metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-N,N′-Bis(2-pyridylmethyl­ene)ethane-1,2-di­amine]bis­­{aqua­[N,N′-bis­­(2-pyridyl­methyl­ene)ethane-1,2-di­amine]manganese(II)} tetra­kis(perchlorate)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 28 January 2010; accepted 30 January 2010; online 6 February 2010)

The cation of the salt, [Mn2(C14H14N4)3(H2O)2](ClO4)4, lies on a center of inversion, the center lying midway along the ethyl­ene chain of the bridging N,N′-bis­(2-pyridylmethyl­ene)ethane-1,2-diamine ligand. The Mn atom is chelated by two atoms N atoms of this bridging ligand, and is also coordinated by four N atoms of another ligand. The Mn atom is seven-coordinated in a penta­gonal-bipyramidal environment. The crystal structure displays inter­molecular ππ inter­actions between adjacent pyridine rings, with a shortest centroid–centroid distance of 3.784 (3) Å. The perchlorate is linked to the dinuclear cation by O—H⋯O hydrogen bonds.

Related literature

For the crystal structures of Mn(II), Ag(I), Cu(II) and Pd(II) complexes with related ligands, see: Baar et al. (2001[Baar, C. R., Jennings, M. C. & Puddephatt, R. J. (2001). Organometallics, 20, 3459-3465.]); Bowyer et al. (1998[Bowyer, P. K., Porter, K. A., Rae, A. D., Willis, A. C. & Wild, S. B. (1998). Chem. Commun. pp. 1153-1154.]); Hwang & Ha (2009[Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m64-m65.]); Nguyen & Jeong (2006[Nguyen, Q. T. & Jeong, J. H. (2006). Polyhedron, 25, 1787-1790.]); Schoumacker et al. (2003[Schoumacker, S., Hamelin, O., Pécaut, J. & Fontecave, M. (2003). Inorg. Chem. 42, 8110-8116.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C14H14N4)3(H2O)2](ClO4)4

  • Mr = 1258.59

  • Monoclinic, P 21 /c

  • a = 11.3698 (6) Å

  • b = 19.026 (1) Å

  • c = 12.8628 (7) Å

  • β = 110.218 (1)°

  • V = 2611.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 200 K

  • 0.24 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.873, Tmax = 1.000

  • 19343 measured reflections

  • 6468 independent reflections

  • 3281 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.178

  • S = 1.04

  • 6468 reflections

  • 360 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.215 (3)
Mn1—N6 2.257 (3)
Mn1—N3 2.278 (3)
Mn1—N2 2.278 (4)
Mn1—N5 2.280 (3)
Mn1—N1 2.504 (3)
Mn1—N4 2.639 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.84 (1) 1.95 (1) 2.787 (5) 177 (6)
O1—H1B⋯O7ii 0.84 (1) 1.92 (2) 2.721 (6) 159 (6)
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, [Mn2(C14H14N4)2(H2O)2(µ-C14H14N4)](ClO4)4, consists of a structurally centrosymmetric dinuclear MnII complex and four perchlorate anions, and the asymmetric unit contains one half of the formula unit (Fig. 1). In the cationic complex, the two MnII ions are bridged by the symmetry-related tetradentate N,N'-bis(2-pyridylmethylene)ethane-1,2-diamine ligand, thus each Mn ion is seven-coordinated by six N atoms from the two tetradentate ligands and one O atom of the water molecule in an approximately pentagonal-bipyramidal environment, in which the five N1–N5 atoms form the pentagonal plane with O1 and N6 atoms at the apices. The six Mn—N bond lengths are considerably different and lie in the range of 2.257 (3)–2.639 (4) Å (Table 1). The N—Mn1—N chelating angles lie in the range of 66.69 (12)°–74.08 (12)° and the apical O1—Mn1—N6 bond angle is 159.64 (13)°. The crystal structure displays intermolecular π-π interactions between adjacent pyridine rings, with a shortest centroid-centroid distance of 3.784 (3) Å. The component ions interact by means of intermolecular O—H···O hydrogen bonds (Fig. 2 and Table 2).

Related literature top

For the crystal structures of Mn(II), Ag(I), Cu(II) and Pd(II) complexes with related ligands, see: Baar et al. (2001); Bowyer et al. (1998); Hwang & Ha (2009); Nguyen & Jeong (2006); Schoumacker et al. (2003).

Experimental top

To a solution of N,N'-bis(2-pyridylmethylene)ethane-1,2-diamine (0.66 g, 2.77 mmol) in EtOH (30 ml) was added Mn(ClO4)2.6H2O (1.00 g, 2.76 mmol) and stirred for 1 h at room temparature. The formed precipitate was separated by filtration and washed with acetone and dried under vacuum, to give a yellow powder (0.63 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution. IR (KBr): 3394 cm-1 (broad).

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.99 Å (CH2) and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water ligand were localized from Fourier difference maps and refined with the two restraints instructions using the following SHELXL97 (Sheldrick, 2008) command: DFIX 0.84 0.01 O1 H1A and O1 H1B.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
[µ-N,N'-Bis(2-pyridylmethylene)ethane-1,2- diamine]bis{aqua[N,N'-bis(2-pyridylmethylene)ethane-1,2- diamine]manganese(II)} tetrakis(perchlorate) top
Crystal data top
[Mn2(C14H14N4)3(H2O)2](ClO4)4F(000) = 1288
Mr = 1258.59Dx = 1.601 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3474 reflections
a = 11.3698 (6) Åθ = 2.2–23.2°
b = 19.026 (1) ŵ = 0.77 mm1
c = 12.8628 (7) ÅT = 200 K
β = 110.218 (1)°Block, yellow
V = 2611.1 (2) Å30.24 × 0.18 × 0.12 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
6468 independent reflections
Radiation source: fine-focus sealed tube3281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1515
Tmin = 0.873, Tmax = 1.000k = 2522
19343 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0701P)2]
where P = (Fo2 + 2Fc2)/3
6468 reflections(Δ/σ)max < 0.001
360 parametersΔρmax = 0.82 e Å3
2 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Mn2(C14H14N4)3(H2O)2](ClO4)4V = 2611.1 (2) Å3
Mr = 1258.59Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.3698 (6) ŵ = 0.77 mm1
b = 19.026 (1) ÅT = 200 K
c = 12.8628 (7) Å0.24 × 0.18 × 0.12 mm
β = 110.218 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
6468 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3281 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 1.000Rint = 0.080
19343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0622 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.82 e Å3
6468 reflectionsΔρmin = 0.84 e Å3
360 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.71734 (6)0.12570 (3)0.16693 (5)0.0293 (2)
O10.8064 (3)0.21764 (17)0.2697 (3)0.0391 (8)
H1A0.8820 (18)0.224 (3)0.277 (5)0.07 (2)*
H1B0.772 (4)0.2559 (15)0.245 (4)0.07 (2)*
N10.9113 (3)0.07794 (18)0.1423 (3)0.0329 (8)
N20.7713 (3)0.18591 (17)0.0370 (3)0.0356 (9)
N30.5461 (3)0.18634 (17)0.0586 (3)0.0339 (9)
N40.5358 (3)0.13162 (17)0.2506 (3)0.0354 (9)
N50.7905 (3)0.06251 (17)0.3271 (3)0.0292 (8)
N60.6439 (3)0.01543 (17)0.1226 (3)0.0286 (8)
C10.9807 (4)0.0233 (2)0.1909 (4)0.0377 (11)
H10.95330.00420.23990.045*
C21.0901 (4)0.0035 (2)0.1753 (4)0.0398 (11)
H21.13660.03600.21300.048*
C31.1302 (4)0.0422 (2)0.1039 (4)0.0403 (11)
H31.20590.03060.09210.048*
C41.0579 (4)0.0986 (2)0.0496 (4)0.0395 (11)
H41.08190.12560.00190.047*
C50.9507 (4)0.1147 (2)0.0714 (4)0.0317 (10)
C60.8697 (4)0.1738 (2)0.0151 (4)0.0370 (11)
H60.89090.20220.03660.044*
C70.6868 (4)0.2436 (2)0.0174 (4)0.0446 (12)
H7A0.70100.25790.08610.054*
H7B0.70130.28480.03250.054*
C80.5549 (5)0.2163 (2)0.0439 (4)0.0466 (13)
H8A0.49370.25500.07090.056*
H8B0.53650.17980.10220.056*
C90.4538 (4)0.2018 (2)0.0877 (4)0.0375 (11)
H90.39270.23390.04420.045*
C100.4393 (4)0.1714 (2)0.1861 (4)0.0332 (10)
C110.3316 (4)0.1822 (2)0.2109 (4)0.0420 (12)
H110.26740.21220.16580.050*
C120.3181 (4)0.1489 (3)0.3016 (5)0.0460 (13)
H120.24420.15510.31930.055*
C130.4139 (4)0.1066 (2)0.3659 (4)0.0432 (12)
H130.40710.08180.42770.052*
C140.5207 (4)0.1013 (2)0.3373 (4)0.0395 (11)
H140.58810.07370.38370.047*
C150.8513 (4)0.0865 (2)0.4293 (4)0.0337 (10)
H150.88190.13340.43780.040*
C160.8714 (4)0.0463 (3)0.5229 (4)0.0474 (13)
H160.91310.06540.59440.057*
C170.8300 (5)0.0219 (3)0.5110 (4)0.0552 (14)
H170.84230.05070.57430.066*
C180.7702 (4)0.0484 (2)0.4056 (4)0.0438 (12)
H180.74420.09620.39550.053*
C190.7489 (4)0.0046 (2)0.3157 (4)0.0309 (10)
C200.6763 (4)0.0278 (2)0.2030 (4)0.0315 (10)
H200.65300.07580.18990.038*
C210.5679 (4)0.0107 (2)0.0132 (3)0.0328 (10)
H21A0.57400.06260.01160.039*
H21B0.59960.00880.04350.039*
Cl10.08812 (12)0.30361 (7)0.26378 (13)0.0569 (4)
O20.0050 (5)0.3509 (2)0.2687 (4)0.0965 (16)
O30.0551 (3)0.2349 (2)0.2846 (5)0.0951 (17)
O40.2057 (4)0.3200 (3)0.3388 (5)0.129 (2)
O50.0906 (5)0.3027 (3)0.1535 (5)0.128 (2)
Cl20.59876 (11)0.10876 (6)0.70262 (10)0.0395 (3)
O60.4879 (4)0.1474 (3)0.6685 (5)0.118 (2)
O70.6953 (6)0.1538 (3)0.7445 (6)0.160 (3)
O80.6025 (5)0.0622 (2)0.7867 (4)0.115 (2)
O90.6180 (7)0.0730 (3)0.6164 (4)0.153 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0341 (4)0.0249 (3)0.0255 (4)0.0003 (3)0.0060 (3)0.0016 (3)
O10.046 (2)0.0335 (19)0.038 (2)0.0055 (16)0.0145 (17)0.0053 (15)
N10.035 (2)0.036 (2)0.026 (2)0.0007 (16)0.0077 (16)0.0027 (16)
N20.045 (2)0.031 (2)0.031 (2)0.0033 (17)0.0137 (18)0.0018 (15)
N30.036 (2)0.030 (2)0.032 (2)0.0051 (16)0.0068 (17)0.0027 (15)
N40.033 (2)0.032 (2)0.037 (2)0.0020 (16)0.0070 (17)0.0012 (17)
N50.0282 (18)0.0297 (19)0.027 (2)0.0031 (15)0.0061 (15)0.0006 (15)
N60.0263 (18)0.0294 (19)0.028 (2)0.0009 (15)0.0069 (15)0.0027 (15)
C10.039 (3)0.040 (3)0.034 (3)0.002 (2)0.012 (2)0.004 (2)
C20.033 (2)0.042 (3)0.042 (3)0.004 (2)0.011 (2)0.001 (2)
C30.030 (2)0.048 (3)0.045 (3)0.006 (2)0.015 (2)0.011 (2)
C40.037 (3)0.049 (3)0.035 (3)0.009 (2)0.015 (2)0.009 (2)
C50.032 (2)0.035 (2)0.027 (2)0.0035 (19)0.0090 (19)0.0028 (18)
C60.043 (3)0.037 (3)0.030 (3)0.004 (2)0.012 (2)0.0022 (19)
C70.064 (3)0.033 (3)0.040 (3)0.011 (2)0.022 (3)0.016 (2)
C80.053 (3)0.045 (3)0.037 (3)0.014 (2)0.010 (2)0.014 (2)
C90.034 (2)0.026 (2)0.044 (3)0.0029 (19)0.003 (2)0.003 (2)
C100.029 (2)0.028 (2)0.037 (3)0.0018 (18)0.005 (2)0.0100 (19)
C110.034 (3)0.032 (3)0.056 (3)0.003 (2)0.011 (2)0.006 (2)
C120.031 (2)0.048 (3)0.060 (4)0.005 (2)0.017 (2)0.016 (3)
C130.040 (3)0.042 (3)0.051 (3)0.009 (2)0.019 (2)0.005 (2)
C140.035 (2)0.042 (3)0.041 (3)0.001 (2)0.012 (2)0.001 (2)
C150.031 (2)0.043 (3)0.025 (2)0.0028 (19)0.0078 (19)0.0011 (19)
C160.042 (3)0.066 (4)0.030 (3)0.005 (3)0.008 (2)0.002 (2)
C170.050 (3)0.075 (4)0.032 (3)0.005 (3)0.004 (2)0.022 (3)
C180.045 (3)0.044 (3)0.040 (3)0.004 (2)0.011 (2)0.014 (2)
C190.025 (2)0.033 (2)0.034 (3)0.0033 (18)0.0093 (19)0.0007 (18)
C200.028 (2)0.025 (2)0.042 (3)0.0006 (17)0.014 (2)0.0002 (19)
C210.036 (2)0.033 (2)0.027 (2)0.0004 (19)0.008 (2)0.0072 (18)
Cl10.0494 (8)0.0436 (8)0.0833 (11)0.0007 (6)0.0301 (8)0.0063 (7)
O20.112 (4)0.066 (3)0.127 (4)0.047 (3)0.060 (3)0.009 (3)
O30.051 (2)0.049 (3)0.179 (5)0.0034 (19)0.032 (3)0.017 (3)
O40.069 (3)0.104 (4)0.175 (6)0.042 (3)0.006 (3)0.006 (4)
O50.146 (5)0.158 (5)0.107 (5)0.044 (4)0.078 (4)0.011 (4)
Cl20.0421 (7)0.0335 (6)0.0423 (7)0.0021 (5)0.0139 (5)0.0033 (5)
O60.063 (3)0.126 (4)0.161 (6)0.037 (3)0.036 (3)0.055 (4)
O70.127 (5)0.116 (4)0.208 (7)0.086 (4)0.022 (5)0.007 (4)
O80.174 (5)0.092 (3)0.122 (4)0.061 (3)0.106 (4)0.072 (3)
O90.262 (8)0.137 (5)0.064 (4)0.096 (5)0.062 (4)0.001 (3)
Geometric parameters (Å, º) top
Mn1—O12.215 (3)C8—H8A0.9900
Mn1—N62.257 (3)C8—H8B0.9900
Mn1—N32.278 (3)C9—C101.452 (6)
Mn1—N22.278 (4)C9—H90.9500
Mn1—N52.280 (3)C10—C111.382 (6)
Mn1—N12.504 (3)C11—C121.383 (7)
Mn1—N42.639 (4)C11—H110.9500
O1—H1A0.840 (10)C12—C131.377 (7)
O1—H1B0.837 (10)C12—H120.9500
N1—C11.325 (5)C13—C141.390 (6)
N1—C51.343 (5)C13—H130.9500
N2—C61.266 (5)C14—H140.9500
N2—C71.467 (5)C15—C161.378 (6)
N3—C91.264 (5)C15—H150.9500
N3—C81.471 (6)C16—C171.370 (7)
N4—C141.318 (6)C16—H160.9500
N4—C101.355 (5)C17—C181.384 (7)
N5—C151.337 (5)C17—H170.9500
N5—C191.352 (5)C18—C191.379 (6)
N6—C201.272 (5)C18—H180.9500
N6—C211.461 (5)C19—C201.466 (6)
C1—C21.379 (6)C20—H200.9500
C1—H10.9500C21—C21i1.517 (8)
C2—C31.372 (6)C21—H21A0.9900
C2—H20.9500C21—H21B0.9900
C3—C41.385 (6)Cl1—O41.387 (5)
C3—H30.9500Cl1—O21.408 (4)
C4—C51.376 (6)Cl1—O31.411 (4)
C4—H40.9500Cl1—O51.429 (6)
C5—C61.476 (6)Cl2—O71.349 (5)
C6—H60.9500Cl2—O91.381 (5)
C7—C81.511 (6)Cl2—O81.387 (4)
C7—H7A0.9900Cl2—O61.393 (4)
C7—H7B0.9900
O1—Mn1—N6159.64 (13)N2—C7—H7B110.4
O1—Mn1—N394.76 (13)C8—C7—H7B110.4
N6—Mn1—N398.80 (12)H7A—C7—H7B108.6
O1—Mn1—N281.80 (12)N3—C8—C7107.5 (4)
N6—Mn1—N2116.87 (13)N3—C8—H8A110.2
N3—Mn1—N271.73 (13)C7—C8—H8A110.2
O1—Mn1—N585.88 (12)N3—C8—H8B110.2
N6—Mn1—N574.08 (12)C7—C8—H8B110.2
N3—Mn1—N5141.99 (13)H8A—C8—H8B108.5
N2—Mn1—N5145.21 (13)N3—C9—C10121.5 (4)
O1—Mn1—N196.96 (12)N3—C9—H9119.3
N6—Mn1—N184.01 (11)C10—C9—H9119.3
N3—Mn1—N1135.25 (13)N4—C10—C11122.4 (4)
N2—Mn1—N167.51 (12)N4—C10—C9116.3 (4)
N5—Mn1—N181.98 (12)C11—C10—C9121.3 (4)
O1—Mn1—N489.06 (12)C10—C11—C12119.5 (4)
N6—Mn1—N482.51 (11)C10—C11—H11120.2
N3—Mn1—N466.69 (12)C12—C11—H11120.2
N2—Mn1—N4136.42 (12)C13—C12—C11118.6 (4)
N5—Mn1—N475.33 (11)C13—C12—H12120.7
N1—Mn1—N4156.05 (11)C11—C12—H12120.7
Mn1—O1—H1A114 (4)C12—C13—C14117.8 (5)
Mn1—O1—H1B114 (4)C12—C13—H13121.1
H1A—O1—H1B105 (5)C14—C13—H13121.1
C1—N1—C5116.4 (4)N4—C14—C13125.0 (4)
C1—N1—Mn1129.2 (3)N4—C14—H14117.5
C5—N1—Mn1114.3 (3)C13—C14—H14117.5
C6—N2—C7120.9 (4)N5—C15—C16122.9 (4)
C6—N2—Mn1123.7 (3)N5—C15—H15118.5
C7—N2—Mn1115.3 (3)C16—C15—H15118.5
C9—N3—C8119.7 (4)C17—C16—C15118.8 (5)
C9—N3—Mn1123.9 (3)C17—C16—H16120.6
C8—N3—Mn1115.9 (3)C15—C16—H16120.6
C14—N4—C10116.6 (4)C16—C17—C18119.2 (5)
C14—N4—Mn1132.4 (3)C16—C17—H17120.4
C10—N4—Mn1110.9 (3)C18—C17—H17120.4
C15—N5—C19118.1 (4)C19—C18—C17119.1 (4)
C15—N5—Mn1127.7 (3)C19—C18—H18120.5
C19—N5—Mn1113.3 (3)C17—C18—H18120.5
C20—N6—C21118.2 (4)N5—C19—C18121.8 (4)
C20—N6—Mn1114.7 (3)N5—C19—C20116.6 (4)
C21—N6—Mn1127.1 (3)C18—C19—C20121.6 (4)
N1—C1—C2124.4 (4)N6—C20—C19121.0 (4)
N1—C1—H1117.8N6—C20—H20119.5
C2—C1—H1117.8C19—C20—H20119.5
C3—C2—C1118.5 (4)N6—C21—C21i110.0 (4)
C3—C2—H2120.8N6—C21—H21A109.7
C1—C2—H2120.8C21i—C21—H21A109.7
C2—C3—C4118.5 (4)N6—C21—H21B109.7
C2—C3—H3120.8C21i—C21—H21B109.7
C4—C3—H3120.8H21A—C21—H21B108.2
C5—C4—C3118.9 (4)O4—Cl1—O2112.6 (3)
C5—C4—H4120.6O4—Cl1—O3109.4 (3)
C3—C4—H4120.6O2—Cl1—O3109.3 (3)
N1—C5—C4123.3 (4)O4—Cl1—O5110.4 (4)
N1—C5—C6115.6 (4)O2—Cl1—O5109.0 (3)
C4—C5—C6121.1 (4)O3—Cl1—O5106.0 (3)
N2—C6—C5118.6 (4)O7—Cl2—O9107.5 (5)
N2—C6—H6120.7O7—Cl2—O8107.0 (4)
C5—C6—H6120.7O9—Cl2—O8110.0 (3)
N2—C7—C8106.6 (4)O7—Cl2—O6108.3 (4)
N2—C7—H7A110.4O9—Cl2—O6112.6 (4)
C8—C7—H7A110.4O8—Cl2—O6111.3 (3)
O1—Mn1—N1—C1104.0 (4)N2—Mn1—N6—C20144.2 (3)
N6—Mn1—N1—C155.5 (4)N5—Mn1—N6—C200.2 (3)
N3—Mn1—N1—C1152.0 (3)N1—Mn1—N6—C2083.1 (3)
N2—Mn1—N1—C1177.9 (4)N4—Mn1—N6—C2077.0 (3)
N5—Mn1—N1—C119.2 (4)O1—Mn1—N6—C21171.0 (3)
N4—Mn1—N1—C10.5 (5)N3—Mn1—N6—C2139.8 (3)
O1—Mn1—N1—C574.2 (3)N2—Mn1—N6—C2134.1 (3)
N6—Mn1—N1—C5126.3 (3)N5—Mn1—N6—C21178.5 (3)
N3—Mn1—N1—C529.8 (4)N1—Mn1—N6—C2195.2 (3)
N2—Mn1—N1—C53.9 (3)N4—Mn1—N6—C21104.7 (3)
N5—Mn1—N1—C5159.0 (3)C5—N1—C1—C21.6 (6)
N4—Mn1—N1—C5177.7 (3)Mn1—N1—C1—C2176.6 (3)
O1—Mn1—N2—C696.9 (4)N1—C1—C2—C30.6 (7)
N6—Mn1—N2—C674.5 (4)C1—C2—C3—C41.1 (7)
N3—Mn1—N2—C6165.3 (4)C2—C3—C4—C51.7 (6)
N5—Mn1—N2—C626.4 (5)C1—N1—C5—C40.9 (6)
N1—Mn1—N2—C64.2 (3)Mn1—N1—C5—C4177.6 (3)
N4—Mn1—N2—C6176.8 (3)C1—N1—C5—C6177.9 (4)
O1—Mn1—N2—C780.0 (3)Mn1—N1—C5—C63.7 (5)
N6—Mn1—N2—C7108.6 (3)C3—C4—C5—N10.8 (7)
N3—Mn1—N2—C717.9 (3)C3—C4—C5—C6179.4 (4)
N5—Mn1—N2—C7150.4 (3)C7—N2—C6—C5179.4 (4)
N1—Mn1—N2—C7179.0 (3)Mn1—N2—C6—C53.9 (6)
N4—Mn1—N2—C70.1 (4)N1—C5—C6—N20.3 (6)
O1—Mn1—N3—C979.5 (3)C4—C5—C6—N2179.1 (4)
N6—Mn1—N3—C985.3 (3)C6—N2—C7—C8139.5 (4)
N2—Mn1—N3—C9159.2 (4)Mn1—N2—C7—C843.6 (4)
N5—Mn1—N3—C910.0 (4)C9—N3—C8—C7133.0 (4)
N1—Mn1—N3—C9175.7 (3)Mn1—N3—C8—C739.0 (4)
N4—Mn1—N3—C97.5 (3)N2—C7—C8—N351.7 (5)
O1—Mn1—N3—C892.2 (3)C8—N3—C9—C10177.8 (4)
N6—Mn1—N3—C8103.0 (3)Mn1—N3—C9—C1010.9 (6)
N2—Mn1—N3—C812.5 (3)C14—N4—C10—C112.1 (6)
N5—Mn1—N3—C8178.4 (3)Mn1—N4—C10—C11179.1 (3)
N1—Mn1—N3—C812.7 (4)C14—N4—C10—C9177.0 (4)
N4—Mn1—N3—C8179.1 (3)Mn1—N4—C10—C90.1 (4)
O1—Mn1—N4—C1491.4 (4)N3—C9—C10—N46.4 (6)
N6—Mn1—N4—C1470.0 (4)N3—C9—C10—C11172.6 (4)
N3—Mn1—N4—C14173.0 (4)N4—C10—C11—C123.0 (7)
N2—Mn1—N4—C14168.5 (4)C9—C10—C11—C12176.0 (4)
N5—Mn1—N4—C145.4 (4)C10—C11—C12—C130.9 (7)
N1—Mn1—N4—C1413.7 (6)C11—C12—C13—C141.8 (7)
O1—Mn1—N4—C1092.2 (3)C10—N4—C14—C130.8 (7)
N6—Mn1—N4—C10106.4 (3)Mn1—N4—C14—C13175.4 (3)
N3—Mn1—N4—C103.4 (3)C12—C13—C14—N42.8 (7)
N2—Mn1—N4—C1015.2 (3)C19—N5—C15—C161.0 (6)
N5—Mn1—N4—C10178.2 (3)Mn1—N5—C15—C16167.8 (3)
N1—Mn1—N4—C10162.6 (3)N5—C15—C16—C171.6 (7)
O1—Mn1—N5—C153.9 (3)C15—C16—C17—C180.4 (7)
N6—Mn1—N5—C15172.5 (4)C16—C17—C18—C192.8 (7)
N3—Mn1—N5—C1588.6 (4)C15—N5—C19—C181.6 (6)
N2—Mn1—N5—C1573.1 (4)Mn1—N5—C19—C18171.9 (3)
N1—Mn1—N5—C15101.5 (3)C15—N5—C19—C20176.5 (4)
N4—Mn1—N5—C1586.2 (3)Mn1—N5—C19—C206.1 (4)
O1—Mn1—N5—C19173.0 (3)C17—C18—C19—N53.5 (7)
N6—Mn1—N5—C193.3 (3)C17—C18—C19—C20174.5 (4)
N3—Mn1—N5—C1980.6 (3)C21—N6—C20—C19177.9 (4)
N2—Mn1—N5—C19117.7 (3)Mn1—N6—C20—C193.6 (5)
N1—Mn1—N5—C1989.3 (3)N5—C19—C20—N66.9 (6)
N4—Mn1—N5—C1982.9 (3)C18—C19—C20—N6171.2 (4)
O1—Mn1—N6—C2010.7 (5)C20—N6—C21—C21i102.6 (5)
N3—Mn1—N6—C20141.9 (3)Mn1—N6—C21—C21i79.2 (5)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3ii0.84 (1)1.95 (1)2.787 (5)177 (6)
O1—H1B···O7iii0.84 (1)1.92 (2)2.721 (6)159 (6)
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn2(C14H14N4)3(H2O)2](ClO4)4
Mr1258.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)11.3698 (6), 19.026 (1), 12.8628 (7)
β (°) 110.218 (1)
V3)2611.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.24 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.873, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19343, 6468, 3281
Rint0.080
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.178, 1.04
No. of reflections6468
No. of parameters360
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.82, 0.84

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mn1—O12.215 (3)Mn1—N52.280 (3)
Mn1—N62.257 (3)Mn1—N12.504 (3)
Mn1—N32.278 (3)Mn1—N42.639 (4)
Mn1—N22.278 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.840 (10)1.947 (12)2.787 (5)177 (6)
O1—H1B···O7ii0.837 (10)1.92 (2)2.721 (6)159 (6)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0074570).

References

First citationBaar, C. R., Jennings, M. C. & Puddephatt, R. J. (2001). Organometallics, 20, 3459–3465.  Web of Science CSD CrossRef CAS Google Scholar
First citationBowyer, P. K., Porter, K. A., Rae, A. D., Willis, A. C. & Wild, S. B. (1998). Chem. Commun. pp. 1153–1154.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m64–m65.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNguyen, Q. T. & Jeong, J. H. (2006). Polyhedron, 25, 1787–1790.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchoumacker, S., Hamelin, O., Pécaut, J. & Fontecave, M. (2003). Inorg. Chem. 42, 8110–8116.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds