organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-(2,4-Di­chloro­phen­yl)-1,1′-di­methyl­piperidine-3-spiro-3′-pyrrolidine-2′-spiro-3′′-indoline-4,2′′-dione

aDepartment of Physics, Thiagarajar College, Madurai 625 009, India, and bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: vasan692000@yahoo.co.in

(Received 22 February 2010; accepted 24 February 2010; online 27 February 2010)

In the title compound, C23H23Cl2N3O2, the pyrroline ring adopts an envelope conformation and the piperidinone ring assumes a slightly twisted chair form. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate an R28 graph-set motif and a short Cl⋯Cl contact of 3.478 (1) Å occurs.

Related literature

For the effect on halogens on the conformations of organic mol­ecules, see: Awwadi et al. (2006[Awwadi, F. F., Willet, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.]). For the biological properties of pyrroles, see: Watson et al. (2001[Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.]). For graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H23Cl2N3O2

  • Mr = 444.34

  • Triclinic, [P \overline 1]

  • a = 7.9398 (2) Å

  • b = 10.8747 (3) Å

  • c = 13.5367 (4) Å

  • α = 66.561 (2)°

  • β = 77.873 (1)°

  • γ = 83.203 (2)°

  • V = 1047.64 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 300 K

  • 0.27 × 0.15 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.94, Tmax = 0.96

  • 27365 measured reflections

  • 6685 independent reflections

  • 5249 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.03

  • 6685 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1B⋯O2i 0.86 2.02 2.8547 (15) 164
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrrolo ring compounds are prevalent in a variety of biologically active compounds (Watson et al., 2001) and find utility in the treatment of diseases such as diabetes, cancer and viral infections. Since the biological activity depends on the conformation of rings that constitute a molecule, precise description, at atomic resolution, of the title compound is expected to supplement further studies on structure-activity relationships on these compounds. Also, the effect of halogen- subsitutions on the conformation of the molecule and consequently on the packing modes remains an area of immense interest in crystallography (Awwadi et al., 2006).

In the title compound (I), the 5-membered methyl substitued pyrroline ring adopts the envelope conformation with C5 deviating from the plane defined by the rest of the atoms of the ring by 0.639 (2) A° The puckering parameters (Cremer & Pople, 1975) of this ring are Q = 0.431 (2)Å and ϕ = 331.2 °. The piperidinone ring adopts a slightly twisted chair conformation with the N1A and C4A atoms deviating by about 0.712 (2) and -0.523 (2) A°, respectively, from the plane defined by C2A,C3,C5A and C6A with an r.m.s. deviation of 0.041 A°. The chair conformation is also evident from the corresponding puckering amplitudes [Q=0.561 (2) A°, /q = 16.0 (2)°, /f = 30.8 (6)°]. The oxindole and the dichloro substituted phenyl rings are planar.

A relatively strong intermolecular [N1B—H1B···O2(-x, -y, 1-z)] hydrogen bond relates centrrosymmetric pairs of molecules (Fig.2). These N—H···O hydrogen bonds form R82 graph set motifs (Etter et al., 1990) which are interconnected through Cl···Cl interactions [Cl1···.Cl2 (x-1, y, z) 3.478 (1) A°] leading to columns of molecules parallel to the a-axis (Fig.3). These columns resemble a 'ladder-like' arrangement of molecules much similar to the one seen in DNA, except for the twist. These columns of molecules have interactions that are van der Waals in nature.

Related literature top

For the effect on halogens on the conformations of organic molecules, see: Awwadi et al. (2006). For the biological properties of pyrroles, see: Watson et al. (2001). For graph-set notation, see: Etter et al. (1990). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 1-methyl-3-[(E)-(2,4-dichlorophenyl)methylidene] tetrahydro-4(1H)pyridinone (1 mmol), isatin (1 mmol) and sarcosine (1 mmol) were refluxed in methanol (15 ml) for 4 h. After completion of the reaction (TLC), the mixture was poured into water (30 ml) and the precipitate was filtered off and washed with water to obtain the product as white solid (0.28 g, 85%), m.p. 190–191 °C

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the molecular aggregation down the a-axis. C-bound H atoms have been omitted for clarity.
4'-(2,4-Dichlorophenyl)-1,1'-dimethylpiperidine-3-spiro-3'- pyrrolidine-2'-spiro-3''-indoline-4,2''-dione top
Crystal data top
C23H23Cl2N3O2Z = 2
Mr = 444.34F(000) = 464
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9398 (2) ÅCell parameters from 5536 reflections
b = 10.8747 (3) Åθ = 5.7–61.9°
c = 13.5367 (4) ŵ = 0.34 mm1
α = 66.561 (2)°T = 300 K
β = 77.873 (1)°Needle, colourless
γ = 83.203 (2)°0.27 × 0.15 × 0.12 mm
V = 1047.64 (5) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6685 independent reflections
Radiation source: fine-focus sealed tube5249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scanθmax = 31.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.94, Tmax = 0.96k = 1515
27365 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.3075P]
where P = (Fo2 + 2Fc2)/3
6685 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C23H23Cl2N3O2γ = 83.203 (2)°
Mr = 444.34V = 1047.64 (5) Å3
Triclinic, P1Z = 2
a = 7.9398 (2) ÅMo Kα radiation
b = 10.8747 (3) ŵ = 0.34 mm1
c = 13.5367 (4) ÅT = 300 K
α = 66.561 (2)°0.27 × 0.15 × 0.12 mm
β = 77.873 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6685 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5249 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 0.96Rint = 0.025
27365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.03Δρmax = 0.47 e Å3
6685 reflectionsΔρmin = 0.47 e Å3
273 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05606 (6)0.11850 (5)0.16644 (3)0.05328 (12)
Cl20.52639 (5)0.22216 (6)0.08290 (4)0.05850 (14)
O10.59398 (16)0.37748 (14)0.13813 (10)0.0564 (3)
O20.01383 (13)0.08370 (10)0.35005 (9)0.0392 (2)
N10.07639 (15)0.36986 (11)0.21024 (10)0.0342 (2)
N1A0.40225 (16)0.01730 (11)0.32854 (10)0.0369 (2)
N1B0.09730 (16)0.15644 (12)0.46891 (9)0.0372 (3)
H1B0.05330.09470.52930.045*
C1A0.3736 (3)0.12482 (15)0.36383 (15)0.0521 (4)
H70.40340.17250.43500.078*
H80.44400.15880.31270.078*
H90.25440.13680.36710.078*
C20.19382 (16)0.28182 (11)0.28156 (10)0.0277 (2)
C2A0.35737 (18)0.09368 (13)0.22132 (11)0.0330 (3)
H10.24830.06470.21820.040*
H20.44490.07710.16570.040*
C2B0.09267 (16)0.15968 (12)0.36880 (10)0.0312 (2)
C30.34300 (15)0.24405 (12)0.19834 (10)0.0275 (2)
C40.29884 (17)0.33178 (13)0.08305 (10)0.0317 (2)
H40.40470.37110.03340.038*
C4A0.51969 (17)0.28084 (14)0.20663 (11)0.0354 (3)
C4B0.24667 (17)0.34208 (13)0.35377 (11)0.0321 (2)
C50.1825 (2)0.44231 (13)0.10524 (11)0.0383 (3)
H5A0.24880.50870.10980.046*
H5B0.11270.48630.04890.046*
C5A0.5987 (2)0.18768 (17)0.30320 (14)0.0442 (3)
H510.54500.20690.36710.053*
H520.72040.20480.28870.053*
C5B0.18216 (18)0.26551 (14)0.46247 (11)0.0347 (3)
C6A0.5790 (2)0.04095 (17)0.32825 (14)0.0475 (4)
H610.65660.01490.27360.057*
H620.60930.01340.39920.057*
C6B0.3263 (2)0.45973 (15)0.32860 (14)0.0451 (3)
H6B0.36950.51290.25630.054*
C7B0.3409 (3)0.49719 (19)0.41348 (18)0.0583 (5)
H7B0.39400.57630.39760.070*
C8B0.2777 (3)0.4188 (2)0.52044 (17)0.0591 (5)
H8B0.28930.44570.57580.071*
C9B0.1972 (2)0.30098 (19)0.54744 (14)0.0496 (4)
H9B0.15500.24770.61980.060*
C110.0503 (2)0.45116 (18)0.25448 (16)0.0506 (4)
H11A0.10840.39570.32570.076*
H11B0.13280.49100.20680.076*
H11C0.00660.52050.26030.076*
C410.21203 (16)0.26281 (13)0.03025 (10)0.0303 (2)
C420.03314 (17)0.25080 (14)0.05212 (11)0.0338 (3)
H420.03240.27440.10790.041*
C430.04964 (18)0.20518 (15)0.00610 (12)0.0375 (3)
H430.16890.19900.01010.045*
C440.04591 (19)0.16899 (14)0.08833 (11)0.0362 (3)
C450.22301 (19)0.17398 (16)0.11040 (12)0.0407 (3)
H450.28790.14720.16460.049*
C460.30248 (17)0.21960 (15)0.05036 (11)0.0360 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0568 (2)0.0684 (3)0.0460 (2)0.01210 (19)0.01697 (18)0.02727 (19)
Cl20.02974 (17)0.0955 (4)0.0552 (2)0.00686 (19)0.00060 (15)0.0370 (2)
O10.0472 (6)0.0649 (8)0.0476 (6)0.0279 (6)0.0104 (5)0.0039 (6)
O20.0388 (5)0.0369 (5)0.0401 (5)0.0137 (4)0.0071 (4)0.0095 (4)
N10.0374 (6)0.0304 (5)0.0346 (5)0.0055 (4)0.0123 (4)0.0115 (4)
N1A0.0425 (6)0.0310 (5)0.0334 (6)0.0047 (4)0.0116 (5)0.0077 (4)
N1B0.0422 (6)0.0363 (6)0.0279 (5)0.0105 (5)0.0006 (4)0.0080 (4)
C1A0.0657 (11)0.0321 (7)0.0479 (9)0.0045 (7)0.0105 (8)0.0058 (6)
C20.0312 (5)0.0245 (5)0.0260 (5)0.0040 (4)0.0068 (4)0.0068 (4)
C2A0.0387 (6)0.0298 (6)0.0299 (6)0.0005 (5)0.0078 (5)0.0107 (5)
C2B0.0296 (5)0.0298 (6)0.0311 (6)0.0048 (4)0.0041 (4)0.0080 (5)
C30.0289 (5)0.0270 (5)0.0247 (5)0.0039 (4)0.0063 (4)0.0064 (4)
C40.0345 (6)0.0319 (6)0.0251 (5)0.0082 (5)0.0074 (4)0.0044 (4)
C4A0.0309 (6)0.0414 (7)0.0347 (6)0.0059 (5)0.0068 (5)0.0137 (5)
C4B0.0360 (6)0.0301 (6)0.0318 (6)0.0034 (5)0.0085 (5)0.0118 (5)
C50.0516 (8)0.0264 (6)0.0342 (6)0.0011 (5)0.0176 (6)0.0042 (5)
C5A0.0366 (7)0.0537 (9)0.0452 (8)0.0010 (6)0.0187 (6)0.0171 (7)
C5B0.0356 (6)0.0377 (6)0.0318 (6)0.0004 (5)0.0058 (5)0.0148 (5)
C6A0.0436 (8)0.0490 (8)0.0475 (8)0.0132 (7)0.0194 (7)0.0145 (7)
C6B0.0556 (9)0.0349 (7)0.0478 (8)0.0114 (6)0.0114 (7)0.0154 (6)
C7B0.0708 (12)0.0480 (9)0.0728 (12)0.0092 (8)0.0219 (10)0.0343 (9)
C8B0.0691 (12)0.0685 (12)0.0616 (11)0.0013 (9)0.0188 (9)0.0448 (10)
C9B0.0564 (9)0.0613 (10)0.0385 (8)0.0003 (8)0.0084 (7)0.0275 (7)
C110.0498 (9)0.0479 (9)0.0586 (10)0.0166 (7)0.0174 (7)0.0263 (8)
C410.0312 (6)0.0328 (6)0.0238 (5)0.0038 (4)0.0070 (4)0.0059 (4)
C420.0313 (6)0.0396 (7)0.0306 (6)0.0019 (5)0.0057 (5)0.0132 (5)
C430.0304 (6)0.0449 (7)0.0379 (7)0.0035 (5)0.0085 (5)0.0149 (6)
C440.0400 (7)0.0389 (7)0.0312 (6)0.0039 (5)0.0127 (5)0.0111 (5)
C450.0405 (7)0.0514 (8)0.0329 (7)0.0016 (6)0.0050 (5)0.0198 (6)
C460.0284 (6)0.0461 (7)0.0313 (6)0.0028 (5)0.0036 (5)0.0129 (5)
Geometric parameters (Å, º) top
Cl1—C441.7326 (14)C4B—C5B1.3894 (19)
Cl2—C461.7402 (14)C5—H5A0.9700
O1—C4A1.2057 (18)C5—H5B0.9700
O2—C2B1.2226 (16)C5A—C6A1.514 (2)
N1—C111.4524 (19)C5A—H510.9700
N1—C51.4539 (19)C5A—H520.9700
N1—C21.4661 (16)C5B—C9B1.381 (2)
N1A—C2A1.4531 (17)C6A—H610.9700
N1A—C6A1.455 (2)C6A—H620.9700
N1A—C1A1.456 (2)C6B—C7B1.392 (2)
N1B—C2B1.3498 (17)C6B—H6B0.9300
N1B—C5B1.3966 (18)C7B—C8B1.374 (3)
N1B—H1B0.8600C7B—H7B0.9300
C1A—H70.9600C8B—C9B1.381 (3)
C1A—H80.9600C8B—H8B0.9300
C1A—H90.9600C9B—H9B0.9300
C2—C4B1.5192 (17)C11—H11A0.9600
C2—C2B1.5524 (16)C11—H11B0.9600
C2—C31.5916 (17)C11—H11C0.9600
C2A—C31.5329 (17)C41—C461.3879 (19)
C2A—H10.9700C41—C421.3995 (17)
C2A—H20.9700C42—C431.3801 (19)
C3—C4A1.5413 (17)C42—H420.9300
C3—C41.5604 (17)C43—C441.376 (2)
C4—C51.515 (2)C43—H430.9300
C4—C411.5180 (17)C44—C451.378 (2)
C4—H40.9800C45—C461.384 (2)
C4A—C5A1.507 (2)C45—H450.9300
C4B—C6B1.3811 (19)
C11—N1—C5115.62 (12)H5A—C5—H5B109.2
C11—N1—C2117.09 (12)C4A—C5A—C6A113.15 (13)
C5—N1—C2106.73 (11)C4A—C5A—H51108.9
C2A—N1A—C6A110.22 (12)C6A—C5A—H51108.9
C2A—N1A—C1A111.33 (12)C4A—C5A—H52108.9
C6A—N1A—C1A111.91 (13)C6A—C5A—H52108.9
C2B—N1B—C5B111.76 (11)H51—C5A—H52107.8
C2B—N1B—H1B124.1C9B—C5B—C4B122.56 (14)
C5B—N1B—H1B124.2C9B—C5B—N1B127.53 (14)
N1A—C1A—H7109.5C4B—C5B—N1B109.84 (12)
N1A—C1A—H8109.5N1A—C6A—C5A110.31 (12)
H7—C1A—H8109.5N1A—C6A—H61109.6
N1A—C1A—H9109.5C5A—C6A—H61109.6
H7—C1A—H9109.5N1A—C6A—H62109.6
H8—C1A—H9109.5C5A—C6A—H62109.6
N1—C2—C4B113.50 (10)H61—C6A—H62108.1
N1—C2—C2B108.33 (10)C4B—C6B—C7B118.74 (16)
C4B—C2—C2B101.02 (10)C4B—C6B—H6B120.6
N1—C2—C3102.91 (9)C7B—C6B—H6B120.6
C4B—C2—C3117.36 (10)C8B—C7B—C6B120.87 (16)
C2B—C2—C3113.80 (10)C8B—C7B—H7B119.6
N1A—C2A—C3110.54 (10)C6B—C7B—H7B119.6
N1A—C2A—H1109.5C7B—C8B—C9B121.36 (15)
C3—C2A—H1109.5C7B—C8B—H8B119.3
N1A—C2A—H2109.5C9B—C8B—H8B119.3
C3—C2A—H2109.5C8B—C9B—C5B117.24 (16)
H1—C2A—H2108.1C8B—C9B—H9B121.4
O2—C2B—N1B125.61 (12)C5B—C9B—H9B121.4
O2—C2B—C2125.83 (12)N1—C11—H11A109.5
N1B—C2B—C2108.44 (10)N1—C11—H11B109.5
C2A—C3—C4A106.08 (10)H11A—C11—H11B109.5
C2A—C3—C4112.94 (10)N1—C11—H11C109.5
C4A—C3—C4109.87 (10)H11A—C11—H11C109.5
C2A—C3—C2113.02 (10)H11B—C11—H11C109.5
C4A—C3—C2110.45 (10)C46—C41—C42115.70 (12)
C4—C3—C2104.55 (10)C46—C41—C4122.16 (12)
C5—C4—C41111.19 (11)C42—C41—C4121.86 (12)
C5—C4—C3102.12 (10)C43—C42—C41122.42 (13)
C41—C4—C3116.79 (10)C43—C42—H42118.8
C5—C4—H4108.8C41—C42—H42118.8
C41—C4—H4108.8C44—C43—C42119.36 (13)
C3—C4—H4108.8C44—C43—H43120.3
O1—C4A—C5A121.14 (13)C42—C43—H43120.3
O1—C4A—C3122.06 (13)C43—C44—C45120.56 (13)
C5A—C4A—C3116.78 (11)C43—C44—Cl1120.14 (11)
C6B—C4B—C5B119.22 (13)C45—C44—Cl1119.29 (11)
C6B—C4B—C2131.56 (13)C44—C45—C46118.75 (13)
C5B—C4B—C2108.82 (11)C44—C45—H45120.6
N1—C5—C4102.60 (10)C46—C45—H45120.6
N1—C5—H5A111.2C45—C46—C41123.11 (12)
C4—C5—H5A111.2C45—C46—Cl2115.88 (11)
N1—C5—H5B111.2C41—C46—Cl2121.01 (11)
C4—C5—H5B111.2
C11—N1—C2—C4B36.10 (17)N1—C2—C4B—C5B115.04 (12)
C5—N1—C2—C4B95.27 (12)C2B—C2—C4B—C5B0.69 (14)
C11—N1—C2—C2B75.23 (15)C3—C2—C4B—C5B125.00 (12)
C5—N1—C2—C2B153.40 (11)C11—N1—C5—C4179.57 (12)
C11—N1—C2—C3163.97 (12)C2—N1—C5—C447.39 (13)
C5—N1—C2—C332.60 (12)C41—C4—C5—N184.59 (12)
C6A—N1A—C2A—C369.88 (14)C3—C4—C5—N140.70 (12)
C1A—N1A—C2A—C3165.32 (13)O1—C4A—C5A—C6A136.43 (17)
C5B—N1B—C2B—O2173.19 (13)C3—C4A—C5A—C6A41.83 (19)
C5B—N1B—C2B—C23.01 (16)C6B—C4B—C5B—C9B1.3 (2)
N1—C2—C2B—O255.31 (17)C2—C4B—C5B—C9B174.82 (14)
C4B—C2—C2B—O2174.82 (13)C6B—C4B—C5B—N1B176.05 (14)
C3—C2—C2B—O258.48 (17)C2—C4B—C5B—N1B2.48 (16)
N1—C2—C2B—N1B120.88 (12)C2B—N1B—C5B—C9B173.59 (15)
C4B—C2—C2B—N1B1.37 (13)C2B—N1B—C5B—C4B3.54 (17)
C3—C2—C2B—N1B125.33 (11)C2A—N1A—C6A—C5A61.70 (16)
N1A—C2A—C3—C4A58.36 (13)C1A—N1A—C6A—C5A173.83 (14)
N1A—C2A—C3—C4178.76 (10)C4A—C5A—C6A—N1A47.18 (19)
N1A—C2A—C3—C262.80 (13)C5B—C4B—C6B—C7B0.6 (2)
N1—C2—C3—C2A117.16 (11)C2—C4B—C6B—C7B172.46 (16)
C4B—C2—C3—C2A117.44 (11)C4B—C6B—C7B—C8B0.1 (3)
C2B—C2—C3—C2A0.17 (14)C6B—C7B—C8B—C9B0.3 (3)
N1—C2—C3—C4A124.19 (11)C7B—C8B—C9B—C5B0.3 (3)
C4B—C2—C3—C4A1.21 (14)C4B—C5B—C9B—C8B1.1 (3)
C2B—C2—C3—C4A118.83 (11)N1B—C5B—C9B—C8B175.70 (16)
N1—C2—C3—C46.05 (11)C5—C4—C41—C46142.59 (13)
C4B—C2—C3—C4119.35 (11)C3—C4—C41—C46100.79 (14)
C2B—C2—C3—C4123.03 (10)C5—C4—C41—C4230.98 (16)
C2A—C3—C4—C5144.01 (11)C3—C4—C41—C4285.64 (15)
C4A—C3—C4—C597.78 (12)C46—C41—C42—C433.1 (2)
C2—C3—C4—C520.75 (12)C4—C41—C42—C43170.90 (13)
C2A—C3—C4—C4122.49 (15)C41—C42—C43—C440.5 (2)
C4A—C3—C4—C41140.71 (12)C42—C43—C44—C452.0 (2)
C2—C3—C4—C41100.77 (12)C42—C43—C44—Cl1177.15 (11)
C2A—C3—C4A—O1132.58 (15)C43—C44—C45—C461.8 (2)
C4—C3—C4A—O110.21 (19)Cl1—C44—C45—C46177.43 (11)
C2—C3—C4A—O1104.62 (16)C44—C45—C46—C411.1 (2)
C2A—C3—C4A—C5A45.66 (16)C44—C45—C46—Cl2179.75 (12)
C4—C3—C4A—C5A168.03 (12)C42—C41—C46—C453.4 (2)
C2—C3—C4A—C5A77.15 (15)C4—C41—C46—C45170.57 (13)
N1—C2—C4B—C6B57.5 (2)C42—C41—C46—Cl2177.48 (10)
C2B—C2—C4B—C6B173.18 (16)C4—C41—C46—Cl28.58 (18)
C3—C2—C4B—C6B62.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O2i0.862.022.8547 (15)164
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H23Cl2N3O2
Mr444.34
Crystal system, space groupTriclinic, P1
Temperature (K)300
a, b, c (Å)7.9398 (2), 10.8747 (3), 13.5367 (4)
α, β, γ (°)66.561 (2), 77.873 (1), 83.203 (2)
V3)1047.64 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.27 × 0.15 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.94, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
27365, 6685, 5249
Rint0.025
(sin θ/λ)max1)0.726
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.03
No. of reflections6685
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.47

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O2i0.862.022.8547 (15)163.9
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank Dr Babu Varghese, Sophiticated Analytical Instrumentation Facility, Indian Institute of Technology, Chennai, for the data collection.

References

First citationAwwadi, F. F., Willet, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds