)0.0277 (12)0.0019 (12)0.0040 (11)
C90.0448 (13)0.0787 (18)0.0564 (15)0.0279 (13)0.0064 (11)0.0091 (13)
C100.0614 (16)0.0503 (14)0.0671 (16)0.0125 (12)0.0150 (13)0.0025 (12)
C180.0580 (15)0.0430 (12)0.0717 (16)0.0181 (11)0.0240 (13)0.0032 (11)
C170.0443 (15)0.0445 (14)0.128 (3)0.0089 (12)0.0279 (16)0.0001 (16)
C160.0569 (17)0.0500 (16)0.121 (3)0.0163 (13)0.0147 (18)0.0167 (17)
C150.0765 (19)0.0558 (15)0.0776 (19)0.0232 (14)0.0147 (16)0.0131 (14)
C190.0618 (14)0.0498 (13)0.0398 (12)0.0233 (11)0.0123 (10)0.0044 (10)
Geometric parameters (Å, º) top
N3—C21.338 (2)C5—H5A0.9700
N3—C121.463 (2)C5—H5B0.9700
N3—H30.8600C1—H1A0.9700
N2—C21.346 (2)C1—H1B0.9700
N2—C191.458 (3)C7—C81.380 (3)
N2—C11.490 (3)C7—H70.9300
O2—O20.000 (5)C14—C151.376 (4)
O2—N41.280 (2)C14—H140.9300
N4—O11.265 (2)C8—C91.370 (4)
N4—O21.280 (2)C8—H80.9300
N4—C31.347 (3)C11—C101.383 (4)
C2—C31.436 (3)C11—H110.9300
N1—C11.423 (3)C9—C101.374 (4)
N1—C41.465 (3)C9—H90.9300
N1—C51.470 (3)C10—H100.9300
C4—C31.502 (3)C18—C171.390 (4)
C4—H4A0.9700C18—H180.9300
C4—H4B0.9700C17—C161.361 (5)
C6—C111.381 (3)C17—H170.9300
C6—C71.385 (3)C16—C151.362 (4)
C6—C51.502 (3)C16—H160.9300
C13—C181.383 (3)C15—H150.9300
C13—C141.386 (3)C19—H19A0.9600
C13—C121.506 (3)C19—H19B0.9600
C12—H12A0.9700C19—H19C0.9600
C12—H12B0.9700
C2—N3—C12128.11 (16)C6—C5—H5B108.9
C2—N3—H3115.9H5A—C5—H5B107.7
C12—N3—H3115.9N1—C1—N2113.99 (17)
C2—N2—C19122.57 (17)N1—C1—H1A108.8
C2—N2—C1120.59 (17)N2—C1—H1A108.8
C19—N2—C1113.44 (16)N1—C1—H1B108.8
O2—O2—N40 (10)N2—C1—H1B108.8
O1—N4—O2118.41 (17)H1A—C1—H1B107.6
O1—N4—O2118.41 (17)C8—C7—C6121.3 (2)
O2—N4—O20.00 (19)C8—C7—H7119.4
O1—N4—C3119.16 (17)C6—C7—H7119.4
O2—N4—C3122.39 (17)C15—C14—C13121.2 (2)
O2—N4—C3122.39 (17)C15—C14—H14119.4
N3—C2—N2121.55 (17)C13—C14—H14119.4
N3—C2—C3121.09 (17)C9—C8—C7120.2 (2)
N2—C2—C3117.36 (17)C9—C8—H8119.9
C1—N1—C4108.36 (17)C7—C8—H8119.9
C1—N1—C5114.36 (17)C6—C11—C10121.1 (2)
C4—N1—C5112.11 (17)C6—C11—H11119.4
N1—C4—C3111.80 (17)C10—C11—H11119.4
N1—C4—H4A109.3C8—C9—C10119.5 (2)
C3—C4—H4A109.3C8—C9—H9120.3
N1—C4—H4B109.3C10—C9—H9120.3
C3—C4—H4B109.3C9—C10—C11120.2 (2)
H4A—C4—H4B107.9C9—C10—H10119.9
N4—C3—C2122.62 (17)C11—C10—H10119.9
N4—C3—C4116.93 (17)C13—C18—C17120.1 (3)
C2—C3—C4120.45 (17)C13—C18—H18120.0
C11—C6—C7117.7 (2)C17—C18—H18120.0
C11—C6—C5121.1 (2)C16—C17—C18120.9 (3)
C7—C6—C5121.2 (2)C16—C17—H17119.6
C18—C13—C14117.9 (2)C18—C17—H17119.6
C18—C13—C12121.5 (2)C17—C16—C15119.6 (3)
C14—C13—C12120.56 (19)C17—C16—H16120.2
N3—C12—C13113.37 (16)C15—C16—H16120.2
N3—C12—H12A108.9C16—C15—C14120.3 (3)
C13—C12—H12A108.9C16—C15—H15119.8
N3—C12—H12B108.9C14—C15—H15119.8
C13—C12—H12B108.9N2—C19—H19A109.5
H12A—C12—H12B107.7N2—C19—H19B109.5
N1—C5—C6113.41 (17)H19A—C19—H19B109.5
N1—C5—H5A108.9N2—C19—H19C109.5
C6—C5—H5A108.9H19A—C19—H19C109.5
N1—C5—H5B108.9H19B—C19—H19C109.5
O2—O2—N4—O10.0 (2)C1—N1—C5—C659.3 (2)
O2—O2—N4—C30.0 (3)C4—N1—C5—C6176.85 (17)
C12—N3—C2—N228.0 (3)C11—C6—C5—N1108.5 (2)
C12—N3—C2—C3151.8 (2)C7—C6—C5—N173.9 (3)
C19—N2—C2—N326.1 (3)C4—N1—C1—N257.6 (2)
C1—N2—C2—N3176.02 (17)C5—N1—C1—N268.2 (2)
C19—N2—C2—C3154.08 (18)C2—N2—C1—N129.4 (3)
C1—N2—C2—C33.7 (3)C19—N2—C1—N1170.85 (18)
C1—N1—C4—C353.7 (2)C11—C6—C7—C81.8 (3)
C5—N1—C4—C373.4 (2)C5—C6—C7—C8176.0 (2)
O1—N4—C3—C2178.79 (18)C18—C13—C14—C151.1 (3)
O2—N4—C3—C21.1 (3)C12—C13—C14—C15179.4 (2)
O2—N4—C3—C21.1 (3)C6—C7—C8—C90.3 (4)
O1—N4—C3—C40.6 (3)C7—C6—C11—C102.2 (4)
O2—N4—C3—C4178.39 (18)C5—C6—C11—C10175.5 (2)
O2—N4—C3—C4178.39 (18)C7—C8—C9—C102.0 (4)
N3—C2—C3—N46.9 (3)C8—C9—C10—C111.5 (4)
N2—C2—C3—N4173.30 (17)C6—C11—C10—C90.6 (4)
N3—C2—C3—C4173.65 (18)C14—C13—C18—C171.1 (3)
N2—C2—C3—C46.1 (3)C12—C13—C18—C17179.3 (2)
N1—C4—C3—N4157.21 (18)C13—C18—C17—C160.4 (4)
N1—C4—C3—C223.3 (3)C18—C17—C16—C150.3 (4)
C2—N3—C12—C1350.2 (3)C17—C16—C15—C140.3 (4)
C18—C13—C12—N3136.4 (2)C13—C14—C15—C160.5 (4)
C14—C13—C12—N345.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.861.982.591 (2)127
N3—H3···O2i0.862.503.056 (2)123
N3—H3···N40.862.572.857 (2)101
C12—H12A···O2i0.972.543.184 (3)124
C19—H19B···O1ii0.962.403.232 (3)145
Symmetry codes: (i) x+2/3, y+1/3, z+4/3; (ii) x+y+2/3, x+1/3, z2/3.

Experimental details

Crystal data
Chemical formulaC19H22N4O2
Mr338.41
Crystal system, space groupTrigonal, R3
Temperature (K)292
a, c (Å)29.2634 (12), 10.4916 (8)
V3)7780.8 (7)
Z18
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.23 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with an Eos (Nova) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
28183, 3973, 2683
Rint0.044
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.160, 1.08
No. of reflections3973
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.861.982.591 (2)127
 

Acknowledgements

The authors acknowledge Centre of Excellence in Bioinformatics, Pondicherry University, for providing the facilities to carry out this work.

References

First citationAtwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O Reilly, B. C. (1991). J. Med. Chem. 34, 806–811.  Google Scholar
First citationChanda, K., Dutta, M. C., Kishore, K. & Vishwakarma, J. N. (2004). Molbank 2004, M367CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules. 5, 227–239.  Web of Science CrossRef CAS Google Scholar
First citationMesser, W. S., Abuh, Y. F., Liu, Y., Periyasamy, S., Ngur, D. O., Edgar, M. A. N., ElAssadi, A. A., Sbeih, S., Dunbar, P. G., Roknich, S., Rho, T., Fang, Z., Ojo, B., Zhang, H., Huzl, J. J. & Nagy, P. I. (1997). J. Med. Chem. 40, 1230–1246.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds