metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1-[(1H-benzimidazol-1-yl)methyl-κN3]-1H-1,2,3,4-tetra­zole}silver(I) nitrate

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: mxr@zzu.edu.cn

(Received 20 February 2010; accepted 21 February 2010; online 27 February 2010)

In the title salt, [Ag(C9H8N6)2]NO3, the central AgI atom is linearly coordinated by the N atoms [171.97 (8)°] from two 1-[(benzimidazol-1-yl)meth­yl]-1H-1,2,3,4-tetra­zole ligands. The benzimidazole rings in adjacent mol­ecules are parallel with an average inter­planar distance of 3.461 Å; adjacent mol­ecules are linked through N—H⋯O hydrogen bonds into a linear chain along the b-axis direction.

Related literature

For similar compounds, see: Bronisz (2004[Bronisz, R. (2004). Inorg. Chim. Acta, 357, 396-404.]); Meng et al. (2009[Meng, X. R., Jin, S. Z., Hou, H. W., Du, C. X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519-1527.], 2004[Meng, X., Song, Y., Hou, H., Han, H., Xiao, B., Fan, Y. & Zhu, Y. (2004). Inorg. Chem. 43, 3528-3536.]); Huang et al. (2006[Huang, M. H., Liu, P., Wang, J., Chen, Y. & Liu, Q. Y. (2006). Inorg. Chem. Commun. 9, 952-954.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C9H8N6)2]NO3

  • Mr = 570.31

  • Monoclinic, P 21 /n

  • a = 11.125 (2) Å

  • b = 9.3276 (19) Å

  • c = 20.189 (4) Å

  • β = 94.80 (3)°

  • V = 2087.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.17 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure and CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.807, Tmax = 0.846

  • 25286 measured reflections

  • 4974 independent reflections

  • 4605 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.03

  • 4974 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8C⋯O3 0.86 2.32 3.105 (5) 153
N8—H8C⋯O2 0.86 2.40 3.176 (4) 151
N2—H2B⋯O1i 0.86 2.06 2.881 (4) 159
Symmetry code: (i) x+1, y+1, z.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure and CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In coordination and metallosupramolecular chemistry, there are many symmetrical tetrazole and benzimidazole ligands, which have been widely used as the classical ligands (Bronisz 2004; Meng et al. 2004). However, studies on unsymmetrical ligands concerning tetrazole and benzimidazole are rather insufficient (Meng et al. 2009; Huang et al. 2006). We are engaged in the synthesis of unsymmetrical N-heterocyclic ligands and synthesized compound 1-((benzimidazole-1-yl)methyl)-1-H-1,2,3,4-tetrazole. In this work, we selected this compound as ligand and generate a new complex [Ag(C9H8N6)2](NO3), (I), which is reported here. In complex (I) each AgI ion is two-coordinated by two N atom from two benzimidazole units and the nitrate anion does not coordinate to AgI ion (Fig. 1). Benzimidazole rings between the adjacent molecules are stacked in a face-to-face orientation with the distance of 3.461 Å. [Ag(C9H8N6)2](NO3) units are linked through these ππ interactions and various kinds of hydrogen bonds such as N—H···O, C—H···O, and C—H···N hydrogen bonds resulting in a three-dimensional packing structure in solid state as shown in Fig. 2.

Related literature top

For similar compounds, see: Bronisz (2004); Meng et al. (2009, 2004); Huang et al. (2006)

For related literature, see: Meng et al. (2004).

Experimental top

The ligand 1-((benzimidazole-1-yl)methyl)-1H-1,2,3,4-tetrazole (0.1 mmol, 0.020 g) in methanol (6 ml) was added dropwise to a solution of AgNO3 (0.05 mmol, 0.008 g) in H2O (3 ml). The resulting solution was allowed to stand at room temperature in the dark. After four weeks good quality colorless crystals were obtained from the filtrate and dried in air.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the labeling of the 30% probability ellipsolids.
Bis{1-[(1H-benzimidazol-1-yl)methyl-κN3]-1H-1,2,3,4-tetrazole}silver(I) nitrate top
Crystal data top
[Ag(C9H8N6)2]NO3F(000) = 1144
Mr = 570.31Dx = 1.815 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.125 (2) ÅCell parameters from 6007 reflections
b = 9.3276 (19) Åθ = 2.0–27.9°
c = 20.189 (4) ŵ = 1.02 mm1
β = 94.80 (3)°T = 293 K
V = 2087.6 (7) Å3Prism, colorless
Z = 40.22 × 0.18 × 0.17 mm
Data collection top
Rigaku Saturn
diffractometer
4974 independent reflections
Radiation source: fine-focus sealed tube4605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 28.5714 pixels mm-1θmax = 27.9°, θmin = 2.4°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 1212
Tmin = 0.807, Tmax = 0.846l = 2526
25286 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.056P)2 + 1.4891P]
where P = (Fo2 + 2Fc2)/3
4974 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Ag(C9H8N6)2]NO3V = 2087.6 (7) Å3
Mr = 570.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.125 (2) ŵ = 1.02 mm1
b = 9.3276 (19) ÅT = 293 K
c = 20.189 (4) Å0.22 × 0.18 × 0.17 mm
β = 94.80 (3)°
Data collection top
Rigaku Saturn
diffractometer
4974 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
4605 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.846Rint = 0.033
25286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.58 e Å3
4974 reflectionsΔρmin = 0.46 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.43599 (2)0.61837 (3)0.079718 (11)0.04196 (10)
N10.59520 (18)0.7426 (2)0.08358 (11)0.0287 (4)
N20.7519 (2)0.8683 (2)0.12658 (12)0.0321 (5)
H2B0.80900.89720.15480.039*
N30.7700 (2)0.6972 (2)0.24677 (11)0.0300 (5)
N40.7703 (2)0.8136 (3)0.28571 (13)0.0447 (6)
N50.8649 (3)0.8034 (3)0.32741 (13)0.0505 (7)
N60.9263 (2)0.6814 (3)0.31659 (13)0.0452 (6)
N70.2869 (2)0.4769 (2)0.06530 (11)0.0320 (5)
N80.1619 (2)0.2970 (2)0.07878 (11)0.0330 (5)
H8C0.12840.22620.09730.040*
N90.2313 (2)0.3251 (2)0.22291 (11)0.0302 (5)
N100.1337 (2)0.4074 (3)0.22742 (12)0.0360 (5)
N110.0800 (2)0.3607 (3)0.27719 (13)0.0415 (6)
N120.1414 (3)0.2475 (3)0.30616 (13)0.0452 (6)
N130.0308 (2)0.0190 (3)0.17241 (12)0.0433 (6)
C10.6263 (2)0.8422 (3)0.03637 (13)0.0294 (5)
C20.5768 (3)0.8669 (3)0.02817 (14)0.0350 (6)
H2A0.51200.81330.04670.042*
C30.6278 (3)0.9742 (3)0.06341 (14)0.0414 (7)
H3A0.59720.99240.10690.050*
C40.7241 (3)1.0564 (4)0.03570 (16)0.0449 (7)
H4A0.75501.12910.06090.054*
C50.7746 (3)1.0324 (3)0.02809 (16)0.0428 (7)
H5A0.83901.08670.04660.051*
C60.7239 (2)0.9228 (3)0.06337 (13)0.0306 (5)
C70.6732 (2)0.7616 (3)0.13568 (13)0.0286 (5)
C80.6710 (3)0.6705 (3)0.19633 (14)0.0362 (6)
H8A0.59540.68640.21580.043*
H8B0.67340.57050.18320.043*
C90.8655 (3)0.6184 (3)0.26680 (15)0.0373 (6)
H9A0.88590.53150.24820.045*
C100.2093 (2)0.4638 (3)0.00770 (13)0.0302 (5)
C110.2002 (3)0.5461 (3)0.04975 (14)0.0393 (6)
H11A0.25330.62110.05560.047*
C120.1095 (3)0.5122 (4)0.09771 (15)0.0445 (7)
H12A0.09930.56770.13600.053*
C130.0325 (3)0.3965 (4)0.09021 (16)0.0482 (8)
H13A0.02600.37480.12430.058*
C140.0409 (3)0.3135 (4)0.03344 (15)0.0409 (7)
H14A0.01090.23670.02840.049*
C150.1305 (2)0.3501 (3)0.01585 (14)0.0309 (5)
C160.2541 (2)0.3759 (3)0.10575 (14)0.0311 (6)
C170.3165 (3)0.3487 (4)0.17282 (14)0.0386 (6)
H17A0.36790.26510.17070.046*
H17B0.36740.43010.18580.046*
C180.2339 (3)0.2295 (3)0.27144 (15)0.0413 (7)
H18A0.29300.15980.27960.050*
O10.0183 (3)0.0797 (3)0.19941 (14)0.0774 (10)
O20.1406 (3)0.0210 (4)0.16912 (17)0.0827 (9)
O30.0271 (4)0.1221 (4)0.1498 (2)0.1045 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03417 (14)0.04656 (16)0.04425 (16)0.01549 (9)0.00206 (10)0.00349 (10)
N10.0227 (10)0.0308 (11)0.0324 (11)0.0037 (8)0.0008 (8)0.0011 (9)
N20.0289 (11)0.0329 (11)0.0336 (12)0.0057 (9)0.0038 (9)0.0027 (9)
N30.0313 (11)0.0287 (11)0.0296 (11)0.0018 (9)0.0009 (9)0.0013 (9)
N40.0503 (16)0.0381 (13)0.0455 (15)0.0081 (12)0.0027 (12)0.0096 (11)
N50.0604 (18)0.0486 (16)0.0410 (15)0.0031 (13)0.0035 (13)0.0090 (12)
N60.0443 (15)0.0448 (14)0.0438 (15)0.0016 (12)0.0119 (11)0.0039 (12)
N70.0299 (11)0.0349 (12)0.0313 (12)0.0058 (9)0.0034 (9)0.0035 (9)
N80.0311 (11)0.0342 (12)0.0337 (12)0.0066 (9)0.0027 (9)0.0043 (9)
N90.0305 (11)0.0312 (11)0.0286 (11)0.0035 (9)0.0022 (9)0.0027 (9)
N100.0312 (12)0.0371 (12)0.0397 (13)0.0050 (9)0.0022 (10)0.0052 (10)
N110.0413 (14)0.0438 (14)0.0401 (14)0.0019 (11)0.0078 (11)0.0003 (11)
N120.0519 (16)0.0451 (15)0.0398 (14)0.0022 (12)0.0106 (12)0.0096 (11)
N130.0479 (16)0.0464 (15)0.0344 (13)0.0141 (12)0.0037 (11)0.0009 (11)
C10.0243 (12)0.0310 (12)0.0334 (14)0.0011 (10)0.0053 (10)0.0006 (10)
C20.0333 (14)0.0418 (15)0.0295 (14)0.0011 (11)0.0003 (11)0.0023 (11)
C30.0475 (17)0.0470 (17)0.0297 (14)0.0088 (14)0.0039 (12)0.0040 (12)
C40.0507 (19)0.0415 (16)0.0437 (17)0.0041 (14)0.0108 (14)0.0093 (14)
C50.0428 (17)0.0389 (15)0.0462 (17)0.0119 (13)0.0007 (13)0.0035 (13)
C60.0296 (13)0.0317 (13)0.0305 (13)0.0008 (10)0.0023 (10)0.0009 (11)
C70.0226 (11)0.0294 (12)0.0336 (13)0.0001 (9)0.0010 (10)0.0002 (10)
C80.0310 (14)0.0381 (14)0.0384 (15)0.0054 (11)0.0034 (11)0.0081 (12)
C90.0366 (15)0.0328 (14)0.0413 (16)0.0049 (11)0.0046 (12)0.0004 (11)
C100.0268 (12)0.0335 (13)0.0310 (13)0.0006 (10)0.0058 (10)0.0049 (11)
C110.0459 (17)0.0396 (15)0.0342 (15)0.0011 (13)0.0129 (12)0.0037 (12)
C120.0477 (18)0.0555 (19)0.0308 (15)0.0114 (15)0.0052 (13)0.0029 (13)
C130.0405 (17)0.069 (2)0.0337 (16)0.0098 (15)0.0039 (13)0.0109 (15)
C140.0309 (14)0.0471 (17)0.0442 (17)0.0037 (12)0.0003 (12)0.0071 (14)
C150.0266 (13)0.0347 (13)0.0315 (14)0.0007 (10)0.0044 (10)0.0033 (11)
C160.0266 (13)0.0361 (14)0.0310 (14)0.0037 (10)0.0049 (10)0.0023 (11)
C170.0296 (14)0.0495 (17)0.0365 (15)0.0010 (12)0.0016 (11)0.0034 (13)
C180.0450 (17)0.0364 (15)0.0422 (17)0.0068 (12)0.0012 (13)0.0095 (13)
O10.0706 (18)0.092 (2)0.0654 (17)0.0480 (17)0.0162 (14)0.0345 (16)
O20.0586 (18)0.090 (2)0.103 (2)0.0185 (16)0.0260 (17)0.0062 (19)
O30.112 (3)0.073 (2)0.120 (3)0.0034 (19)0.046 (3)0.024 (2)
Geometric parameters (Å, º) top
Ag1—N12.112 (2)C1—C61.393 (4)
Ag1—N72.121 (2)C2—C31.377 (4)
N1—C71.318 (3)C2—H2A0.9300
N1—C11.395 (3)C3—C41.396 (5)
N2—C71.348 (3)C3—H3A0.9300
N2—C61.385 (4)C4—C51.379 (4)
N2—H2B0.8600C4—H4A0.9300
N3—C91.327 (4)C5—C61.392 (4)
N3—N41.340 (3)C5—H5A0.9300
N3—C81.457 (3)C7—C81.492 (4)
N4—N51.295 (4)C8—H8A0.9700
N5—N61.354 (4)C8—H8B0.9700
N6—C91.304 (4)C9—H9A0.9300
N7—C161.318 (3)C10—C111.387 (4)
N7—C101.394 (3)C10—C151.395 (4)
N8—C161.340 (3)C11—C121.375 (4)
N8—C151.381 (3)C11—H11A0.9300
N8—H8C0.8600C12—C131.394 (5)
N9—C181.323 (3)C12—H12A0.9300
N9—N101.339 (3)C13—C141.380 (5)
N9—C171.459 (4)C13—H13A0.9300
N10—N111.287 (4)C14—C151.391 (4)
N11—N121.363 (4)C14—H14A0.9300
N12—C181.304 (4)C16—C171.491 (4)
N13—O11.222 (3)C17—H17A0.9700
N13—O31.224 (4)C17—H17B0.9700
N13—O21.229 (4)C18—H18A0.9300
C1—C21.391 (4)
N1—Ag1—N7171.97 (8)N2—C6—C1105.7 (2)
C7—N1—C1105.7 (2)C5—C6—C1122.1 (3)
C7—N1—Ag1126.67 (18)N1—C7—N2112.5 (2)
C1—N1—Ag1126.51 (17)N1—C7—C8121.5 (2)
C7—N2—C6107.3 (2)N2—C7—C8126.0 (2)
C7—N2—H2B126.3N3—C8—C7114.4 (2)
C6—N2—H2B126.3N3—C8—H8A108.7
C9—N3—N4107.9 (2)C7—C8—H8A108.7
C9—N3—C8131.1 (2)N3—C8—H8B108.7
N4—N3—C8120.9 (2)C7—C8—H8B108.7
N5—N4—N3106.5 (2)H8A—C8—H8B107.6
N4—N5—N6110.5 (2)N6—C9—N3109.6 (3)
C9—N6—N5105.5 (2)N6—C9—H9A125.2
C16—N7—C10105.7 (2)N3—C9—H9A125.2
C16—N7—Ag1127.84 (19)C11—C10—N7130.2 (3)
C10—N7—Ag1126.27 (18)C11—C10—C15121.1 (3)
C16—N8—C15107.6 (2)N7—C10—C15108.6 (2)
C16—N8—H8C126.2C12—C11—C10117.4 (3)
C15—N8—H8C126.2C12—C11—H11A121.3
C18—N9—N10107.7 (2)C10—C11—H11A121.3
C18—N9—C17129.7 (2)C11—C12—C13121.5 (3)
N10—N9—C17122.5 (2)C11—C12—H12A119.2
N11—N10—N9106.9 (2)C13—C12—H12A119.2
N10—N11—N12110.4 (2)C14—C13—C12121.7 (3)
C18—N12—N11105.0 (2)C14—C13—H13A119.2
O1—N13—O3121.2 (4)C12—C13—H13A119.2
O1—N13—O2121.2 (3)C13—C14—C15116.8 (3)
O3—N13—O2117.5 (3)C13—C14—H14A121.6
C2—C1—C6120.8 (3)C15—C14—H14A121.6
C2—C1—N1130.5 (2)N8—C15—C14133.0 (3)
C6—C1—N1108.8 (2)N8—C15—C10105.5 (2)
C3—C2—C1117.2 (3)C14—C15—C10121.5 (3)
C3—C2—H2A121.4N7—C16—N8112.5 (2)
C1—C2—H2A121.4N7—C16—C17123.6 (2)
C2—C3—C4121.8 (3)N8—C16—C17123.9 (2)
C2—C3—H3A119.1N9—C17—C16112.0 (2)
C4—C3—H3A119.1N9—C17—H17A109.2
C5—C4—C3121.6 (3)C16—C17—H17A109.2
C5—C4—H4A119.2N9—C17—H17B109.2
C3—C4—H4A119.2C16—C17—H17B109.2
C4—C5—C6116.5 (3)H17A—C17—H17B107.9
C4—C5—H5A121.7N12—C18—N9110.0 (3)
C6—C5—H5A121.7N12—C18—H18A125.0
N2—C6—C5132.2 (3)N9—C18—H18A125.0
N7—Ag1—N1—C7120.6 (6)N4—N3—C8—C775.8 (3)
N7—Ag1—N1—C173.0 (7)N1—C7—C8—N3174.7 (2)
C9—N3—N4—N50.5 (3)N2—C7—C8—N34.5 (4)
C8—N3—N4—N5176.4 (3)N5—N6—C9—N30.2 (4)
N3—N4—N5—N60.4 (4)N4—N3—C9—N60.4 (3)
N4—N5—N6—C90.1 (4)C8—N3—C9—N6175.8 (3)
N1—Ag1—N7—C16109.2 (6)C16—N7—C10—C11177.1 (3)
N1—Ag1—N7—C1064.6 (7)Ag1—N7—C10—C118.1 (4)
C18—N9—N10—N110.3 (3)C16—N7—C10—C150.5 (3)
C17—N9—N10—N11178.4 (2)Ag1—N7—C10—C15174.33 (18)
N9—N10—N11—N120.1 (3)N7—C10—C11—C12176.5 (3)
N10—N11—N12—C180.2 (4)C15—C10—C11—C120.9 (4)
C7—N1—C1—C2178.0 (3)C10—C11—C12—C132.4 (5)
Ag1—N1—C1—C213.3 (4)C11—C12—C13—C142.2 (5)
C7—N1—C1—C61.4 (3)C12—C13—C14—C150.4 (5)
Ag1—N1—C1—C6167.28 (18)C16—N8—C15—C14178.1 (3)
C6—C1—C2—C30.4 (4)C16—N8—C15—C100.0 (3)
N1—C1—C2—C3179.8 (3)C13—C14—C15—N8176.8 (3)
C1—C2—C3—C40.8 (4)C13—C14—C15—C101.1 (4)
C2—C3—C4—C51.2 (5)C11—C10—C15—N8177.5 (2)
C3—C4—C5—C60.4 (5)N7—C10—C15—N80.3 (3)
C7—N2—C6—C5180.0 (3)C11—C10—C15—C140.9 (4)
C7—N2—C6—C10.4 (3)N7—C10—C15—C14178.7 (3)
C4—C5—C6—N2178.7 (3)C10—N7—C16—N80.6 (3)
C4—C5—C6—C10.8 (5)Ag1—N7—C16—N8174.18 (18)
C2—C1—C6—N2178.4 (2)C10—N7—C16—C17178.0 (2)
N1—C1—C6—N21.1 (3)Ag1—N7—C16—C173.3 (4)
C2—C1—C6—C51.3 (4)C15—N8—C16—N70.4 (3)
N1—C1—C6—C5179.3 (3)C15—N8—C16—C17177.8 (3)
C1—N1—C7—N21.1 (3)C18—N9—C17—C16137.7 (3)
Ag1—N1—C7—N2167.49 (17)N10—N9—C17—C1644.6 (4)
C1—N1—C7—C8178.2 (2)N7—C16—C17—N9136.4 (3)
Ag1—N1—C7—C813.2 (4)N8—C16—C17—N946.5 (4)
C6—N2—C7—N10.5 (3)N11—N12—C18—N90.4 (4)
C6—N2—C7—C8178.8 (3)N10—N9—C18—N120.4 (3)
C9—N3—C8—C7109.3 (3)C17—N9—C18—N12178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8C···O30.862.323.105 (5)153
N8—H8C···O20.862.403.176 (4)151
N2—H2B···O1i0.862.062.881 (4)159
C5—H5A···O3i0.932.483.271 (5)143
C8—H8A···N11ii0.972.553.388 (4)144
C8—H8B···N4iii0.972.543.406 (4)148
C8—H8B···N5iii0.972.533.476 (4)164
C17—H17A···N6iii0.972.413.250 (4)145
C18—H18A···N10iv0.932.503.346 (4)151
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(C9H8N6)2]NO3
Mr570.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.125 (2), 9.3276 (19), 20.189 (4)
β (°) 94.80 (3)
V3)2087.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.22 × 0.18 × 0.17
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.807, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
25286, 4974, 4605
Rint0.033
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.03
No. of reflections4974
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.46

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8C···O30.862.323.105 (5)153
N8—H8C···O20.862.403.176 (4)151
N2—H2B···O1i0.862.062.881 (4)159
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The study was supported by the Science and Technology Department of Henan Province (082102330003). The authors also thank Professor Hou Hong-Wei of Zhengzhou University for his help.

References

First citationBronisz, R. (2004). Inorg. Chim. Acta, 357, 396–404.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, M. H., Liu, P., Wang, J., Chen, Y. & Liu, Q. Y. (2006). Inorg. Chem. Commun. 9, 952–954.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeng, X. R., Jin, S. Z., Hou, H. W., Du, C. X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519–1527.  Web of Science CrossRef CAS Google Scholar
First citationMeng, X., Song, Y., Hou, H., Han, H., Xiao, B., Fan, Y. & Zhu, Y. (2004). Inorg. Chem. 43, 3528–3536.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2006). CrystalStructure and CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds