organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3,5-bis­­[(4-hy­droxy­methyl-2-meth­oxy­phen­­oxy)meth­yl]benzoate

aDepartment of Chemistry, GC University Lahore 54000, Pakistan, and bDepartment of Chemistry, Georgetown University, 37th and O St NW, Washington, DC 20057, USA
*Correspondence e-mail: kth7@georgetown.edu

(Received 5 February 2010; accepted 22 February 2010; online 27 February 2010)

In the title compound, C26H28O8, the central aromatic ring forms dihedral angles of 24.32 (11) and 80.19 (7)° with the two adjoining vanillyl alcohol rings. In the crystal, O—H⋯O hydrogen bonds connect the mol­ecules, forming a hydrogen-bonded sheet-like motif extended in the ab plane.

Related literature

For the synthesis of and background to adjoined vanillyl alcohols, see: Mough et al. (2004[Mough, S. T., Goeltz, J. C. & Holman, K. T. (2004). Angew. Chem. Int. Ed. 43, 5631-5635.]); Mough & Holman (2008[Mough, S. T. & Holman, K. T. (2008). Chem. Commun. pp. 1407-1409.]). For background to cryptophanes, see: Brotin & Dutasta (2009[Brotin, T. & Dutasta, J.-P. (2009). Chem. Rev. 109, 88-130.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28O8

  • Mr = 468.48

  • Triclinic, [P \overline 1]

  • a = 4.7707 (12) Å

  • b = 14.844 (4) Å

  • c = 16.349 (4) Å

  • α = 99.801 (5)°

  • β = 95.692 (5)°

  • γ = 92.821 (5)°

  • V = 1132.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.50 × 0.25 × 0.05 mm

Data collection
  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.995

  • 6559 measured reflections

  • 4394 independent reflections

  • 2197 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.128

  • S = 0.85

  • 4394 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O8i 0.84 1.90 2.731 (3) 170
O8—H8⋯O3ii 0.84 1.90 2.721 (3) 167
Symmetry codes: (i) x-1, y+1, z; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1 189-191.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Adjoined vanillyl alcohols have been used extensively in the synthesis of container-like host molecules known as cryptophanes (Brotin & Dutasta, 2009). Our group has used the title compound as a precursor for the synthesis of a m-xylyl bridged cryptophane (Mough et al., 2004) that displays uncommon conformational behavior and whose carboxylic acid derivative has been used as a ligand for the synthesis of coordination polymers possessing container-like components (Mough et al., 2008).

The title compounds consists of two vanillyl alcohol moieties linked by a 3,5 disubstituted methylbenzoate. The arene rings of the vanilliyl alcohol moieties A (C1/C2/C3/C4/C5/C6) and B (C19/C20/C21/C22/C23/C24) are oriented, respectively, at dihedral angles of 24.32(0.11)° and 80.19(0.07)° with respect to the central methyl benzoate ring C (C10/C11/C12/C13/C14/C15). The hydroxyl groups available at each end of molecule participate in chains of O–H···O type hydrogen bonds that extend along the a-axis in the crystal (Table 1, Fig. 2). The molecules are thus connected into a hydrogen bonded polymeric sheet that resides in the ab plane.

Related literature top

For the synthesis and background to adjoined vanillyl alcohols, see: Mough et al. (2004); Mough & Holman (2008). For background to cryptophanes, see: Brotin & Dutasta (2009).

Experimental top

The compound was prepared following the method of Mough et al. (2004).

Refinement top

All the C–H and O–H, H-atoms were positioned geometrically and refined using a riding model with: d(C—H) = 0.95Å and 0.99 Å, Uiso = 1.2Ueq (C) for aromatic and methylene C atoms, d(C—H)=0.98Å Uiso = 1.5Ueq (C) for methyl, d(C—H)=0.84Å Uiso = 1.2Ueq (O) for Hydroxyl.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A thermal ellisoid plot of I, at 50% probability.
[Figure 2] Fig. 2. Unit cell packing diagram of I depicting the hydrogen bonds as dashed lines. Hydrogen atoms not involved in O—H···O hydrogen bonding have been omitted for clarity.
Methyl 3,5-bis[(4-hydroxymethyl-2-methoxyphenoxy)methyl]benzoate top
Crystal data top
C26H28O8Z = 2
Mr = 468.48F(000) = 496
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7707 (12) ÅCell parameters from 1285 reflections
b = 14.844 (4) Åθ = 2.5–24.5°
c = 16.349 (4) ŵ = 0.10 mm1
α = 99.801 (5)°T = 173 K
β = 95.692 (5)°Needle, pale yellow
γ = 92.821 (5)°0.50 × 0.25 × 0.05 mm
V = 1132.7 (5) Å3
Data collection top
Bruker SMART K1
diffractometer
4394 independent reflections
Radiation source: fine-focus sealed tube2197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scanθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 55
Tmin = 0.951, Tmax = 0.995k = 1618
6559 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0568P)2]
where P = (Fo2 + 2Fc2)/3
4394 reflections(Δ/σ)max < 0.001
312 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C26H28O8γ = 92.821 (5)°
Mr = 468.48V = 1132.7 (5) Å3
Triclinic, P1Z = 2
a = 4.7707 (12) ÅMo Kα radiation
b = 14.844 (4) ŵ = 0.10 mm1
c = 16.349 (4) ÅT = 173 K
α = 99.801 (5)°0.50 × 0.25 × 0.05 mm
β = 95.692 (5)°
Data collection top
Bruker SMART K1
diffractometer
4394 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2197 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.995Rint = 0.037
6559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 0.85Δρmax = 0.40 e Å3
4394 reflectionsΔρmin = 0.22 e Å3
312 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8577 (4)0.44795 (11)0.18004 (10)0.0323 (5)
C10.3350 (6)0.66420 (18)0.21353 (17)0.0325 (7)
O20.6676 (4)0.49101 (12)0.32243 (10)0.0400 (5)
C20.4117 (6)0.61493 (18)0.27658 (17)0.0329 (7)
H20.34340.63100.32940.039*
O30.2404 (4)0.80315 (13)0.30289 (13)0.0490 (6)
H30.10810.83460.31910.059*
C30.5843 (6)0.54346 (18)0.26403 (16)0.0319 (7)
O41.3168 (6)0.15167 (15)0.10157 (14)0.0725 (8)
C40.6859 (5)0.51921 (17)0.18579 (16)0.0285 (6)
O51.6491 (5)0.09734 (14)0.02106 (13)0.0614 (7)
C50.6078 (5)0.56715 (18)0.12281 (16)0.0299 (7)
H50.67270.55080.06950.036*
O61.4405 (4)0.26847 (12)0.34342 (10)0.0352 (5)
C60.4340 (6)0.63941 (17)0.13746 (16)0.0319 (7)
H60.38280.67230.09390.038*
O71.1515 (4)0.28885 (12)0.46990 (11)0.0436 (5)
C70.1416 (6)0.74113 (18)0.22818 (17)0.0409 (8)
H7A0.13260.77420.18030.049*
H7B0.05120.71570.23240.049*
O80.7672 (4)0.11335 (12)0.34750 (13)0.0489 (6)
H80.61190.14070.32630.059*
C80.5065 (7)0.4943 (2)0.39253 (16)0.0499 (9)
H8A0.55030.55320.43030.075*
H8B0.55470.44430.42240.075*
H8C0.30450.48770.37270.075*
C90.9429 (6)0.41381 (17)0.10055 (15)0.0304 (7)
H9A1.04100.46370.07890.036*
H9B0.77550.38970.06070.036*
C101.1380 (6)0.33864 (17)0.10909 (16)0.0286 (6)
C111.2673 (5)0.32889 (17)0.18610 (16)0.0283 (6)
H111.22180.36730.23500.034*
C121.4638 (5)0.26345 (17)0.19325 (16)0.0287 (6)
C131.5267 (6)0.20702 (18)0.12191 (17)0.0351 (7)
H131.66230.16280.12610.042*
C141.3922 (6)0.21470 (18)0.04403 (17)0.0373 (7)
C151.1980 (6)0.28043 (17)0.03803 (17)0.0327 (7)
H151.10550.28560.01500.039*
C161.4431 (8)0.1529 (2)0.0346 (2)0.0472 (9)
C171.7031 (9)0.0358 (2)0.0969 (2)0.0867 (14)
H17A1.52720.00100.12260.130*
H17B1.84360.00660.08270.130*
H17C1.77460.07190.13630.130*
C181.6184 (6)0.25862 (18)0.27714 (16)0.0357 (7)
H18A1.70480.19900.27390.043*
H18B1.77300.30750.29040.043*
C191.2662 (5)0.19350 (18)0.34944 (16)0.0300 (7)
C201.2295 (6)0.11288 (18)0.29360 (16)0.0338 (7)
H201.32780.10600.24540.041*
C211.0492 (6)0.04030 (18)0.30645 (16)0.0353 (7)
H211.02400.01490.26660.042*
C220.9088 (6)0.04871 (18)0.37649 (16)0.0310 (7)
C230.9420 (6)0.13196 (18)0.43279 (16)0.0346 (7)
H230.84270.13880.48080.042*
C241.1169 (6)0.20460 (18)0.41988 (16)0.0318 (7)
C250.7190 (6)0.02789 (18)0.39519 (17)0.0374 (7)
H25A0.75270.03110.45530.045*
H25B0.51940.01450.38300.045*
C260.9726 (7)0.3043 (2)0.53515 (18)0.0574 (10)
H26A0.77490.29210.51130.086*
H26B1.00320.36810.56390.086*
H26C1.01670.26340.57500.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0385 (12)0.0315 (11)0.0290 (10)0.0110 (9)0.0096 (9)0.0052 (8)
C10.0261 (16)0.0276 (16)0.0426 (17)0.0002 (12)0.0008 (14)0.0049 (13)
O20.0550 (14)0.0404 (12)0.0295 (10)0.0163 (10)0.0141 (10)0.0110 (9)
C20.0346 (17)0.0310 (17)0.0326 (16)0.0031 (13)0.0112 (14)0.0002 (13)
O30.0348 (13)0.0368 (13)0.0694 (14)0.0063 (10)0.0067 (11)0.0090 (11)
C30.0349 (17)0.0292 (17)0.0333 (16)0.0034 (13)0.0063 (14)0.0086 (13)
O40.120 (2)0.0577 (16)0.0399 (14)0.0244 (15)0.0195 (15)0.0019 (12)
C40.0276 (16)0.0265 (16)0.0308 (15)0.0001 (12)0.0068 (13)0.0020 (12)
O50.0712 (17)0.0463 (14)0.0649 (15)0.0127 (12)0.0290 (14)0.0101 (12)
C50.0316 (17)0.0332 (16)0.0256 (14)0.0006 (13)0.0071 (13)0.0050 (12)
O60.0340 (12)0.0325 (12)0.0412 (11)0.0042 (9)0.0086 (10)0.0091 (9)
C60.0339 (17)0.0299 (16)0.0324 (16)0.0017 (13)0.0022 (14)0.0080 (13)
O70.0512 (14)0.0371 (12)0.0403 (11)0.0025 (10)0.0139 (11)0.0028 (10)
C70.0418 (19)0.0323 (17)0.0476 (18)0.0070 (14)0.0039 (16)0.0034 (14)
O80.0357 (13)0.0330 (12)0.0749 (15)0.0017 (9)0.0107 (12)0.0023 (11)
C80.079 (3)0.044 (2)0.0330 (16)0.0115 (17)0.0238 (17)0.0128 (14)
C90.0321 (16)0.0332 (16)0.0266 (14)0.0019 (13)0.0064 (13)0.0058 (12)
C100.0297 (16)0.0279 (16)0.0292 (15)0.0016 (12)0.0101 (13)0.0048 (12)
C110.0279 (16)0.0285 (16)0.0285 (15)0.0008 (12)0.0090 (13)0.0020 (12)
C120.0264 (16)0.0254 (15)0.0359 (16)0.0016 (12)0.0084 (13)0.0072 (13)
C130.0308 (17)0.0282 (16)0.0499 (18)0.0056 (13)0.0171 (15)0.0083 (14)
C140.047 (2)0.0292 (17)0.0381 (17)0.0022 (14)0.0216 (16)0.0051 (14)
C150.0369 (18)0.0280 (16)0.0338 (16)0.0013 (13)0.0102 (14)0.0045 (13)
C160.061 (2)0.0284 (18)0.055 (2)0.0008 (16)0.027 (2)0.0027 (17)
C170.115 (4)0.055 (2)0.088 (3)0.012 (2)0.059 (3)0.022 (2)
C180.0301 (17)0.0334 (17)0.0472 (18)0.0090 (13)0.0123 (15)0.0106 (14)
C190.0228 (16)0.0320 (17)0.0370 (16)0.0043 (13)0.0029 (13)0.0111 (13)
C200.0371 (18)0.0314 (17)0.0349 (15)0.0086 (14)0.0095 (14)0.0065 (13)
C210.0398 (18)0.0298 (17)0.0351 (16)0.0089 (14)0.0039 (14)0.0010 (13)
C220.0271 (16)0.0317 (17)0.0341 (15)0.0049 (13)0.0011 (13)0.0062 (13)
C230.0349 (17)0.0405 (18)0.0302 (15)0.0078 (14)0.0069 (13)0.0080 (13)
C240.0312 (17)0.0320 (17)0.0310 (15)0.0037 (13)0.0016 (13)0.0025 (13)
C250.0323 (17)0.0338 (18)0.0459 (17)0.0051 (13)0.0080 (15)0.0032 (14)
C260.071 (3)0.050 (2)0.0486 (19)0.0013 (18)0.0276 (19)0.0092 (16)
Geometric parameters (Å, º) top
O1—C41.366 (3)C9—H9B0.9900
O1—C91.418 (3)C10—C111.380 (3)
C1—C61.372 (3)C10—C151.388 (3)
C1—C21.393 (4)C11—C121.394 (4)
C1—C71.506 (4)C11—H110.9500
O2—C31.372 (3)C12—C131.383 (3)
O2—C81.437 (3)C12—C181.506 (4)
C2—C31.375 (4)C13—C141.393 (4)
C2—H20.9500C13—H130.9500
O3—C71.422 (3)C14—C151.387 (4)
O3—H30.8400C14—C161.495 (4)
C3—C41.409 (3)C15—H150.9500
O4—C161.193 (4)C17—H17A0.9800
C4—C51.380 (3)C17—H17B0.9800
O5—C161.339 (4)C17—H17C0.9800
O5—C171.462 (3)C18—H18A0.9900
C5—C61.391 (4)C18—H18B0.9900
C5—H50.9500C19—C201.368 (3)
O6—C191.379 (3)C19—C241.404 (3)
O6—C181.434 (3)C20—C211.402 (3)
C6—H60.9500C20—H200.9500
O7—C241.366 (3)C21—C221.374 (3)
O7—C261.427 (3)C21—H210.9500
C7—H7A0.9900C22—C231.401 (3)
C7—H7B0.9900C22—C251.509 (3)
O8—C251.413 (3)C23—C241.388 (4)
O8—H80.8400C23—H230.9500
C8—H8A0.9800C25—H25A0.9900
C8—H8B0.9800C25—H25B0.9900
C8—H8C0.9800C26—H26A0.9800
C9—C101.503 (4)C26—H26B0.9800
C9—H9A0.9900C26—H26C0.9800
C4—O1—C9117.7 (2)C12—C13—H13119.8
C6—C1—C2118.4 (2)C14—C13—H13119.8
C6—C1—C7121.0 (3)C15—C14—C13119.7 (3)
C2—C1—C7120.5 (2)C15—C14—C16117.7 (3)
C3—O2—C8116.9 (2)C13—C14—C16122.6 (3)
C3—C2—C1121.4 (2)C14—C15—C10120.3 (3)
C3—C2—H2119.3C14—C15—H15119.8
C1—C2—H2119.3C10—C15—H15119.8
C7—O3—H3109.5O4—C16—O5123.3 (3)
O2—C3—C2125.1 (2)O4—C16—C14125.1 (3)
O2—C3—C4115.4 (2)O5—C16—C14111.6 (3)
C2—C3—C4119.5 (3)O5—C17—H17A109.5
O1—C4—C5125.8 (2)O5—C17—H17B109.5
O1—C4—C3114.9 (2)H17A—C17—H17B109.5
C5—C4—C3119.3 (2)O5—C17—H17C109.5
C16—O5—C17112.9 (3)H17A—C17—H17C109.5
C4—C5—C6119.9 (2)H17B—C17—H17C109.5
C4—C5—H5120.0O6—C18—C12113.4 (2)
C6—C5—H5120.0O6—C18—H18A108.9
C19—O6—C18117.38 (19)C12—C18—H18A108.9
C1—C6—C5121.4 (3)O6—C18—H18B108.9
C1—C6—H6119.3C12—C18—H18B108.9
C5—C6—H6119.3H18A—C18—H18B107.7
C24—O7—C26116.3 (2)C20—C19—O6125.7 (2)
O3—C7—C1110.5 (2)C20—C19—C24119.6 (2)
O3—C7—H7A109.5O6—C19—C24114.6 (2)
C1—C7—H7A109.5C19—C20—C21121.0 (2)
O3—C7—H7B109.5C19—C20—H20119.5
C1—C7—H7B109.5C21—C20—H20119.5
H7A—C7—H7B108.1C22—C21—C20120.2 (2)
C25—O8—H8109.5C22—C21—H21119.9
O2—C8—H8A109.5C20—C21—H21119.9
O2—C8—H8B109.5C21—C22—C23118.7 (3)
H8A—C8—H8B109.5C21—C22—C25122.7 (2)
O2—C8—H8C109.5C23—C22—C25118.6 (2)
H8A—C8—H8C109.5C24—C23—C22121.4 (2)
H8B—C8—H8C109.5C24—C23—H23119.3
O1—C9—C10108.8 (2)C22—C23—H23119.3
O1—C9—H9A109.9O7—C24—C23124.9 (2)
C10—C9—H9A109.9O7—C24—C19116.1 (2)
O1—C9—H9B109.9C23—C24—C19119.0 (2)
C10—C9—H9B109.9O8—C25—C22111.7 (2)
H9A—C9—H9B108.3O8—C25—H25A109.3
C11—C10—C15119.4 (3)C22—C25—H25A109.3
C11—C10—C9121.0 (2)O8—C25—H25B109.3
C15—C10—C9119.5 (2)C22—C25—H25B109.3
C10—C11—C12121.0 (2)H25A—C25—H25B107.9
C10—C11—H11119.5O7—C26—H26A109.5
C12—C11—H11119.5O7—C26—H26B109.5
C13—C12—C11119.2 (2)H26A—C26—H26B109.5
C13—C12—C18120.6 (2)O7—C26—H26C109.5
C11—C12—C18120.1 (2)H26A—C26—H26C109.5
C12—C13—C14120.4 (3)H26B—C26—H26C109.5
C6—C1—C2—C30.5 (4)C16—C14—C15—C10178.8 (2)
C7—C1—C2—C3178.9 (3)C11—C10—C15—C141.8 (4)
C8—O2—C3—C217.4 (4)C9—C10—C15—C14175.6 (2)
C8—O2—C3—C4161.8 (2)C17—O5—C16—O40.3 (4)
C1—C2—C3—O2179.3 (2)C17—O5—C16—C14179.8 (2)
C1—C2—C3—C40.1 (4)C15—C14—C16—O45.0 (4)
C9—O1—C4—C56.5 (4)C13—C14—C16—O4173.5 (3)
C9—O1—C4—C3173.5 (2)C15—C14—C16—O5175.5 (2)
O2—C3—C4—O11.3 (3)C13—C14—C16—O56.0 (4)
C2—C3—C4—O1179.4 (2)C19—O6—C18—C1277.3 (3)
O2—C3—C4—C5178.7 (2)C13—C12—C18—O6141.4 (2)
C2—C3—C4—C50.6 (4)C11—C12—C18—O642.5 (3)
O1—C4—C5—C6179.1 (2)C18—O6—C19—C206.0 (4)
C3—C4—C5—C61.0 (4)C18—O6—C19—C24174.4 (2)
C2—C1—C6—C50.2 (4)O6—C19—C20—C21179.1 (3)
C7—C1—C6—C5178.6 (2)C24—C19—C20—C211.3 (4)
C4—C5—C6—C10.5 (4)C19—C20—C21—C221.0 (4)
C6—C1—C7—O3130.8 (3)C20—C21—C22—C232.2 (4)
C2—C1—C7—O350.8 (3)C20—C21—C22—C25178.1 (3)
C4—O1—C9—C10177.9 (2)C21—C22—C23—C241.3 (4)
O1—C9—C10—C1117.5 (3)C25—C22—C23—C24179.0 (3)
O1—C9—C10—C15165.2 (2)C26—O7—C24—C236.2 (4)
C15—C10—C11—C122.1 (4)C26—O7—C24—C19172.0 (3)
C9—C10—C11—C12175.3 (2)C22—C23—C24—O7177.2 (2)
C10—C11—C12—C130.7 (4)C22—C23—C24—C190.9 (4)
C10—C11—C12—C18175.5 (2)C20—C19—C24—O7176.1 (2)
C11—C12—C13—C140.9 (4)O6—C19—C24—O73.5 (3)
C18—C12—C13—C14177.1 (2)C20—C19—C24—C232.2 (4)
C12—C13—C14—C151.1 (4)O6—C19—C24—C23178.1 (2)
C12—C13—C14—C16177.4 (2)C21—C22—C25—O816.9 (4)
C13—C14—C15—C100.2 (4)C23—C22—C25—O8163.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O8i0.841.902.731 (3)170
O8—H8···O3ii0.841.902.721 (3)167
Symmetry codes: (i) x1, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC26H28O8
Mr468.48
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)4.7707 (12), 14.844 (4), 16.349 (4)
α, β, γ (°)99.801 (5), 95.692 (5), 92.821 (5)
V3)1132.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.25 × 0.05
Data collection
DiffractometerBruker SMART K1
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.951, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
6559, 4394, 2197
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.128, 0.85
No. of reflections4394
No. of parameters312
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and X-SEED (Barbour, 2001), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O8i0.841.902.731 (3)170
O8—H8···O3ii0.841.902.721 (3)167
Symmetry codes: (i) x1, y+1, z; (ii) x, y1, z.
 

Footnotes

Current address; Department of Chemistry, Georgetown University, 37th and O St NW, Washington, DC 20057 USA.

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a fellowship to MNA under the Inter­national Research Support Initiative Program (IRSIP). KTH acknowledges grant support from the National Science Foundation (DMR-0349316).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1 189–191.  CrossRef CAS Google Scholar
First citationBrotin, T. & Dutasta, J.-P. (2009). Chem. Rev. 109, 88–130.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMough, S. T., Goeltz, J. C. & Holman, K. T. (2004). Angew. Chem. Int. Ed. 43, 5631–5635.  Web of Science CSD CrossRef CAS Google Scholar
First citationMough, S. T. & Holman, K. T. (2008). Chem. Commun. pp. 1407–1409.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds