organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o599-o600

Ethyl (2Z)-2-(3-meth­oxy­benzyl­­idene)-7-methyl-3-oxo-5-phenyl-2,3-di­hydro-5H-1,3-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

aDepartment of Physics, Bhavan's Sheth R.A. College of Science, Ahmedabad, Gujarat, 380 001, India, bDepartment of Chemistry, M.G. Science Institute, Navrangpura, Navrangpura, Ahmedabad, Gujarat, 380 009, India, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 5 February 2010; accepted 7 February 2010; online 13 February 2010)

In the title compound, C24H22N2O4S, the central pyrimidine ring is significantly puckered, assuming a conformation inter­mediate between a boat and a screw boat. The nearly planar thia­zole ring (r.m.s. deviation = 0.0258 Å) is fused with the pyriamidine ring, making a dihedral angle of 9.83 (7)°. The carboxyl group is in an extended conformation with an anti-periplanar orientation with respect to the dihydropyrimidine ring. The benzene ring linked at the chiral C atom is perpendicular to the pyrimidine ring [dihedral angle = 85.21 (8)°] whereas the phenyl ring is nearly coplanar, making a dihedral angle of 13.20 (8)°. An intra­molecular C—H⋯S hydrogen bond is observed. The crystal packing is influenced by weak inter­molecular C—H⋯π inter­actions and ππ stacking between the thia­zole and phenyl rings [centroid–centroid distance = 3.9656 (10) Å], which stack the mol­ecules along the c axis.

Related literature

For related structures, see: Jotani & Baldaniya (2008[Jotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. E64, o739.]); Sridhar et al. (2006[Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687-o690.]); Fischer et al. (2007[Fischer, A., Yathirajan, H. S., Mithun, A., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o1224-o1225.]); Baldaniya & Jotani (2008[Baldaniya, B. B. & Jotani, M. M. (2008). Anal Sci. X-ray Struct. Anal. Online, 24, x217-x218]); Jotani et al. (2009[Jotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2009). J. Chem. Crystallogr. 39, 898-901.]). For the biological activity of dihydro­pyrimidines, see: Wichmann et al. (1999[Wichmann, J., Adam, G., Kolczewski, S., Mutel, V. & Woltering, T. (1999). Bioorg. Med. Chem. Lett. 9, 1573-1576.]); Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]); Mayer et al. (1999[Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. & Mitchison, T. J. (1999). Science, 286, 971-974.]). For a description of the Cambridge Structural Database, see: Allen, (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22N2O4S

  • Mr = 434.50

  • Monoclinic, C 2/c

  • a = 33.0445 (6) Å

  • b = 9.5013 (2) Å

  • c = 13.8845 (2) Å

  • β = 101.548 (1)°

  • V = 4271.01 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.946, Tmax = 0.973

  • 27172 measured reflections

  • 6222 independent reflections

  • 4099 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 0.93

  • 6222 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯S1 0.93 2.54 3.2561 (15) 134
C10—H10BCg3i 0.96 2.87 3.755 (3) 153
C21—H21⋯Cg3ii 0.93 2.79 3.602 (2) 147
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINTand XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINTand XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINTand XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Series of fused thiazolo [3,2-a] pyrimidine derivatives are antagonistic to group 2 mGlu receptors depending upon substitution of two phenyl rings at the 2 and 5 positions as well as substituents at positions 6 and 7 of the scaffold (Wichmann et al., 1999). Moreover dihydropyrimidines (DHPMs) have remarkable potency with antiviral, antitumor, antibacterial and anti-inflammatory activities, and are used as antihypertensive agents and calcium channel modulators (Kappe, 2000). A DHPM analog has been identified as a potential anticancer lead that is involved in blocking mitosis by inhibition of a kinesin motor protein (Mayer et al., 1999). In continuation of our studies on a series of pharmacologically interesting thiazolo [3,2-a] pyrimidine derivatives (Jotani & Baldaniya, 2008; Baldaniya & Jotani, 2008; Jotani et al., 2009) to examine the effect of substituents of varying size from the phenyl ring on crystal packing, a crystal structure of the title compound, C24H22N2O4S, (I), is reported.

In (I), the central pyrimidine ring with a chiral C2 atom at the point of substitution of a benzene ring (C11-C16) is significantly puckered and adopts a conformation which is best described as an intermediate between a boat and screw boat form, Fig. 1. The ring puckering parameters (Cremer & Pople, 1975) for the pyrimidine ring are q2 = 0.1997 (14) Å, q3 = 0.0575 (17)Å, Q = 0.2090 (15) Å; θ = 74.1 (4) ° and ϕ = 157.9 (4)°. Idealized values for a boat and screw boat conformation are: θ = 90° and 67.5°, and ϕ = 60k and (60k + 30)°, respectively, where k is an integer. The fusion of a nearly planar thiazole ring (r.m.s. deviation = 0.0258Å) results in slightly deviated N1—C1 and N1—C4 bond lengths in the pyrimidine ring. The fused thiazole ring has geometrical parameters similar to analagous structures (Jotani & Baldaniya, 2008; Baldaniya & Jotani, 2008; Jotani et al., 2009; Sridhar et al., 2006; Fischer et al., 2007). The dihedral angles between the mean planes of the benzene (C11-C16) and 3-methoxy phenyl ring (C18-C23) substituted at the carbon C6 atom and the pyrimidine ring are 85.21 (8)° and 13.20 (8)° respectively. The dihedral angle between the mean planes of the benzene (C11-C16) and 3-methoxy phenyl rings (C18-C23) is 87.73°. The carboxyl group linked at C3 atom is in an extended conformation with an anti-periplanar orientation with respect to pyrimidine ring. The ethyl group remains nearly planar (C8/O3/C9/C10 = -156.87 (19)° resulting a trans conformation of ethoxy group with respect to O2—C9 bond. A short intramolecular C—H···S hydrogen bond between the phenyl carbon C19 and thiazolo sulphur S1 (Fig. 2 & Table 1) forms a pseudo-six-membered ring of S(6) graph-set motif (Bernstein et al., 1995) which helps to consolidate the crystal packing. C-H···Cg π interactions exist between a carboxylate carbon atom and benzene (Cg3) [C10···H10···Cg3], and between a phenyl carbon atom and benzene (Cg3) [C21—H21···Cg3], (Table 2). In addition a weak ππ intermolecular interaction is observed between the ring centroids of the thiazole (Cg1) and phenyl (Cg4) rings (Fig. 3, Table 3).

Related literature top

For related structures, see: Jotani & Baldaniya (2008); Sridhar et al. (2006); Fischer et al. (2007); Baldaniya & Jotani (2008); Jotani et al. (2009). For the biological activity of dihydropyrimidines, see: Wichmann et al. (1999); Kappe (2000); Mayer et al. (1999). For a description of the Cambridge Structural Database, see: Allen, (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of ethyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mol), chloroacetic acid (0.01 mol), fused sodium acetate (6 g m) in glacial acetic acid (25 ml), acetic anhydride (10 ml) and 3-methoxy benzaldehyde (0.01 mol) was refluxed for 3 hours. The reaction mixture was cooled and poured into cold water. The resulting solid was collected and crystallized from methanol to obtain the final product (84 % yield, mp 423 K). The compound was recrystallized by slow evaporation of a benzene-ethanol (8:2) solution, yielding colorless, single crystals suitable for X-ray diffraction.

Refinement top

H atoms were placed in idealized positions (C—H = 0.93— 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL-97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. Dashed line indicates an intramolecular bond.
[Figure 2] Fig. 2. PLATON (Spek, 2009) plot of (I), showing weak C—H···π intermolecular interactions as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. A view of the π-π stacking interaction (dashed line) in the crystal structure of (I). H atoms have been omitted for clarity.
Ethyl (2Z)-2-(3-methoxybenzylidene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-1,3-thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C24H22N2O4SF(000) = 1824
Mr = 434.50Dx = 1.351 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 5670 reflections
a = 33.0445 (6) Åθ = 3.0–30.0°
b = 9.5013 (2) ŵ = 0.19 mm1
c = 13.8845 (2) ÅT = 293 K
β = 101.548 (1)°Plate, colorless
V = 4271.01 (13) Å30.30 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
6222 independent reflections
Radiation source: fine-focus sealed tube4099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4646
Tmin = 0.946, Tmax = 0.973k = 1313
27172 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.049P)2 + 2.3025P]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
6222 reflectionsΔρmax = 0.24 e Å3
284 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00104 (16)
Crystal data top
C24H22N2O4SV = 4271.01 (13) Å3
Mr = 434.50Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.0445 (6) ŵ = 0.19 mm1
b = 9.5013 (2) ÅT = 293 K
c = 13.8845 (2) Å0.30 × 0.20 × 0.15 mm
β = 101.548 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6222 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4099 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.973Rint = 0.035
27172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 0.93Δρmax = 0.24 e Å3
6222 reflectionsΔρmin = 0.23 e Å3
284 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.235672 (11)0.12268 (4)0.10790 (3)0.05063 (12)
N10.18618 (4)0.34110 (13)0.11604 (10)0.0487 (3)
N20.15837 (3)0.11297 (12)0.11518 (9)0.0373 (2)
O10.14512 (3)0.11959 (11)0.12997 (10)0.0571 (3)
O20.04874 (4)0.27636 (13)0.15987 (10)0.0672 (4)
O30.06592 (4)0.49424 (12)0.12836 (10)0.0629 (3)
O40.37128 (4)0.07609 (15)0.09922 (11)0.0733 (4)
C10.18927 (4)0.20741 (15)0.11242 (11)0.0406 (3)
C20.11507 (4)0.15838 (14)0.10056 (10)0.0368 (3)
H20.10180.10700.14700.044*
C30.11429 (4)0.31329 (14)0.12389 (10)0.0381 (3)
C40.14806 (4)0.39460 (15)0.13134 (11)0.0432 (3)
C50.16927 (4)0.02682 (15)0.12298 (11)0.0411 (3)
C60.21375 (4)0.04258 (15)0.12057 (11)0.0416 (3)
C70.15201 (5)0.54599 (17)0.16009 (15)0.0617 (5)
H7A0.14940.60320.10220.093*
H7B0.17850.56190.20180.093*
H7C0.13060.57040.19480.093*
C80.07349 (5)0.35749 (15)0.14060 (11)0.0426 (3)
C90.02824 (6)0.5474 (2)0.15207 (18)0.0759 (6)
H9A0.03210.56450.22220.091*
H9B0.00630.47870.13400.091*
C100.01708 (7)0.6780 (2)0.09834 (18)0.0874 (7)
H10A0.03980.74260.11240.131*
H10B0.00660.71860.11820.131*
H10C0.01060.65870.02910.131*
C110.09283 (4)0.12247 (14)0.00271 (11)0.0394 (3)
C120.10440 (5)0.18604 (18)0.08289 (12)0.0504 (4)
H120.12460.25550.07300.060*
C130.08613 (5)0.1470 (2)0.17714 (13)0.0638 (5)
H130.09450.18830.23060.077*
C140.05548 (6)0.0471 (2)0.19211 (15)0.0670 (5)
H140.04310.02100.25580.080*
C150.04305 (5)0.0141 (2)0.11405 (16)0.0651 (5)
H150.02210.08090.12460.078*
C160.06171 (5)0.02327 (16)0.01906 (13)0.0509 (4)
H160.05320.01880.03400.061*
C170.23076 (4)0.16995 (17)0.12650 (11)0.0459 (3)
H170.21270.24270.13350.055*
C180.27255 (4)0.21580 (16)0.12404 (11)0.0452 (3)
C190.30375 (5)0.12586 (17)0.11084 (12)0.0506 (4)
H190.29830.03020.10200.061*
C200.34317 (5)0.1759 (2)0.11051 (12)0.0533 (4)
C210.35128 (5)0.3184 (2)0.12200 (12)0.0588 (4)
H210.37760.35290.12190.071*
C220.32012 (5)0.4086 (2)0.13349 (13)0.0597 (4)
H220.32550.50450.14060.072*
C230.28096 (5)0.35955 (17)0.13471 (12)0.0520 (4)
H230.26020.42200.14260.062*
C240.41086 (5)0.1219 (3)0.08662 (16)0.0806 (6)
H24A0.42450.17050.14470.121*
H24B0.42700.04190.07550.121*
H24C0.40770.18430.03120.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03193 (18)0.0440 (2)0.0776 (3)0.00373 (15)0.01474 (17)0.00509 (18)
N10.0357 (6)0.0366 (7)0.0741 (9)0.0006 (5)0.0117 (6)0.0037 (6)
N20.0287 (5)0.0328 (6)0.0502 (7)0.0034 (4)0.0072 (4)0.0033 (5)
O10.0435 (6)0.0346 (6)0.0973 (9)0.0032 (5)0.0237 (6)0.0075 (5)
O20.0542 (7)0.0474 (7)0.1104 (10)0.0035 (6)0.0416 (7)0.0055 (6)
O30.0529 (7)0.0417 (6)0.1035 (10)0.0146 (5)0.0386 (6)0.0074 (6)
O40.0429 (6)0.0804 (9)0.1015 (10)0.0056 (6)0.0259 (6)0.0009 (8)
C10.0314 (6)0.0387 (8)0.0508 (8)0.0015 (6)0.0063 (6)0.0034 (6)
C20.0287 (6)0.0331 (7)0.0503 (8)0.0036 (5)0.0120 (5)0.0034 (6)
C30.0365 (7)0.0325 (7)0.0464 (8)0.0055 (5)0.0109 (6)0.0019 (6)
C40.0397 (7)0.0324 (7)0.0571 (9)0.0033 (6)0.0087 (6)0.0029 (6)
C50.0360 (7)0.0346 (7)0.0533 (8)0.0060 (6)0.0104 (6)0.0037 (6)
C60.0337 (7)0.0416 (8)0.0501 (8)0.0059 (6)0.0093 (6)0.0036 (6)
C70.0529 (10)0.0340 (8)0.0951 (14)0.0007 (7)0.0073 (9)0.0062 (8)
C80.0427 (7)0.0383 (8)0.0497 (8)0.0064 (6)0.0168 (6)0.0002 (6)
C90.0631 (11)0.0580 (12)0.1196 (17)0.0211 (9)0.0493 (12)0.0010 (11)
C100.0741 (14)0.0789 (15)0.1087 (17)0.0371 (12)0.0170 (12)0.0026 (13)
C110.0289 (6)0.0341 (7)0.0551 (8)0.0075 (5)0.0081 (6)0.0022 (6)
C120.0399 (8)0.0559 (10)0.0548 (9)0.0037 (7)0.0080 (7)0.0002 (7)
C130.0489 (9)0.0858 (14)0.0555 (10)0.0150 (9)0.0071 (8)0.0010 (9)
C140.0511 (10)0.0773 (13)0.0652 (12)0.0198 (9)0.0063 (8)0.0185 (10)
C150.0399 (8)0.0525 (10)0.0941 (15)0.0035 (8)0.0075 (9)0.0161 (10)
C160.0366 (7)0.0409 (8)0.0733 (11)0.0023 (6)0.0062 (7)0.0022 (7)
C170.0378 (7)0.0429 (8)0.0576 (9)0.0083 (6)0.0111 (6)0.0028 (7)
C180.0397 (7)0.0486 (9)0.0469 (8)0.0140 (6)0.0078 (6)0.0005 (6)
C190.0414 (8)0.0504 (9)0.0605 (10)0.0125 (7)0.0116 (7)0.0005 (7)
C200.0401 (8)0.0688 (11)0.0517 (9)0.0100 (8)0.0109 (7)0.0019 (8)
C210.0454 (9)0.0744 (12)0.0569 (10)0.0266 (9)0.0105 (7)0.0012 (8)
C220.0580 (10)0.0561 (10)0.0651 (11)0.0262 (8)0.0124 (8)0.0025 (8)
C230.0487 (9)0.0512 (9)0.0568 (9)0.0146 (7)0.0122 (7)0.0012 (7)
C240.0394 (9)0.1200 (19)0.0849 (14)0.0135 (11)0.0187 (9)0.0131 (12)
Geometric parameters (Å, º) top
S1—C11.7439 (14)C10—H10B0.9600
S1—C61.7528 (15)C10—H10C0.9600
N1—C11.2761 (19)C11—C161.380 (2)
N1—C41.4134 (18)C11—C121.386 (2)
N2—C11.3655 (17)C12—C131.378 (2)
N2—C51.3747 (17)C12—H120.9300
N2—C21.4693 (16)C13—C141.374 (3)
O1—C51.2059 (17)C13—H130.9300
O2—C81.1928 (18)C14—C151.364 (3)
O3—C81.3277 (17)C14—H140.9300
O3—C91.4413 (18)C15—C161.386 (2)
O4—C201.358 (2)C15—H150.9300
O4—C241.422 (2)C16—H160.9300
C2—C31.5084 (19)C17—C181.4551 (19)
C2—C111.513 (2)C17—H170.9300
C2—H20.9800C18—C191.379 (2)
C3—C41.3441 (19)C18—C231.396 (2)
C3—C81.4740 (19)C19—C201.388 (2)
C4—C71.491 (2)C19—H190.9300
C5—C61.4842 (19)C20—C211.383 (3)
C6—C171.330 (2)C21—C221.373 (3)
C7—H7A0.9600C21—H210.9300
C7—H7B0.9600C22—C231.379 (2)
C7—H7C0.9600C22—H220.9300
C9—C101.457 (3)C23—H230.9300
C9—H9A0.9700C24—H24A0.9600
C9—H9B0.9700C24—H24B0.9600
C10—H10A0.9600C24—H24C0.9600
C1—S1—C691.48 (7)H10A—C10—H10C109.5
C1—N1—C4116.41 (12)H10B—C10—H10C109.5
C1—N2—C5116.84 (11)C16—C11—C12118.81 (14)
C1—N2—C2121.08 (11)C16—C11—C2120.96 (13)
C5—N2—C2121.81 (11)C12—C11—C2120.20 (13)
C8—O3—C9117.58 (13)C13—C12—C11120.45 (16)
C20—O4—C24117.87 (16)C13—C12—H12119.8
N1—C1—N2125.93 (13)C11—C12—H12119.8
N1—C1—S1122.60 (11)C14—C13—C12119.96 (18)
N2—C1—S1111.43 (10)C14—C13—H13120.0
N2—C2—C3108.35 (11)C12—C13—H13120.0
N2—C2—C11109.85 (10)C15—C14—C13120.32 (17)
C3—C2—C11113.42 (11)C15—C14—H14119.8
N2—C2—H2108.4C13—C14—H14119.8
C3—C2—H2108.4C14—C15—C16119.98 (17)
C11—C2—H2108.4C14—C15—H15120.0
C4—C3—C8126.55 (13)C16—C15—H15120.0
C4—C3—C2121.85 (12)C11—C16—C15120.45 (16)
C8—C3—C2111.55 (12)C11—C16—H16119.8
C3—C4—N1122.20 (13)C15—C16—H16119.8
C3—C4—C7127.00 (14)C6—C17—C18131.48 (15)
N1—C4—C7110.74 (13)C6—C17—H17114.3
O1—C5—N2123.05 (12)C18—C17—H17114.3
O1—C5—C6127.03 (13)C19—C18—C23118.83 (14)
N2—C5—C6109.91 (12)C19—C18—C17123.77 (14)
C17—C6—C5119.90 (13)C23—C18—C17117.40 (15)
C17—C6—S1130.03 (11)C18—C19—C20121.03 (15)
C5—C6—S1110.06 (10)C18—C19—H19119.5
C4—C7—H7A109.5C20—C19—H19119.5
C4—C7—H7B109.5O4—C20—C21125.14 (15)
H7A—C7—H7B109.5O4—C20—C19115.18 (16)
C4—C7—H7C109.5C21—C20—C19119.68 (16)
H7A—C7—H7C109.5C22—C21—C20119.45 (15)
H7B—C7—H7C109.5C22—C21—H21120.3
O2—C8—O3122.74 (13)C20—C21—H21120.3
O2—C8—C3122.77 (13)C21—C22—C23121.21 (16)
O3—C8—C3114.43 (13)C21—C22—H22119.4
O3—C9—C10108.86 (16)C23—C22—H22119.4
O3—C9—H9A109.9C22—C23—C18119.79 (17)
C10—C9—H9A109.9C22—C23—H23120.1
O3—C9—H9B109.9C18—C23—H23120.1
C10—C9—H9B109.9O4—C24—H24A109.5
H9A—C9—H9B108.3O4—C24—H24B109.5
C9—C10—H10A109.5H24A—C24—H24B109.5
C9—C10—H10B109.5O4—C24—H24C109.5
H10A—C10—H10B109.5H24A—C24—H24C109.5
C9—C10—H10C109.5H24B—C24—H24C109.5
C4—N1—C1—N24.8 (2)C4—C3—C8—O2158.39 (16)
C4—N1—C1—S1172.62 (11)C2—C3—C8—O219.1 (2)
C5—N2—C1—N1171.96 (14)C4—C3—C8—O324.3 (2)
C2—N2—C1—N114.0 (2)C2—C3—C8—O3158.23 (13)
C5—N2—C1—S15.71 (16)C8—O3—C9—C10156.88 (18)
C2—N2—C1—S1168.38 (10)N2—C2—C11—C16113.42 (13)
C6—S1—C1—N1172.96 (14)C3—C2—C11—C16125.17 (14)
C6—S1—C1—N24.80 (11)N2—C2—C11—C1264.54 (16)
C1—N2—C2—C322.21 (17)C3—C2—C11—C1256.87 (16)
C5—N2—C2—C3164.00 (12)C16—C11—C12—C132.3 (2)
C1—N2—C2—C11102.20 (14)C2—C11—C12—C13175.70 (14)
C5—N2—C2—C1171.60 (16)C11—C12—C13—C141.7 (3)
N2—C2—C3—C415.01 (18)C12—C13—C14—C150.1 (3)
C11—C2—C3—C4107.23 (15)C13—C14—C15—C160.8 (3)
N2—C2—C3—C8162.59 (11)C12—C11—C16—C151.4 (2)
C11—C2—C3—C875.16 (15)C2—C11—C16—C15176.60 (13)
C8—C3—C4—N1178.44 (14)C14—C15—C16—C110.1 (2)
C2—C3—C4—N11.2 (2)C5—C6—C17—C18178.62 (15)
C8—C3—C4—C71.4 (3)S1—C6—C17—C180.4 (3)
C2—C3—C4—C7175.82 (15)C6—C17—C18—C192.3 (3)
C1—N1—C4—C312.3 (2)C6—C17—C18—C23178.40 (16)
C1—N1—C4—C7165.13 (14)C23—C18—C19—C201.6 (2)
C1—N2—C5—O1177.02 (14)C17—C18—C19—C20179.12 (15)
C2—N2—C5—O18.9 (2)C24—O4—C20—C217.8 (3)
C1—N2—C5—C63.43 (18)C24—O4—C20—C19172.72 (16)
C2—N2—C5—C6170.62 (12)C18—C19—C20—O4178.46 (15)
O1—C5—C6—C170.0 (2)C18—C19—C20—C211.1 (2)
N2—C5—C6—C17179.57 (13)O4—C20—C21—C22179.52 (16)
O1—C5—C6—S1179.16 (14)C19—C20—C21—C220.1 (2)
N2—C5—C6—S10.38 (15)C20—C21—C22—C230.6 (3)
C1—S1—C6—C17178.02 (15)C21—C22—C23—C180.0 (3)
C1—S1—C6—C52.89 (11)C19—C18—C23—C221.0 (2)
C9—O3—C8—O28.2 (3)C17—C18—C23—C22179.63 (15)
C9—O3—C8—C3174.50 (16)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19···S10.932.543.2561 (15)134
C10—H10B···Cg3i0.962.873.755 (3)153
C21—H21···Cg3ii0.932.793.602 (2)147
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC24H22N2O4S
Mr434.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)33.0445 (6), 9.5013 (2), 13.8845 (2)
β (°) 101.548 (1)
V3)4271.01 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.946, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
27172, 6222, 4099
Rint0.035
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 0.93
No. of reflections6222
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL-97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19···S10.932.543.2561 (15)133.8
C10—H10B···Cg3i0.962.873.755 (3)153
C21—H21···Cg3ii0.932.793.602 (2)147
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z.
π-π Hydrogen-bond geometry (Å, °) for (I). top
Cg1···Cg4iii3.9656 (10)
Symmetry codes: (iii) 1/2-x,1/2+y,1/2-z; Cg1 and Cg4 are the centroids of the S1/C1/N2/C5/C6 amd C18—C23 rings.
 

Acknowledgements

The authors thank the Department of Science and Technology (DST) and SAIF, IIT Madras, Chennai, India for the data collection. MMJ thanks the University Grant Commission (Western Regional Office), India, for their support of Mionor Research Project F. No. 47–254-07.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaldaniya, B. B. & Jotani, M. M. (2008). Anal Sci. X-ray Struct. Anal. Online, 24, x217–x218  CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINTand XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFischer, A., Yathirajan, H. S., Mithun, A., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o1224–o1225.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. E64, o739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2009). J. Chem. Crystallogr. 39, 898–901.  Web of Science CSD CrossRef CAS Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. & Mitchison, T. J. (1999). Science, 286, 971–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687–o690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWichmann, J., Adam, G., Kolczewski, S., Mutel, V. & Woltering, T. (1999). Bioorg. Med. Chem. Lett. 9, 1573–1576.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o599-o600
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds