organic compounds
3-Benzyl-6-benzylamino-1-methyl-5-nitro-1,2,3,4-tetrahydropyrimidine
aCentre for Bioinformatics, Pondicherry University, Puducherry 605 014, India, bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, and cSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: krishstrucbio@gmail.com
In the title compound, C19H22N4O2, the tetrahydropyrimidine ring adopts an (with the N atom connected to the benzyl group representing the flap). This benzyl group occupies a quasi-axial position. The two benzyl groups lie over the tetrahydropyridimidine ring. The amino group is a hydrogen-bond donor to the nitro group.
Related literature
For the biological activity of tetrahydropyrimidine derivatives, see: Atwal et al. (1991); Jauk et al. (2000); Messer et al. (1997). For the synthesis of the title compound, see: Chanda et al. (2004). For conformational anlysis, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S160053681000348X/ng2723sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681000348X/ng2723Isup2.hkl
A mixture of benzylamine (214 mg, 2.0 mmol) and paraformaldehyde (60 mg, 2.0 mmol) was stirred in methanol (2 ml) for 5 min and a solution of 1-methylamino-1-methylthio-2-nitroethylene (148 mg, 1.0 mmol) in methanol (1 mL)was added. Then, the resulting mixture was refluxed by heating at 80 oC for 2 h. After completion of the reaction (monitored byTLC), the reaction mixture was cooled in ice-water. Resulting crude solid was filtered and washed with MeOH(2 * 2 mL) to give N,1-Dibenzyl-3-methyl-5-nitro-1,2,3,6- tetrahydropyrimidin-4-amine(208 mg, 61%, mp = 137.5 oC) and 1,3-Dibenzyl-N-methyl-5-nitro-1,2,3,6- tetrahydropyrimidin-4-amine(105 mg, 31%, mp = 128.5 oC) (Chanda et al. 2004). X-ray worthy crystals was obtained by recrystallizing from a solution of hexane-ethyl acetate (7:3)and the X-ray data was collected at 292 K on a Oxford diffraction-Nova-1 with graphite mono chromate Mo/Kα radiation (0.71073 Å).
The structure was solved by direct method using SHELXS– 97 and
was done by full-matrix least-squares procedure on F2 using SHELXL– 97. The non-hydrogen atoms were refined anisotropically whereas hydrogen atoms were refined isotropically. The H atoms were geometrically placed (N—H = 0.86 Å, and C—H=0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5 Ueq (parent atom).Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).C19H22N4O2 | Dx = 1.300 Mg m−3 |
Mr = 338.41 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 28183 reflections |
Hall symbol: -R 3 | θ = 1.4–28.0° |
a = 29.2634 (12) Å | µ = 0.09 mm−1 |
c = 10.4916 (8) Å | T = 292 K |
V = 7780.8 (7) Å3 | Rectangle, yellow |
Z = 18 | 0.28 × 0.23 × 0.19 mm |
F(000) = 3240 |
Oxford Diffraction Xcalibur diffractometer with an Eos (Nova) detector | 3973 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2683 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω scans | θmax = 28.0°, θmin = 1.4° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −38→38 |
Tmin = 0.979, Tmax = 0.983 | k = −38→38 |
28183 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0687P)2 + 3.8739P] where P = (Fo2 + 2Fc2)/3 |
3973 reflections | (Δ/σ)max < 0.001 |
227 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C19H22N4O2 | Z = 18 |
Mr = 338.41 | Mo Kα radiation |
Trigonal, R3 | µ = 0.09 mm−1 |
a = 29.2634 (12) Å | T = 292 K |
c = 10.4916 (8) Å | 0.28 × 0.23 × 0.19 mm |
V = 7780.8 (7) Å3 |
Oxford Diffraction Xcalibur diffractometer with an Eos (Nova) detector | 3973 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 2683 reflections with I > 2σ(I) |
Tmin = 0.979, Tmax = 0.983 | Rint = 0.044 |
28183 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.27 e Å−3 |
3973 reflections | Δρmin = −0.24 e Å−3 |
227 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N3 | 0.39006 (6) | 0.15310 (6) | 0.51966 (16) | 0.0398 (4) | |
H3 | 0.3600 | 0.1495 | 0.5406 | 0.048* | |
N2 | 0.42905 (6) | 0.10207 (6) | 0.47194 (16) | 0.0402 (4) | |
O2 | 0.31664 (6) | 0.11208 (6) | 0.69111 (16) | 0.0545 (4) | |
N4 | 0.33057 (6) | 0.07772 (7) | 0.71280 (16) | 0.0417 (4) | |
C2 | 0.39627 (7) | 0.11153 (7) | 0.54251 (18) | 0.0328 (4) | |
O1 | 0.30683 (6) | 0.04390 (7) | 0.79948 (16) | 0.0617 (5) | |
N1 | 0.43266 (7) | 0.04487 (7) | 0.63639 (18) | 0.0456 (4) | |
C4 | 0.37971 (8) | 0.03212 (8) | 0.6772 (2) | 0.0493 (5) | |
H4A | 0.3766 | 0.0265 | 0.7687 | 0.059* | |
H4B | 0.3538 | −0.0004 | 0.6366 | 0.059* | |
C3 | 0.36820 (7) | 0.07530 (7) | 0.64406 (19) | 0.0364 (4) | |
C6 | 0.52871 (8) | 0.09734 (8) | 0.68224 (19) | 0.0410 (5) | |
C13 | 0.48157 (8) | 0.22891 (7) | 0.5254 (2) | 0.0431 (5) | |
C12 | 0.42799 (8) | 0.20390 (8) | 0.4635 (2) | 0.0449 (5) | |
H12A | 0.4142 | 0.2278 | 0.4707 | 0.054* | |
H12B | 0.4317 | 0.1989 | 0.3735 | 0.054* | |
C5 | 0.47407 (8) | 0.08550 (9) | 0.7173 (2) | 0.0489 (5) | |
H5A | 0.4672 | 0.0739 | 0.8053 | 0.059* | |
H5B | 0.4724 | 0.1177 | 0.7108 | 0.059* | |
C1 | 0.43797 (9) | 0.05758 (9) | 0.5043 (2) | 0.0484 (5) | |
H1A | 0.4130 | 0.0266 | 0.4570 | 0.058* | |
H1B | 0.4732 | 0.0666 | 0.4770 | 0.058* | |
C7 | 0.54609 (9) | 0.06237 (9) | 0.7111 (2) | 0.0515 (5) | |
H7 | 0.5228 | 0.0300 | 0.7481 | 0.062* | |
C14 | 0.48633 (10) | 0.23062 (9) | 0.6569 (2) | 0.0556 (6) | |
H14 | 0.4561 | 0.2158 | 0.7070 | 0.067* | |
C8 | 0.59728 (10) | 0.07457 (11) | 0.6862 (2) | 0.0595 (6) | |
H8 | 0.6081 | 0.0504 | 0.7059 | 0.071* | |
C11 | 0.56396 (10) | 0.14432 (9) | 0.6243 (2) | 0.0561 (6) | |
H11 | 0.5529 | 0.1680 | 0.6012 | 0.067* | |
C9 | 0.63221 (10) | 0.12213 (11) | 0.6324 (2) | 0.0613 (7) | |
H9 | 0.6670 | 0.1309 | 0.6180 | 0.074* | |
C10 | 0.61539 (11) | 0.15683 (10) | 0.5999 (3) | 0.0665 (7) | |
H10 | 0.6387 | 0.1888 | 0.5615 | 0.080* | |
C18 | 0.52736 (10) | 0.25208 (9) | 0.4537 (3) | 0.0607 (7) | |
H18 | 0.5255 | 0.2521 | 0.3652 | 0.073* | |
C17 | 0.57623 (10) | 0.27535 (10) | 0.5138 (4) | 0.0783 (9) | |
H17 | 0.6068 | 0.2907 | 0.4650 | 0.094* | |
C16 | 0.57985 (12) | 0.27599 (11) | 0.6432 (4) | 0.0806 (9) | |
H16 | 0.6127 | 0.2915 | 0.6824 | 0.097* | |
C15 | 0.53505 (12) | 0.25380 (11) | 0.7148 (3) | 0.0744 (8) | |
H15 | 0.5374 | 0.2543 | 0.8032 | 0.089* | |
C19 | 0.44266 (10) | 0.12018 (9) | 0.3407 (2) | 0.0525 (6) | |
H19A | 0.4158 | 0.1260 | 0.3051 | 0.079* | |
H19B | 0.4452 | 0.0939 | 0.2915 | 0.079* | |
H19C | 0.4759 | 0.1525 | 0.3391 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N3 | 0.0340 (8) | 0.0380 (9) | 0.0488 (10) | 0.0191 (7) | 0.0041 (7) | 0.0058 (7) |
N2 | 0.0425 (9) | 0.0402 (9) | 0.0393 (9) | 0.0217 (8) | 0.0041 (7) | −0.0024 (7) |
O2 | 0.0521 (9) | 0.0546 (9) | 0.0664 (10) | 0.0338 (8) | 0.0166 (8) | 0.0059 (8) |
N4 | 0.0327 (8) | 0.0406 (9) | 0.0442 (10) | 0.0125 (7) | 0.0024 (7) | 0.0018 (8) |
C2 | 0.0275 (9) | 0.0326 (9) | 0.0357 (9) | 0.0130 (8) | −0.0045 (7) | −0.0036 (8) |
O1 | 0.0496 (9) | 0.0641 (10) | 0.0609 (10) | 0.0205 (8) | 0.0212 (8) | 0.0233 (8) |
N1 | 0.0432 (10) | 0.0437 (10) | 0.0553 (11) | 0.0258 (8) | −0.0043 (8) | −0.0004 (8) |
C4 | 0.0415 (11) | 0.0362 (11) | 0.0665 (14) | 0.0166 (9) | 0.0010 (10) | 0.0095 (10) |
C3 | 0.0321 (9) | 0.0340 (10) | 0.0404 (10) | 0.0144 (8) | −0.0007 (8) | 0.0014 (8) |
C6 | 0.0437 (11) | 0.0414 (11) | 0.0397 (10) | 0.0226 (9) | −0.0038 (9) | −0.0033 (9) |
C13 | 0.0464 (12) | 0.0277 (9) | 0.0542 (12) | 0.0178 (9) | 0.0123 (10) | 0.0026 (9) |
C12 | 0.0513 (12) | 0.0389 (11) | 0.0482 (12) | 0.0251 (10) | 0.0113 (10) | 0.0120 (9) |
C5 | 0.0481 (12) | 0.0572 (13) | 0.0480 (12) | 0.0313 (11) | −0.0037 (10) | −0.0041 (10) |
C1 | 0.0517 (13) | 0.0476 (12) | 0.0546 (13) | 0.0313 (11) | −0.0073 (10) | −0.0140 (10) |
C7 | 0.0521 (13) | 0.0479 (13) | 0.0568 (13) | 0.0267 (11) | 0.0049 (11) | 0.0094 (10) |
C14 | 0.0532 (14) | 0.0462 (13) | 0.0585 (14) | 0.0182 (11) | 0.0079 (11) | −0.0032 (11) |
C8 | 0.0637 (15) | 0.0754 (17) | 0.0582 (14) | 0.0490 (14) | −0.0021 (12) | −0.0021 (12) |
C11 | 0.0643 (15) | 0.0424 (12) | 0.0629 (15) | 0.0277 (12) | 0.0019 (12) | 0.0040 (11) |
C9 | 0.0448 (13) | 0.0787 (18) | 0.0564 (15) | 0.0279 (13) | 0.0064 (11) | −0.0091 (13) |
C10 | 0.0614 (16) | 0.0503 (14) | 0.0671 (16) | 0.0125 (12) | 0.0150 (13) | 0.0025 (12) |
C18 | 0.0580 (15) | 0.0430 (12) | 0.0717 (16) | 0.0181 (11) | 0.0240 (13) | 0.0032 (11) |
C17 | 0.0443 (15) | 0.0445 (14) | 0.128 (3) | 0.0089 (12) | 0.0279 (16) | −0.0001 (16) |
C16 | 0.0569 (17) | 0.0500 (16) | 0.121 (3) | 0.0163 (13) | −0.0147 (18) | −0.0167 (17) |
C15 | 0.0765 (19) | 0.0558 (15) | 0.0776 (19) | 0.0232 (14) | −0.0147 (16) | −0.0131 (14) |
C19 | 0.0618 (14) | 0.0498 (13) | 0.0398 (12) | 0.0233 (11) | 0.0123 (10) | −0.0044 (10) |
N3—C2 | 1.338 (2) | C5—H5A | 0.9700 |
N3—C12 | 1.463 (2) | C5—H5B | 0.9700 |
N3—H3 | 0.8600 | C1—H1A | 0.9700 |
N2—C2 | 1.346 (2) | C1—H1B | 0.9700 |
N2—C19 | 1.458 (3) | C7—C8 | 1.380 (3) |
N2—C1 | 1.490 (3) | C7—H7 | 0.9300 |
O2—O2 | 0.000 (5) | C14—C15 | 1.376 (4) |
O2—N4 | 1.280 (2) | C14—H14 | 0.9300 |
N4—O1 | 1.265 (2) | C8—C9 | 1.370 (4) |
N4—O2 | 1.280 (2) | C8—H8 | 0.9300 |
N4—C3 | 1.347 (3) | C11—C10 | 1.383 (4) |
C2—C3 | 1.436 (3) | C11—H11 | 0.9300 |
N1—C1 | 1.423 (3) | C9—C10 | 1.374 (4) |
N1—C4 | 1.465 (3) | C9—H9 | 0.9300 |
N1—C5 | 1.470 (3) | C10—H10 | 0.9300 |
C4—C3 | 1.502 (3) | C18—C17 | 1.390 (4) |
C4—H4A | 0.9700 | C18—H18 | 0.9300 |
C4—H4B | 0.9700 | C17—C16 | 1.361 (5) |
C6—C11 | 1.381 (3) | C17—H17 | 0.9300 |
C6—C7 | 1.385 (3) | C16—C15 | 1.362 (4) |
C6—C5 | 1.502 (3) | C16—H16 | 0.9300 |
C13—C18 | 1.383 (3) | C15—H15 | 0.9300 |
C13—C14 | 1.386 (3) | C19—H19A | 0.9600 |
C13—C12 | 1.506 (3) | C19—H19B | 0.9600 |
C12—H12A | 0.9700 | C19—H19C | 0.9600 |
C12—H12B | 0.9700 | ||
C2—N3—C12 | 128.11 (16) | C6—C5—H5B | 108.9 |
C2—N3—H3 | 115.9 | H5A—C5—H5B | 107.7 |
C12—N3—H3 | 115.9 | N1—C1—N2 | 113.99 (17) |
C2—N2—C19 | 122.57 (17) | N1—C1—H1A | 108.8 |
C2—N2—C1 | 120.59 (17) | N2—C1—H1A | 108.8 |
C19—N2—C1 | 113.44 (16) | N1—C1—H1B | 108.8 |
O2—O2—N4 | 0 (10) | N2—C1—H1B | 108.8 |
O1—N4—O2 | 118.41 (17) | H1A—C1—H1B | 107.6 |
O1—N4—O2 | 118.41 (17) | C8—C7—C6 | 121.3 (2) |
O2—N4—O2 | 0.00 (19) | C8—C7—H7 | 119.4 |
O1—N4—C3 | 119.16 (17) | C6—C7—H7 | 119.4 |
O2—N4—C3 | 122.39 (17) | C15—C14—C13 | 121.2 (2) |
O2—N4—C3 | 122.39 (17) | C15—C14—H14 | 119.4 |
N3—C2—N2 | 121.55 (17) | C13—C14—H14 | 119.4 |
N3—C2—C3 | 121.09 (17) | C9—C8—C7 | 120.2 (2) |
N2—C2—C3 | 117.36 (17) | C9—C8—H8 | 119.9 |
C1—N1—C4 | 108.36 (17) | C7—C8—H8 | 119.9 |
C1—N1—C5 | 114.36 (17) | C6—C11—C10 | 121.1 (2) |
C4—N1—C5 | 112.11 (17) | C6—C11—H11 | 119.4 |
N1—C4—C3 | 111.80 (17) | C10—C11—H11 | 119.4 |
N1—C4—H4A | 109.3 | C8—C9—C10 | 119.5 (2) |
C3—C4—H4A | 109.3 | C8—C9—H9 | 120.3 |
N1—C4—H4B | 109.3 | C10—C9—H9 | 120.3 |
C3—C4—H4B | 109.3 | C9—C10—C11 | 120.2 (2) |
H4A—C4—H4B | 107.9 | C9—C10—H10 | 119.9 |
N4—C3—C2 | 122.62 (17) | C11—C10—H10 | 119.9 |
N4—C3—C4 | 116.93 (17) | C13—C18—C17 | 120.1 (3) |
C2—C3—C4 | 120.45 (17) | C13—C18—H18 | 120.0 |
C11—C6—C7 | 117.7 (2) | C17—C18—H18 | 120.0 |
C11—C6—C5 | 121.1 (2) | C16—C17—C18 | 120.9 (3) |
C7—C6—C5 | 121.2 (2) | C16—C17—H17 | 119.6 |
C18—C13—C14 | 117.9 (2) | C18—C17—H17 | 119.6 |
C18—C13—C12 | 121.5 (2) | C17—C16—C15 | 119.6 (3) |
C14—C13—C12 | 120.56 (19) | C17—C16—H16 | 120.2 |
N3—C12—C13 | 113.37 (16) | C15—C16—H16 | 120.2 |
N3—C12—H12A | 108.9 | C16—C15—C14 | 120.3 (3) |
C13—C12—H12A | 108.9 | C16—C15—H15 | 119.8 |
N3—C12—H12B | 108.9 | C14—C15—H15 | 119.8 |
C13—C12—H12B | 108.9 | N2—C19—H19A | 109.5 |
H12A—C12—H12B | 107.7 | N2—C19—H19B | 109.5 |
N1—C5—C6 | 113.41 (17) | H19A—C19—H19B | 109.5 |
N1—C5—H5A | 108.9 | N2—C19—H19C | 109.5 |
C6—C5—H5A | 108.9 | H19A—C19—H19C | 109.5 |
N1—C5—H5B | 108.9 | H19B—C19—H19C | 109.5 |
O2—O2—N4—O1 | 0.0 (2) | C1—N1—C5—C6 | −59.3 (2) |
O2—O2—N4—C3 | 0.0 (3) | C4—N1—C5—C6 | 176.85 (17) |
C12—N3—C2—N2 | −28.0 (3) | C11—C6—C5—N1 | 108.5 (2) |
C12—N3—C2—C3 | 151.8 (2) | C7—C6—C5—N1 | −73.9 (3) |
C19—N2—C2—N3 | −26.1 (3) | C4—N1—C1—N2 | 57.6 (2) |
C1—N2—C2—N3 | 176.02 (17) | C5—N1—C1—N2 | −68.2 (2) |
C19—N2—C2—C3 | 154.08 (18) | C2—N2—C1—N1 | −29.4 (3) |
C1—N2—C2—C3 | −3.7 (3) | C19—N2—C1—N1 | 170.85 (18) |
C1—N1—C4—C3 | −53.7 (2) | C11—C6—C7—C8 | 1.8 (3) |
C5—N1—C4—C3 | 73.4 (2) | C5—C6—C7—C8 | −176.0 (2) |
O1—N4—C3—C2 | 178.79 (18) | C18—C13—C14—C15 | −1.1 (3) |
O2—N4—C3—C2 | 1.1 (3) | C12—C13—C14—C15 | −179.4 (2) |
O2—N4—C3—C2 | 1.1 (3) | C6—C7—C8—C9 | 0.3 (4) |
O1—N4—C3—C4 | −0.6 (3) | C7—C6—C11—C10 | −2.2 (4) |
O2—N4—C3—C4 | −178.39 (18) | C5—C6—C11—C10 | 175.5 (2) |
O2—N4—C3—C4 | −178.39 (18) | C7—C8—C9—C10 | −2.0 (4) |
N3—C2—C3—N4 | 6.9 (3) | C8—C9—C10—C11 | 1.5 (4) |
N2—C2—C3—N4 | −173.30 (17) | C6—C11—C10—C9 | 0.6 (4) |
N3—C2—C3—C4 | −173.65 (18) | C14—C13—C18—C17 | 1.1 (3) |
N2—C2—C3—C4 | 6.1 (3) | C12—C13—C18—C17 | 179.3 (2) |
N1—C4—C3—N4 | −157.21 (18) | C13—C18—C17—C16 | −0.4 (4) |
N1—C4—C3—C2 | 23.3 (3) | C18—C17—C16—C15 | −0.3 (4) |
C2—N3—C12—C13 | −50.2 (3) | C17—C16—C15—C14 | 0.3 (4) |
C18—C13—C12—N3 | 136.4 (2) | C13—C14—C15—C16 | 0.5 (4) |
C14—C13—C12—N3 | −45.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O2 | 0.86 | 1.98 | 2.591 (2) | 127 |
N3—H3···O2i | 0.86 | 2.50 | 3.056 (2) | 123 |
N3—H3···N4 | 0.86 | 2.57 | 2.857 (2) | 101 |
C12—H12A···O2i | 0.97 | 2.54 | 3.184 (3) | 124 |
C19—H19B···O1ii | 0.96 | 2.40 | 3.232 (3) | 145 |
Symmetry codes: (i) −x+2/3, −y+1/3, −z+4/3; (ii) −x+y+2/3, −x+1/3, z−2/3. |
Experimental details
Crystal data | |
Chemical formula | C19H22N4O2 |
Mr | 338.41 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 292 |
a, c (Å) | 29.2634 (12), 10.4916 (8) |
V (Å3) | 7780.8 (7) |
Z | 18 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.28 × 0.23 × 0.19 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with an Eos (Nova) detector |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.979, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28183, 3973, 2683 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.160, 1.08 |
No. of reflections | 3973 |
No. of parameters | 227 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.24 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).
Acknowledgements
The authors acknowledge Centre of Excellence in Bioinformatics, Pondicherry University, for providing the facilities to carry out this work.
References
Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O Reilly, B. C. (1991). J. Med. Chem. 34, 806–811. Google Scholar
Chanda, K., Dutta, M. C., Kishore, K. & Vishwakarma, J. N. (2004). Molbank 2004, M367. CrossRef Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules. 5, 227–239. Web of Science CrossRef CAS Google Scholar
Messer, W. S., Abuh, Y. F., Liu, Y., Periyasamy, S., Ngur, D. O., Edgar, M. A. N., ElAssadi, A. A., Sbeih, S., Dunbar, P. G., Roknich, S., Rho, T., Fang, Z., Ojo, B., Zhang, H., Huzl, J. J. & Nagy, P. I. (1997). J. Med. Chem. 40, 1230–1246. CrossRef CAS PubMed Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dihydropyrimidines are reported to have broad range of therapeutic and pharmacological properties, such as Antihypertensive (Atwal et al., 1991)and calcium channel modulators (Jauk et al., 2000). Tetrahydropyrimidine derivatives found to be useful in treating cognitive and memory deficits associated with low acetylcholine levels, as found in Alzheimer disease (Messer et al., 1997). Upon, considering the importance of di and tetrahydropyrimidine derivatives, we had synthesized and undertaken the single-crystal determination of the title compound.
The compound was crystallized using a solution of hexane-ethylacetate in the ratio of 7:3. The title compound, (I) was centrosymmetric. It has trigonal crystal system with hexagonal axes. It contains two planar aromatic (A & B) and one pyrimidine (C) rings (Fig. 1). The six-member (N1, C1, N2, C2,C3, C4) tetrahydropyrimidine ring adopts sofa conformation, with puckering parameters q2 = 0.4124 Å, q3 = -0.2504 Å, Q = 0.4825 Å, θ= 121.27° and ϕ =-176.41° (Cremer & Pople, 1975). Tetrahydropyrimidine ring makes dihedral angles of -176.86° with benzyl ring A and 50.26° with benzyl ring B and this contributes to the formation of sofa conformation. C11—H11 and Cg(Cg: centroid of C13, C14, C15, C16, C17) of two benzyl rings form the intermolecular C—H···π interactions with a distance of 2.862 Å. As expected, this distance was considerably lower than those observed between C—H and C of two benzyl rings which ranges from 2.884 Å to 3.449 Å. Furthermore, intermolecular hydrogen bond interactions was also observed betweeen N3 ···O2(3.056 Å), O2 ···O2 (2.882 Å), C12 ···O2 (3.184 Å) and C19 ···O1 (3.232 Å). Along with C—H ···π interaction, the intermolecular hydrogen-bonding interaction helps in stabilizing the packing of molecules in the unit cell. In addition to this, intramolecular hydrogen bonds between N3 and O2 (2.591 Å) was also observed and this interaction helps in the formation of extended three-dimensional network(Table 1). The crystal packing also shows a hydrophobic core formation between the benzyl (B) rings of each adjacent six molecules (C16-H16···H16-C16, with a distance of 2.486 Å) (Fig. 2).