metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m343-m344

Bis(μ-imino­di­acetato)bis­­[(2,2′-di­amino-4,4′-bi-1,3-thia­zole)lead(II)] tetra­hydrate

aDepartment of Chemistry, Shanghai University, People's Republic of China, and bDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 16 February 2010; accepted 23 February 2010; online 27 February 2010)

In the crystal structure of the title compound, [Pb2(C4H5NO4)2(C6H6N4S2)2]·4H2O, the dinuclear PbII complex mol­ecule is centrosymmetric. The Pb atom is chelated by a tridentate imino­diacetate anion (IDA) and a diamino­bithia­zole (DABT) ligand, while a carboxyl­ate O atom from an adjacent IDA anion further bridges the Pb atom with a longer Pb—O bond [2.892 (3) Å]. The lone-pair electrons of the Pb atom occupy an axial site in the Ψ-penta­gonal-bipyramidal coordination polyhedron. The IDA anion displays a facial configuration: its chelating five-membered rings assume an envelope configuration. Within the DABT ligand, the two thia­zole rings are twisted relative to each other, making a dihedral angle of 9.51 (17)°. Extensive N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For the potential applications of metal complexes of diamino­bithia­zole in the field of biology, see: Waring (1981[Waring, M. J. (1981). Annu. Rev. Biochem. 50, 159-192.]); Fisher et al. (1985[Fisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199-3207.]). For PbII complexes with a similar coordination geometry, see: Lacouture et al. (2001[Lacouture, F., François, M., Didierjean, C., Rivera, J.-P., Rocca, E. & Steinmetz, J. (2001). Acta Cryst. C57, 530-531.]); Jones et al. (1988[Jones, P. G., Schelbach, R., Schwarzmann, E. & Thöne, C. (1988). Acta Cryst. C44, 1198-1200.]). For a complex with a longer Pb—O bond distance [2.968 (4) Å], see: Inoue et al. (1993[Inoue, M. B., Fernando, Q., Villegas, C. A. & Inoue, M. (1993). Acta Cryst. C49, 875-878.]). For the dihedral angles between thia­zole rings in diamino­bithia­zole complexes, see: Liu et al. (2006[Liu, B.-X., Nie, J.-J. & Xu, D.-J. (2006). Acta Cryst. E62, m2122-m2124.]); Zhang et al. (2006[Zhang, L.-J., Liu, B.-X., Ge, H.-Q. & Xu, D.-J. (2006). Acta Cryst. E62, m1944-m1945.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C4H5NO4)2(C6H6N4S2)2]·4H2O

  • Mr = 1145.16

  • Triclinic, [P \overline 1]

  • a = 9.2241 (8) Å

  • b = 9.8526 (9) Å

  • c = 10.6380 (11) Å

  • α = 77.0732 (12)°

  • β = 67.4141 (15)°

  • γ = 69.0690 (12)°

  • V = 829.54 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 10.46 mm−1

  • T = 295 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.132, Tmax = 0.350

  • 5960 measured reflections

  • 2878 independent reflections

  • 2745 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.048

  • S = 1.07

  • 2878 reflections

  • 244 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected bond lengths (Å)

Pb—O1 2.546 (3)
Pb—O1i 2.892 (3)
Pb—O3 2.536 (3)
Pb—N1 2.593 (3)
Pb—N3 2.594 (3)
Pb—N5 2.402 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.86 (6) 2.05 (5) 2.880 (6) 162 (5)
N2—H2B⋯O1W 0.86 (3) 2.16 (4) 2.959 (6) 153 (6)
N4—H4A⋯O1 0.86 (5) 2.15 (5) 2.946 (5) 155 (5)
N4—H4B⋯O4ii 0.86 (3) 2.07 (5) 2.885 (7) 159 (6)
N5—H5N⋯O2W 0.87 (5) 2.01 (6) 2.809 (7) 153 (4)
O1W—H11⋯O2iii 0.82 (2) 1.97 (2) 2.783 (6) 171 (5)
O1W—H12⋯O3iv 0.82 (5) 2.11 (4) 2.819 (6) 144 (5)
O2W—H21⋯O1Wv 0.82 (7) 2.10 (7) 2.892 (7) 161 (6)
O2W—H22⋯O4vi 0.82 (5) 1.95 (5) 2.766 (6) 168 (7)
C5—H5⋯O2vii 0.93 2.56 3.476 (6) 167
Symmetry codes: (ii) x, y, z+1; (iii) x, y+1, z-1; (iv) -x+1, -y+2, -z; (v) -x+2, -y+2, -z; (vi) -x+2, -y+1, -z; (vii) x, y+1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, TX, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Some metal complexes with 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown the potential application in the biological field (Waring, 1981; Fisher et al., 1985). As a part of serial structural investigation of metal complexes with DABT, the title PbII complex was prepared in the laboratory and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The dinuclear PbII complex molecule is centro-symmetric. Each Pb atom is chelated by a tridentate iminodiacetate anion (IDA) and a diaminobithiazole (DABT) ligand, and one carboxyl O atom from the adjacent IDA anion further bridges the Pb atom. The lone-pair electrons of the Pb atom occupy an axial site in the distorted Ψ-pentagonal bipyramidal coordination geometry, which is similar to that found in PbII complexes reported previously (Lacouture et al., 2001; Jones et al., 1988). The longer Pb—O(bridge) bond distance (Table 1) is comparable to 2.968 (4) Å found in a related Pb complex (Inoue et al., 1993). The IDA displays a facial configuration, its both chelating five-membered rings assume the envelope configuration. Within the DABT ligand, the two thiazole rings are twisted to each other with a dihedral angle of 9.51 (17)°, it agrees with 14.7 (3) and 9.5 (2)° found in transition metal complexes of DABT (Liu et al., 2006; Zhang et al., 2006).

The extensive N—H···O, O—H···O and weak C—H···O hydrogen bonding helps to stabilize the crystal structure (Table 2).

Related literature top

For the potential applications of metal complexes of diaminobithiazole in the field of biology, see: Waring (1981); Fisher et al. (1985). For PbII complexes with a similar coordination geometry, see: Lacouture et al. (2001); Jones et al. (1988). For a complex with a longer Pb—O bond distance [2.968 (4) Å], see: Inoue et al. (1993). For the dihedral angles between thiazole rings in diaminobithiazole complexes, see: Liu et al. (2006); Zhang et al. (2006).

Experimental top

An aqueous solution (20 ml) containing DABT (0.20 g, 1 mmol) and Pb(NO3)2 (0.33 g, 1 mmol) was mixed with another aqueous solution (10 ml) of H2IDA (0.13 g, 1 mmol) and NaOH (0.08 g, 2 mmol). The mixture was refluxed for 5 h. The solution was filtered after cooling to room temperature. Single crystals were obtained from the filtrate after one week.

Refinement top

H atoms bonded to N and O atoms were located in a difference Fourier map and were refined with distance constraints [O—H = 0.82±0.03 and N—H = 0.86±0.03 Å] and Uiso(H) = 0.08 Å2. H atoms on carbon atoms were placed in calculated positions with C—H = 0.97 Å (methylene) and 0.93 Å (aromatic), and included in the final cycles of refinement in the riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The dinuclear molecular structure with 30% probability displacement ellipsoids. Dashed lines indicate the hydrogen bonding [symmetric code: (i) -x,-y,1-z].
Bis(µ-iminodiacetato)bis[(2,2'-diamino-4,4'-bi-1,3-thiazole)lead(II)] tetrahydrate top
Crystal data top
[Pb2(C4H5NO4)2(C6H6N4S2)2]·4H2OZ = 1
Mr = 1145.16F(000) = 544
Triclinic, P1Dx = 2.292 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2241 (8) ÅCell parameters from 4336 reflections
b = 9.8526 (9) Åθ = 2.1–24.6°
c = 10.6380 (11) ŵ = 10.46 mm1
α = 77.0732 (12)°T = 295 K
β = 67.4141 (15)°Block, yellow
γ = 69.0690 (12)°0.20 × 0.12 × 0.10 mm
V = 829.54 (14) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2878 independent reflections
Radiation source: fine-focus sealed tube2745 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.132, Tmax = 0.350l = 1212
5960 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.019P)2 + 0.7917P]
where P = (Fo2 + 2Fc2)/3
2878 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.54 e Å3
9 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Pb2(C4H5NO4)2(C6H6N4S2)2]·4H2Oγ = 69.0690 (12)°
Mr = 1145.16V = 829.54 (14) Å3
Triclinic, P1Z = 1
a = 9.2241 (8) ÅMo Kα radiation
b = 9.8526 (9) ŵ = 10.46 mm1
c = 10.6380 (11) ÅT = 295 K
α = 77.0732 (12)°0.20 × 0.12 × 0.10 mm
β = 67.4141 (15)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2878 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2745 reflections with I > 2σ(I)
Tmin = 0.132, Tmax = 0.350Rint = 0.021
5960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0209 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.54 e Å3
2878 reflectionsΔρmin = 0.70 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.545731 (18)0.724630 (15)0.424338 (14)0.02919 (7)
S10.85653 (18)1.10157 (14)0.16319 (14)0.0551 (3)
S20.70556 (17)0.84111 (15)0.78711 (13)0.0513 (3)
O10.6288 (4)0.4760 (3)0.5554 (3)0.0400 (7)
O20.8401 (5)0.2774 (4)0.5652 (4)0.0696 (11)
O30.5809 (4)0.7154 (3)0.1777 (3)0.0431 (7)
O40.6770 (6)0.5550 (4)0.0268 (4)0.0714 (12)
O1W0.7380 (5)1.1758 (4)0.1588 (4)0.0577 (9)
O2W1.0741 (5)0.6671 (5)0.1186 (5)0.0717 (11)
N10.7119 (4)0.9098 (4)0.3108 (4)0.0359 (8)
N20.7160 (6)0.9566 (5)0.0832 (4)0.0541 (11)
N30.6755 (4)0.7770 (4)0.5787 (3)0.0357 (8)
N40.5919 (6)0.6270 (5)0.7807 (4)0.0563 (11)
N50.8084 (4)0.5688 (4)0.2998 (4)0.0355 (8)
C10.7507 (5)0.9781 (5)0.1862 (4)0.0382 (10)
C20.8435 (6)1.0598 (5)0.3335 (5)0.0494 (12)
H20.88411.10270.37700.059*
C30.7666 (5)0.9569 (5)0.3947 (4)0.0372 (10)
C40.6525 (6)0.7362 (5)0.7099 (4)0.0399 (10)
C50.7564 (6)0.9461 (5)0.6339 (5)0.0461 (11)
H50.79341.02620.62060.055*
C60.7354 (5)0.8967 (4)0.5350 (5)0.0368 (10)
C110.7810 (6)0.4004 (5)0.5131 (4)0.0370 (10)
C120.8948 (6)0.4667 (5)0.3912 (5)0.0418 (10)
H12A0.94430.51830.42290.050*
H12B0.98270.38920.34000.050*
C130.7855 (6)0.4939 (5)0.2072 (4)0.0408 (10)
H13A0.73930.41620.25990.049*
H13B0.89190.44990.14200.049*
C140.6733 (6)0.5959 (5)0.1303 (4)0.0427 (11)
H110.768 (8)1.197 (7)0.2418 (10)0.080*
H120.6393 (18)1.220 (6)0.132 (6)0.080*
H211.124 (7)0.724 (5)0.113 (7)0.080*
H221.147 (6)0.594 (4)0.086 (7)0.080*
H2A0.662 (6)0.895 (5)0.101 (6)0.080*
H2B0.751 (8)0.997 (6)0.001 (2)0.080*
H4A0.582 (7)0.570 (5)0.736 (5)0.080*
H4B0.595 (7)0.598 (6)0.862 (2)0.080*
H5N0.865 (6)0.626 (5)0.247 (5)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.03072 (10)0.03010 (10)0.02682 (10)0.00792 (7)0.01080 (7)0.00292 (6)
S10.0619 (9)0.0475 (7)0.0531 (7)0.0305 (6)0.0092 (6)0.0054 (6)
S20.0594 (8)0.0592 (8)0.0430 (7)0.0105 (6)0.0248 (6)0.0183 (6)
O10.0430 (19)0.0399 (17)0.0384 (17)0.0150 (15)0.0159 (14)0.0016 (13)
O20.070 (3)0.051 (2)0.064 (2)0.0008 (19)0.025 (2)0.0136 (19)
O30.051 (2)0.0448 (18)0.0352 (16)0.0102 (15)0.0218 (15)0.0005 (14)
O40.110 (3)0.068 (2)0.049 (2)0.016 (2)0.046 (2)0.0134 (19)
O1W0.063 (2)0.059 (2)0.054 (2)0.0169 (19)0.030 (2)0.0050 (19)
O2W0.062 (3)0.076 (3)0.074 (3)0.035 (2)0.002 (2)0.013 (2)
N10.040 (2)0.0315 (18)0.0362 (19)0.0136 (16)0.0107 (16)0.0017 (15)
N20.068 (3)0.058 (3)0.039 (2)0.030 (2)0.019 (2)0.010 (2)
N30.038 (2)0.041 (2)0.0309 (18)0.0143 (16)0.0126 (16)0.0041 (15)
N40.081 (3)0.066 (3)0.032 (2)0.033 (3)0.026 (2)0.007 (2)
N50.034 (2)0.039 (2)0.035 (2)0.0125 (16)0.0138 (16)0.0001 (16)
C10.038 (2)0.033 (2)0.037 (2)0.0107 (19)0.0072 (19)0.0009 (18)
C20.050 (3)0.046 (3)0.058 (3)0.024 (2)0.013 (2)0.010 (2)
C30.034 (2)0.035 (2)0.040 (2)0.0065 (19)0.0086 (19)0.0115 (19)
C40.043 (3)0.047 (3)0.032 (2)0.008 (2)0.015 (2)0.010 (2)
C50.052 (3)0.044 (3)0.051 (3)0.012 (2)0.024 (2)0.014 (2)
C60.033 (2)0.034 (2)0.045 (2)0.0053 (18)0.015 (2)0.0113 (19)
C110.043 (3)0.038 (2)0.034 (2)0.008 (2)0.021 (2)0.0024 (19)
C120.038 (3)0.048 (3)0.042 (2)0.012 (2)0.021 (2)0.001 (2)
C130.049 (3)0.040 (2)0.036 (2)0.009 (2)0.019 (2)0.0080 (19)
C140.054 (3)0.045 (3)0.032 (2)0.020 (2)0.014 (2)0.000 (2)
Geometric parameters (Å, º) top
Pb—O12.546 (3)N2—H2A0.86 (6)
Pb—O1i2.892 (3)N2—H2B0.86 (3)
Pb—O32.536 (3)N3—C41.318 (5)
Pb—N12.593 (3)N3—C61.391 (5)
Pb—N32.594 (3)N4—C41.335 (6)
Pb—N52.402 (4)N4—H4A0.86 (5)
S1—C21.732 (5)N4—H4B0.86 (3)
S1—C11.739 (4)N5—C131.468 (5)
S2—C51.718 (5)N5—C121.475 (5)
S2—C41.741 (4)N5—H5N0.86 (5)
O1—C111.283 (5)C2—C31.348 (6)
O2—C111.237 (5)C2—H20.9300
O3—C141.259 (5)C3—C61.435 (6)
O4—C141.239 (5)C5—C61.354 (6)
O1W—H110.819 (16)C5—H50.9300
O1W—H120.82 (5)C11—C121.509 (6)
O2W—H210.82 (7)C12—H12A0.9700
O2W—H220.82 (5)C12—H12B0.9700
N1—C11.321 (5)C13—C141.513 (6)
N1—C31.403 (5)C13—H13A0.9700
N2—C11.331 (6)C13—H13B0.9700
N5—Pb—O366.12 (11)N1—C1—S1114.6 (3)
N5—Pb—O167.04 (11)N2—C1—S1120.7 (3)
O3—Pb—O1114.56 (10)C3—C2—S1110.9 (4)
N5—Pb—N178.68 (11)C3—C2—H2124.5
O3—Pb—N181.95 (10)S1—C2—H2124.5
O1—Pb—N1128.64 (10)C2—C3—N1115.0 (4)
N5—Pb—N390.68 (12)C2—C3—C6125.7 (4)
O3—Pb—N3143.48 (11)N1—C3—C6119.3 (4)
O1—Pb—N377.56 (10)N3—C4—N4124.6 (4)
N1—Pb—N365.44 (11)N3—C4—S2113.7 (3)
C2—S1—C189.0 (2)N4—C4—S2121.7 (3)
C5—S2—C489.4 (2)C6—C5—S2111.0 (4)
C11—O1—Pb116.9 (3)C6—C5—H5124.5
C14—O3—Pb114.4 (3)S2—C5—H5124.5
H11—O1W—H12105 (6)C5—C6—N3114.7 (4)
H21—O2W—H22104 (6)C5—C6—C3126.4 (4)
C1—N1—C3110.4 (4)N3—C6—C3119.0 (4)
C1—N1—Pb132.4 (3)O2—C11—O1124.6 (4)
C3—N1—Pb117.1 (3)O2—C11—C12118.1 (4)
C1—N2—H2A116 (4)O1—C11—C12117.3 (4)
C1—N2—H2B122 (4)N5—C12—C11112.3 (4)
H2A—N2—H2B121 (6)N5—C12—H12A109.1
C4—N3—C6111.2 (4)C11—C12—H12A109.1
C4—N3—Pb128.8 (3)N5—C12—H12B109.1
C6—N3—Pb116.8 (3)C11—C12—H12B109.1
C4—N4—H4A118 (4)H12A—C12—H12B107.9
C4—N4—H4B119 (4)N5—C13—C14112.6 (4)
H4A—N4—H4B119 (6)N5—C13—H13A109.1
C13—N5—C12112.7 (3)C14—C13—H13A109.1
C13—N5—Pb109.0 (3)N5—C13—H13B109.1
C12—N5—Pb112.3 (3)C14—C13—H13B109.1
C13—N5—H5N105 (4)H13A—C13—H13B107.8
C12—N5—H5N111 (4)O4—C14—O3124.8 (5)
Pb—N5—H5N106 (4)O4—C14—C13117.8 (4)
N1—C1—N2124.7 (4)O3—C14—C13117.4 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.86 (6)2.05 (5)2.880 (6)162 (5)
N2—H2B···O1W0.86 (3)2.16 (4)2.959 (6)153 (6)
N4—H4A···O10.86 (5)2.15 (5)2.946 (5)155 (5)
N4—H4B···O4ii0.86 (3)2.07 (5)2.885 (7)159 (6)
N5—H5N···O2W0.87 (5)2.01 (6)2.809 (7)153 (4)
O1W—H11···O2iii0.82 (2)1.97 (2)2.783 (6)171 (5)
O1W—H12···O3iv0.82 (5)2.11 (4)2.819 (6)144 (5)
O2W—H21···O1Wv0.82 (7)2.10 (7)2.892 (7)161 (6)
O2W—H22···O4vi0.82 (5)1.95 (5)2.766 (6)168 (7)
C5—H5···O2vii0.932.563.476 (6)167
Symmetry codes: (ii) x, y, z+1; (iii) x, y+1, z1; (iv) x+1, y+2, z; (v) x+2, y+2, z; (vi) x+2, y+1, z; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Pb2(C4H5NO4)2(C6H6N4S2)2]·4H2O
Mr1145.16
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.2241 (8), 9.8526 (9), 10.6380 (11)
α, β, γ (°)77.0732 (12), 67.4141 (15), 69.0690 (12)
V3)829.54 (14)
Z1
Radiation typeMo Kα
µ (mm1)10.46
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.132, 0.350
No. of measured, independent and
observed [I > 2σ(I)] reflections
5960, 2878, 2745
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.048, 1.07
No. of reflections2878
No. of parameters244
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.70

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Pb—O12.546 (3)Pb—N12.593 (3)
Pb—O1i2.892 (3)Pb—N32.594 (3)
Pb—O32.536 (3)Pb—N52.402 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.86 (6)2.05 (5)2.880 (6)162 (5)
N2—H2B···O1W0.86 (3)2.16 (4)2.959 (6)153 (6)
N4—H4A···O10.86 (5)2.15 (5)2.946 (5)155 (5)
N4—H4B···O4ii0.86 (3)2.07 (5)2.885 (7)159 (6)
N5—H5N···O2W0.87 (5)2.01 (6)2.809 (7)153 (4)
O1W—H11···O2iii0.819 (16)1.97 (2)2.783 (6)171 (5)
O1W—H12···O3iv0.82 (5)2.11 (4)2.819 (6)144 (5)
O2W—H21···O1Wv0.82 (7)2.10 (7)2.892 (7)161 (6)
O2W—H22···O4vi0.82 (5)1.95 (5)2.766 (6)168 (7)
C5—H5···O2vii0.932.563.476 (6)167
Symmetry codes: (ii) x, y, z+1; (iii) x, y+1, z1; (iv) x+1, y+2, z; (v) x+2, y+2, z; (vi) x+2, y+1, z; (vii) x, y+1, z.
 

Acknowledgements

The project was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199–3207.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationInoue, M. B., Fernando, Q., Villegas, C. A. & Inoue, M. (1993). Acta Cryst. C49, 875–878.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJones, P. G., Schelbach, R., Schwarzmann, E. & Thöne, C. (1988). Acta Cryst. C44, 1198–1200.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLacouture, F., François, M., Didierjean, C., Rivera, J.-P., Rocca, E. & Steinmetz, J. (2001). Acta Cryst. C57, 530–531.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, B.-X., Nie, J.-J. & Xu, D.-J. (2006). Acta Cryst. E62, m2122–m2124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, TX, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaring, M. J. (1981). Annu. Rev. Biochem. 50, 159–192.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZhang, L.-J., Liu, B.-X., Ge, H.-Q. & Xu, D.-J. (2006). Acta Cryst. E62, m1944–m1945.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m343-m344
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds