metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aqua­[μ-1,4-bis­­(3-pyridylmeth­yl)piperazine-κ2N:N′](μ-isophthalato-κ2O1:O3)copper(II)]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825 USA
*Correspondence e-mail: laduca@msu.edu

(Received 16 February 2010; accepted 17 February 2010; online 20 February 2010)

In the title compound, [Cu(C8H4O4)(C16H20N4)(H2O)]n, square-pyramidally coordinated CuII ions are linked into [Cu(H2O)(isophthalate)]n coordination polymer chains by isophthalate dianions. These chains are connected into undulating [Cu(H2O)(isophthalate)(3-bpmp)]n [3-bmp is bis­(3-pyridylmeth­yl)piperazine] layers by 3-bpmp tethering ligands. The pseudo three-dimensional structure of the title compound is fostered by inter­layer O—H⋯O hydrogen bonding between the aqua ligands and unligated isophthalate O atoms. The selected crystal was non-merohedrally twinned. Only reflections from the major twin component were used in the solution and refinement.

Related literature

For other divalent copper aromatic dicarboxyl­ate coordination polymers containing bis­(3-pyridylmeth­yl)piperazine, see: Johnston et al. (2008[Johnston, L. L., Martin, D. P. & LaDuca, R. L. (2008). Inorg. Chim. Acta, 361, 2887-2894.]). For the synthesis of bis­(3-pyridyl­meth­yl)piperazine, see: Pocic et al. (2005[Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A. & Husseini, M. W. (2005). CrystEngComm, 7, 624-628.]). The twin law was determined using CELLNOW (Sheldrick, 2009[Sheldrick, G. M. (2009). CELLNOW. University of Göttingen, Germany.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H4O4)(C16H20N4)(H2O)]

  • Mr = 514.03

  • Triclinic, [P \overline 1]

  • a = 6.9122 (4) Å

  • b = 10.0328 (5) Å

  • c = 16.7456 (9) Å

  • α = 86.822 (1)°

  • β = 84.210 (1)°

  • γ = 80.771 (1)°

  • V = 1139.49 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 173 K

  • 0.34 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2003[Sheldrick, G. M. (2003). TWINABS. University of Göttingen, Germany.]) Tmin = 0.729, Tmax = 0.850

  • 31818 measured reflections

  • 4141 independent reflections

  • 3681 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.16

  • 4141 reflections

  • 313 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1i 0.82 (2) 1.96 (2) 2.778 (3) 174 (3)
O5—H5B⋯O3ii 0.83 (2) 2.02 (2) 2.805 (3) 158 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Crystal Maker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) was prepared by the hydrothermal reaction of copper nitrate, isophthalic acid and bis(3-pyridylmethyl)piperazine (3-bpmp). Its asymmetric unit (Fig. 1) contains a divalent copper atom, an aqua ligand, a fully deprotonated isophthalate ligand, and halves of two crystallographically independent 3-bpmp ligands whose central piperazinyl rings contain crystallographic inversion centers. In contrast to the previously reported phase {[Cu(H2O)(isophthalate)(3-bpmp)].2H2O}n (Johnston, et al., 2008) no water molecules of crystallization are present in the title compound.

The basal plane of the distorted square pyramidal {CuO3N2} coordination sphere contains two trans pyridyl N atom donors from crystallographically distinct 3-bpmp ligands and two trans O atom donors from different isophthalate ligands. The apical position is occupied by the aqua ligand.

Isophthalate ligands in a bis(monodentate) bridging mode link the CuII ions into one-dimensional [Cu(H2O)(isophthalate)]n coordination polymer chains arranged along the b crystal direction. The Cu···Cu distance through the isophthalate ligands measures 10.0328 (5) Å, defining the b lattice parameter. In turn, these chains are connected into undulating [Cu(H2O)(isophthalate)(3-bpmp)]n coordination polymer layers by 3-bpmp tethering ligands (Fig. 2). These layers are arranged parallel to the bc crystal planes. The crystallographically distinct 3-bpmp ligands promote two different through-ligand Cu···Cu contact distances, 12.394 (6) and 12.830 (6) Å. The "wavelength" of the undulations in the layer motifs is 16.7456 (9) Å, which defines the c lattice parameter. Intralayer hydrogen bonding between the aqua ligands and unligated isophthalate O atoms provides additional stabilization of the layer motifs.

Adjacent [Cu(H2O)(isophthalate)(3-bpmp)]n layers stack in an AAA pattern along the a crystal direction. Interlayer hydrogen bonding between the aqua ligands and unligated isophthalate O atoms provides the supramolecular interactions necessary to generate the pseudo three-dimensional structure of the title compound.

Related literature top

For other divalent copper aromatic dicarboxylate coordination polymers containing bis(3-pyridylmethyl)piperazine, see: Johnston et al. (2008). For the synthesis of bis(3-pyridylmethyl)piperazine, see: Pocic et al. (2005). The twin law was determined using CELLNOW (Sheldrick, 2009).

Experimental top

All starting materials were obtained commercially, except for 3-bpmp, which was prepared according to a literature procedure (Pocic, et al., 2005). A mixture of Cu(NO3)2.2.5H2O (72 mg, 0.30 mmol), isophthalic acid (49 mg, 0.30 mmol), and 3-bpmp (79 mg, 0.30 mmol) and 10.0 g water (550 mmol) was placed into a 15 ml borosilicate glass vial, which was then sealed and heated under autogenous pressure at 363 K for 120 h. Blue-green blocks of the title compound were obtained along with a green polycrystalline material.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 - 0.99 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to the aqua ligand O atom was found in a difference Fourier map, restrained with O—H = 0.85 Å, and refined with Uiso =1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: dark blue Cu, light blue N, red O, black C. Symmetry codes: (i) x, y, z.
[Figure 2] Fig. 2. Face-on view of the coordination polymer layer motif in the title compound.
[Figure 3] Fig. 3. Stacking diagram for the title compound, viewed down the b axis.
Poly[[aqua[µ-1,4-bis(3-pyridylmethyl)piperazine- κ2N:N'](µ-isophthalato- κ2O1:O3)copper(II)] top
Crystal data top
[Cu(C8H4O4)(C16H20N4)(H2O)]Z = 2
Mr = 514.03F(000) = 534
Triclinic, P1Dx = 1.498 Mg m3
a = 6.9122 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0328 (5) ÅCell parameters from 4141 reflections
c = 16.7456 (9) Åθ = 1.2–25.3°
α = 86.822 (1)°µ = 1.00 mm1
β = 84.210 (1)°T = 173 K
γ = 80.771 (1)°Block, blue-green
V = 1139.49 (11) Å30.34 × 0.18 × 0.17 mm
Data collection top
Bruker APEXII
diffractometer
4141 independent reflections
Radiation source: fine-focus sealed tube3681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ωϕ scansθmax = 25.3°, θmin = 1.2°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2003)
h = 88
Tmin = 0.729, Tmax = 0.850k = 1112
31818 measured reflectionsl = 020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.038P)2 + 0.3004P]
where P = (Fo2 + 2Fc2)/3
4141 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.44 e Å3
3 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cu(C8H4O4)(C16H20N4)(H2O)]γ = 80.771 (1)°
Mr = 514.03V = 1139.49 (11) Å3
Triclinic, P1Z = 2
a = 6.9122 (4) ÅMo Kα radiation
b = 10.0328 (5) ŵ = 1.00 mm1
c = 16.7456 (9) ÅT = 173 K
α = 86.822 (1)°0.34 × 0.18 × 0.17 mm
β = 84.210 (1)°
Data collection top
Bruker APEXII
diffractometer
4141 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2003)
3681 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.850Rint = 0.077
31818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.44 e Å3
4141 reflectionsΔρmin = 0.56 e Å3
313 parameters
Special details top

Experimental. The selected crystal was non-merohedrally twinned. The twin law was determined using CELLNOW (Sheldrick, 2009). Only reflections from the major twin component were used in the solution and refinement.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.06345 (5)0.16501 (3)0.247474 (17)0.03608 (14)
O10.2554 (3)0.07048 (19)0.26910 (13)0.0497 (5)
O20.0541 (3)0.64683 (17)0.24333 (11)0.0407 (4)
O30.1918 (3)0.53485 (19)0.26226 (12)0.0481 (5)
O40.0528 (3)0.03315 (17)0.25491 (10)0.0378 (4)
O50.3884 (3)0.2070 (2)0.22304 (13)0.0468 (5)
H5A0.489 (4)0.165 (3)0.2398 (18)0.056*
H5B0.362 (5)0.2875 (19)0.2338 (19)0.056*
N10.2981 (4)0.4364 (2)0.00903 (14)0.0450 (6)
N20.3058 (4)0.4306 (2)0.50868 (14)0.0459 (6)
N30.0735 (3)0.1569 (2)0.12699 (13)0.0369 (5)
N40.0851 (3)0.1613 (2)0.36631 (13)0.0364 (5)
C10.1526 (5)0.3472 (3)0.55036 (17)0.0522 (7)
H1A0.21470.29880.59670.063*
H1B0.06970.40630.57150.063*
C20.1293 (5)0.3582 (3)0.05256 (17)0.0543 (8)
H2A0.03980.42060.07630.065*
H2B0.17540.31500.09730.065*
C30.1232 (4)0.1509 (3)0.03844 (18)0.0516 (7)
H30.14120.14860.09540.062*
C40.4673 (4)0.3578 (3)0.49701 (18)0.0492 (7)
H4A0.53190.33220.54980.059*
H4B0.41500.27410.46830.059*
C50.2344 (4)0.0554 (3)0.00767 (18)0.0505 (7)
H50.32870.01330.01680.061*
C60.4586 (4)0.3589 (3)0.01158 (18)0.0486 (7)
H6A0.41190.27740.04460.058*
H6B0.50220.32900.03810.058*
C70.0140 (4)0.2497 (3)0.00209 (17)0.0447 (7)
C80.3847 (4)0.5539 (3)0.55103 (17)0.0471 (7)
H8A0.27610.60370.55920.056*
H8B0.44860.53040.60440.056*
C90.3711 (4)0.5567 (3)0.05738 (17)0.0490 (7)
H9A0.41370.52900.10780.059*
H9B0.26400.61090.07160.059*
C100.1134 (5)0.1464 (3)0.53032 (18)0.0484 (7)
H100.12340.14020.58660.058*
C110.0233 (4)0.2453 (3)0.49772 (16)0.0429 (6)
C120.3987 (4)0.1727 (3)0.24824 (15)0.0399 (6)
H120.49120.09170.24770.048*
C130.2053 (4)0.0623 (3)0.09015 (17)0.0444 (6)
H130.28220.00290.12210.053*
C140.1298 (4)0.4115 (3)0.25201 (14)0.0351 (6)
C150.3263 (4)0.4149 (3)0.24274 (17)0.0422 (6)
H150.36960.49900.23770.051*
C160.2351 (4)0.0567 (3)0.48069 (18)0.0478 (7)
H160.32970.01130.50240.057*
C170.4595 (4)0.2960 (3)0.24079 (17)0.0438 (6)
H170.59360.29920.23430.053*
C180.0310 (4)0.2481 (3)0.41507 (16)0.0395 (6)
H180.12410.31540.39180.047*
C190.1320 (4)0.0336 (3)0.26089 (15)0.0378 (6)
C200.2003 (4)0.1679 (2)0.25656 (14)0.0339 (5)
C210.2174 (4)0.0674 (3)0.39949 (17)0.0431 (6)
H210.30210.00590.36550.052*
C220.0351 (4)0.2482 (3)0.08150 (16)0.0387 (6)
H220.13070.31460.10750.046*
C230.0687 (4)0.2874 (3)0.25844 (15)0.0354 (6)
H230.06580.28460.26420.042*
C240.0186 (4)0.5397 (3)0.25266 (14)0.0372 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0415 (2)0.0285 (2)0.0384 (2)0.00438 (14)0.00604 (14)0.00113 (13)
O10.0404 (11)0.0330 (10)0.0747 (14)0.0028 (9)0.0121 (10)0.0069 (9)
O20.0470 (11)0.0290 (9)0.0466 (11)0.0040 (8)0.0094 (8)0.0024 (8)
O30.0392 (11)0.0355 (11)0.0691 (13)0.0008 (8)0.0099 (9)0.0049 (9)
O40.0375 (11)0.0304 (9)0.0458 (10)0.0047 (8)0.0059 (8)0.0023 (8)
O50.0368 (11)0.0431 (11)0.0589 (12)0.0013 (9)0.0076 (9)0.0044 (10)
N10.0413 (13)0.0499 (14)0.0436 (13)0.0085 (11)0.0062 (10)0.0074 (11)
N20.0458 (14)0.0469 (14)0.0449 (13)0.0048 (11)0.0044 (10)0.0075 (11)
N30.0350 (12)0.0339 (12)0.0426 (12)0.0071 (9)0.0040 (9)0.0024 (9)
N40.0352 (12)0.0328 (11)0.0418 (12)0.0066 (9)0.0056 (9)0.0016 (9)
C10.0559 (19)0.0586 (19)0.0410 (15)0.0030 (15)0.0063 (13)0.0072 (13)
C20.0533 (19)0.066 (2)0.0407 (16)0.0018 (16)0.0055 (13)0.0061 (14)
C30.0456 (17)0.067 (2)0.0419 (16)0.0055 (15)0.0038 (13)0.0053 (14)
C40.0495 (18)0.0454 (16)0.0527 (17)0.0073 (14)0.0024 (13)0.0080 (13)
C50.0420 (16)0.0569 (19)0.0507 (17)0.0013 (14)0.0009 (13)0.0115 (14)
C60.0517 (18)0.0451 (16)0.0506 (16)0.0115 (14)0.0112 (13)0.0081 (13)
C70.0392 (15)0.0537 (18)0.0421 (15)0.0096 (13)0.0056 (12)0.0015 (13)
C80.0461 (17)0.0499 (17)0.0462 (16)0.0089 (13)0.0024 (13)0.0101 (13)
C90.0476 (17)0.0522 (18)0.0477 (16)0.0113 (14)0.0086 (13)0.0127 (13)
C100.0508 (18)0.0531 (18)0.0429 (15)0.0105 (14)0.0099 (13)0.0021 (13)
C110.0417 (15)0.0468 (16)0.0413 (15)0.0095 (13)0.0055 (12)0.0004 (12)
C120.0352 (14)0.0391 (15)0.0431 (15)0.0011 (11)0.0025 (11)0.0034 (11)
C130.0416 (16)0.0442 (16)0.0472 (16)0.0043 (12)0.0062 (12)0.0029 (12)
C140.0395 (14)0.0354 (14)0.0304 (12)0.0058 (11)0.0024 (10)0.0013 (10)
C150.0434 (16)0.0361 (14)0.0478 (15)0.0091 (12)0.0020 (12)0.0037 (12)
C160.0427 (16)0.0483 (17)0.0521 (17)0.0059 (13)0.0116 (13)0.0102 (13)
C170.0337 (14)0.0458 (16)0.0531 (16)0.0079 (12)0.0056 (12)0.0040 (12)
C180.0405 (15)0.0362 (14)0.0412 (14)0.0047 (12)0.0045 (11)0.0001 (11)
C190.0414 (15)0.0341 (14)0.0376 (13)0.0021 (12)0.0095 (11)0.0004 (11)
C200.0380 (14)0.0312 (13)0.0321 (12)0.0039 (11)0.0030 (10)0.0009 (10)
C210.0402 (15)0.0407 (15)0.0476 (15)0.0033 (12)0.0045 (12)0.0018 (12)
C220.0395 (15)0.0373 (14)0.0395 (14)0.0068 (12)0.0041 (11)0.0015 (11)
C230.0350 (14)0.0358 (14)0.0352 (13)0.0035 (11)0.0050 (10)0.0023 (10)
C240.0448 (16)0.0319 (14)0.0338 (13)0.0031 (12)0.0028 (11)0.0012 (10)
Geometric parameters (Å, º) top
Cu1—O2i1.9322 (18)C5—H50.9500
Cu1—O41.9978 (18)C6—C9iii1.503 (4)
Cu1—N42.009 (2)C6—H6A0.9900
Cu1—N32.017 (2)C6—H6B0.9900
Cu1—O52.343 (2)C7—C221.392 (4)
O1—C191.242 (3)C8—C4ii1.508 (4)
O2—C241.280 (3)C8—H8A0.9900
O3—C241.233 (3)C8—H8B0.9900
O4—C191.272 (3)C9—C6iii1.503 (4)
O5—H5A0.820 (18)C9—H9A0.9900
O5—H5B0.825 (17)C9—H9B0.9900
N1—C21.451 (4)C10—C161.380 (4)
N1—C61.458 (4)C10—C111.385 (4)
N1—C91.465 (3)C10—H100.9500
N2—C11.452 (4)C11—C181.389 (4)
N2—C81.461 (4)C12—C171.384 (4)
N2—C41.462 (4)C12—C201.401 (4)
N3—C131.337 (4)C12—H120.9500
N3—C221.341 (3)C13—H130.9500
N4—C181.338 (3)C14—C151.389 (4)
N4—C211.342 (3)C14—C231.390 (4)
C1—C111.506 (4)C14—C241.511 (4)
C1—H1A0.9900C15—C171.386 (4)
C1—H1B0.9900C15—H150.9500
C2—C71.513 (4)C16—C211.374 (4)
C2—H2A0.9900C16—H160.9500
C2—H2B0.9900C17—H170.9500
C3—C71.379 (4)C18—H180.9500
C3—C51.381 (4)C19—C201.505 (4)
C3—H30.9500C20—C231.385 (4)
C4—C8ii1.508 (4)C21—H210.9500
C4—H4A0.9900C22—H220.9500
C4—H4B0.9900C23—H230.9500
C5—C131.380 (4)
O2i—Cu1—O4153.48 (8)C22—C7—C2122.2 (3)
O2i—Cu1—N493.47 (8)N2—C8—C4ii110.0 (2)
O4—Cu1—N489.57 (8)N2—C8—H8A109.7
O2i—Cu1—N391.23 (8)C4ii—C8—H8A109.7
O4—Cu1—N388.28 (8)N2—C8—H8B109.7
N4—Cu1—N3173.41 (8)C4ii—C8—H8B109.7
O2i—Cu1—O595.11 (8)H8A—C8—H8B108.2
O4—Cu1—O5111.24 (7)N1—C9—C6iii110.4 (2)
N4—Cu1—O590.05 (8)N1—C9—H9A109.6
N3—Cu1—O584.93 (8)C6iii—C9—H9A109.6
C24—O2—Cu1iv130.85 (17)N1—C9—H9B109.6
C19—O4—Cu1101.25 (15)C6iii—C9—H9B109.6
Cu1—O5—H5A129 (2)H9A—C9—H9B108.1
Cu1—O5—H5B95 (2)C16—C10—C11119.7 (3)
H5A—O5—H5B116 (3)C16—C10—H10120.1
C2—N1—C6112.3 (2)C11—C10—H10120.1
C2—N1—C9110.0 (2)C10—C11—C18117.2 (3)
C6—N1—C9108.5 (2)C10—C11—C1120.6 (3)
C1—N2—C8111.6 (2)C18—C11—C1122.1 (2)
C1—N2—C4112.1 (2)C17—C12—C20119.7 (2)
C8—N2—C4109.2 (2)C17—C12—H12120.1
C13—N3—C22118.3 (2)C20—C12—H12120.1
C13—N3—Cu1118.38 (18)N3—C13—C5122.7 (3)
C22—N3—Cu1123.13 (18)N3—C13—H13118.7
C18—N4—C21117.8 (2)C5—C13—H13118.7
C18—N4—Cu1122.48 (18)C15—C14—C23119.1 (2)
C21—N4—Cu1119.72 (18)C15—C14—C24121.1 (2)
N2—C1—C11113.3 (2)C23—C14—C24119.8 (2)
N2—C1—H1A108.9C17—C15—C14120.2 (3)
C11—C1—H1A108.9C17—C15—H15119.9
N2—C1—H1B108.9C14—C15—H15119.9
C11—C1—H1B108.9C21—C16—C10119.0 (3)
H1A—C1—H1B107.7C21—C16—H16120.5
N1—C2—C7114.5 (2)C10—C16—H16120.5
N1—C2—H2A108.6C12—C17—C15120.6 (3)
C7—C2—H2A108.6C12—C17—H17119.7
N1—C2—H2B108.6C15—C17—H17119.7
C7—C2—H2B108.6N4—C18—C11123.7 (2)
H2A—C2—H2B107.6N4—C18—H18118.2
C7—C3—C5120.2 (3)C11—C18—H18118.2
C7—C3—H3119.9O1—C19—O4123.2 (3)
C5—C3—H3119.9O1—C19—C20119.6 (2)
N2—C4—C8ii109.8 (2)O4—C19—C20117.2 (2)
N2—C4—H4A109.7C23—C20—C12119.1 (2)
C8ii—C4—H4A109.7C23—C20—C19121.0 (2)
N2—C4—H4B109.7C12—C20—C19119.9 (2)
C8ii—C4—H4B109.7N4—C21—C16122.5 (3)
H4A—C4—H4B108.2N4—C21—H21118.7
C13—C5—C3118.4 (3)C16—C21—H21118.7
C13—C5—H5120.8N3—C22—C7122.9 (3)
C3—C5—H5120.8N3—C22—H22118.6
N1—C6—C9iii110.4 (2)C7—C22—H22118.6
N1—C6—H6A109.6C20—C23—C14121.3 (3)
C9iii—C6—H6A109.6C20—C23—H23119.4
N1—C6—H6B109.6C14—C23—H23119.4
C9iii—C6—H6B109.6O3—C24—O2125.9 (2)
H6A—C6—H6B108.1O3—C24—C14120.1 (2)
C3—C7—C22117.6 (3)O2—C24—C14114.0 (2)
C3—C7—C2120.2 (3)
O2i—Cu1—O4—C191.3 (3)C22—N3—C13—C50.3 (4)
N4—Cu1—O4—C1995.58 (16)Cu1—N3—C13—C5174.6 (2)
N3—Cu1—O4—C1990.64 (16)C3—C5—C13—N30.4 (4)
O5—Cu1—O4—C19174.53 (15)C23—C14—C15—C170.7 (4)
O2i—Cu1—N3—C13156.3 (2)C24—C14—C15—C17178.8 (2)
O4—Cu1—N3—C1350.2 (2)C11—C10—C16—C210.2 (4)
O5—Cu1—N3—C1361.3 (2)C20—C12—C17—C151.0 (4)
O2i—Cu1—N3—C2218.4 (2)C14—C15—C17—C120.2 (4)
O4—Cu1—N3—C22135.1 (2)C21—N4—C18—C110.6 (4)
O5—Cu1—N3—C22113.4 (2)Cu1—N4—C18—C11178.0 (2)
O2i—Cu1—N4—C1824.1 (2)C10—C11—C18—N40.0 (4)
O4—Cu1—N4—C18129.5 (2)C1—C11—C18—N4178.2 (3)
O5—Cu1—N4—C18119.3 (2)Cu1—O4—C19—O17.3 (3)
O2i—Cu1—N4—C21157.3 (2)Cu1—O4—C19—C20171.84 (18)
O4—Cu1—N4—C2149.1 (2)C17—C12—C20—C231.0 (4)
O5—Cu1—N4—C2162.1 (2)C17—C12—C20—C19177.2 (2)
C8—N2—C1—C11161.2 (3)O1—C19—C20—C23171.1 (2)
C4—N2—C1—C1175.9 (3)O4—C19—C20—C239.6 (4)
C6—N1—C2—C772.1 (3)O1—C19—C20—C1210.7 (4)
C9—N1—C2—C7166.9 (3)O4—C19—C20—C12168.6 (2)
C1—N2—C4—C8ii176.4 (2)C18—N4—C21—C160.8 (4)
C8—N2—C4—C8ii59.3 (3)Cu1—N4—C21—C16177.8 (2)
C7—C3—C5—C130.4 (5)C10—C16—C21—N40.5 (4)
C2—N1—C6—C9iii179.3 (2)C13—N3—C22—C71.1 (4)
C9—N1—C6—C9iii58.8 (3)Cu1—N3—C22—C7173.6 (2)
C5—C3—C7—C220.3 (4)C3—C7—C22—N31.1 (4)
C5—C3—C7—C2177.2 (3)C2—C7—C22—N3176.4 (3)
N1—C2—C7—C3166.5 (3)C12—C20—C23—C140.2 (4)
N1—C2—C7—C2216.1 (4)C19—C20—C23—C14178.0 (2)
C1—N2—C8—C4ii176.0 (2)C15—C14—C23—C200.6 (4)
C4—N2—C8—C4ii59.4 (3)C24—C14—C23—C20178.8 (2)
C2—N1—C9—C6iii177.9 (3)Cu1iv—O2—C24—O34.6 (4)
C6—N1—C9—C6iii58.8 (3)Cu1iv—O2—C24—C14174.75 (15)
C16—C10—C11—C180.4 (4)C15—C14—C24—O3178.8 (2)
C16—C10—C11—C1177.8 (3)C23—C14—C24—O33.1 (4)
N2—C1—C11—C10171.6 (3)C15—C14—C24—O20.6 (4)
N2—C1—C11—C1810.3 (4)C23—C14—C24—O2177.5 (2)
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z+1; (iii) x1, y+1, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1v0.82 (2)1.96 (2)2.778 (3)174 (3)
O5—H5B···O3i0.83 (2)2.02 (2)2.805 (3)158 (3)
Symmetry codes: (i) x, y+1, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H4O4)(C16H20N4)(H2O)]
Mr514.03
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.9122 (4), 10.0328 (5), 16.7456 (9)
α, β, γ (°)86.822 (1), 84.210 (1), 80.771 (1)
V3)1139.49 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.34 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 2003)
Tmin, Tmax0.729, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
31818, 4141, 3681
Rint0.077
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.16
No. of reflections4141
No. of parameters313
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.56

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Crystal Maker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1i0.820 (18)1.962 (18)2.778 (3)174 (3)
O5—H5B···O3ii0.825 (17)2.02 (2)2.805 (3)158 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work. CMG thanks the Michigan State University Honors College for funding his Professorial Assistantship.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnston, L. L., Martin, D. P. & LaDuca, R. L. (2008). Inorg. Chim. Acta, 361, 2887–2894.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationPocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A. & Husseini, M. W. (2005). CrystEngComm, 7, 624–628.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). CELLNOW. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds