organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1-Naphthyl­meth­yl)ammonium chloride

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 917791436, Iran, and bDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: h-khavasi@sbu.ac.ir

(Received 4 January 2010; accepted 27 January 2010; online 3 February 2010)

The reaction of 1-naphthyl­methyl­amine and hydro­chloric acid in a 1:1 molar ratio resulted in the formation of the 1:1 proton-transfer compound, C11H12N+·Cl. In the crystal, the ions are linked by N—H⋯Cl hydrogen bonds into a sheet pattern in the ab plane such that each Cl ion is bonded to three NH groups from the naphthylmethylammonium ion.

Related literature

For 1-naphthyl­methyl­ammonium salts, see: Sada et al. (2004[Sada, K., Inoue, K., Tanaka, T., Tanaka, A., Epergyes, A., Nagahama, S., Matsumoto, A. & Miyala, M. (2004). J. Am. Chem. Soc. 126, 1764-1771.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N+·Cl

  • Mr = 193.67

  • Monoclinic, P 21

  • a = 5.3395 (7) Å

  • b = 9.3355 (15) Å

  • c = 10.1432 (13) Å

  • β = 100.864 (10)°

  • V = 496.55 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 298 K

  • 0.35 × 0.13 × 0.11 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.952, Tmax = 0.968

  • 5801 measured reflections

  • 2677 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.100

  • S = 1.19

  • 2677 reflections

  • 130 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 245 Friedel pairs

  • Flack parameter: 0.09 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl1 0.86 (5) 2.37 (5) 3.226 (3) 172 (3)
N1—H1D⋯Cl1i 0.94 (4) 2.27 (4) 3.187 (3) 164 (3)
N1—H1E⋯Cl1ii 0.92 (4) 2.29 (4) 3.172 (3) 161 (3)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+2]; (ii) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: X-AREA; cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1-naphthylmethylamine has been recognized as a suitable agent in the synthesis of proton-transfer systems (Sada et al., 2004). We report here the synthesis and characterization of the title salt, 1-naphthylmethylammonium chloride. The structure shows the presence of a 1-naphthylmethylammonium species that arises from the protonation of the amine group (Fig. 1). Hydrogen bonds play a very important role in the structure. As it is clear from Figure 2, chloride atoms engage in three hydrogen bonds with the amine group in which the chloride is in the center of triangle from three H atoms from three different cations.

Related literature top

For 1-naphthylmethylammonium salts, see: Sada et al. (2004).

Experimental top

A solution of 2.5 ml of 2M hydrochloric acid was added to a solution of 5 mmol 1-naphthalenemethylamine (0.73 ml) in 30 ml pyridine. The resulting solution was stirred at 373 K for 5 h and at ambient temperature for 24 h. A pale brown solution resulted. After drying the remaining brown solid was dissolved in pure methanol. X-ray quality crystals were obtained by slow evaporation at room temperature.

Refinement top

All of the H atoms bonded to C were positioned geometrically with C—H = 0.93 and 0.97Å for aromatic ring and CH2 hydrogen atoms respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). NH3 hydrogens atoms were positioned from Fourier map and freely refined.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular staucture with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound in thr b-direction. Hydrogen bonds are shown as dashed lines.
(1-Naphthylmethyl)ammonium chloride top
Crystal data top
C11H12N+·ClF(000) = 204
Mr = 193.67Dx = 1.295 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1056 reflections
a = 5.3395 (7) Åθ = 2.0–29.2°
b = 9.3355 (15) ŵ = 0.34 mm1
c = 10.1432 (13) ÅT = 298 K
β = 100.864 (10)°Prism, colorless
V = 496.55 (12) Å30.35 × 0.13 × 0.11 mm
Z = 2
Data collection top
Stoe IPDS II
diffractometer
2098 reflections with I > 2σ(I)
rotation method scansRint = 0.065
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2005)
θmax = 29.2°, θmin = 2.0°
Tmin = 0.952, Tmax = 0.968h = 76
5801 measured reflectionsk = 1212
2677 independent reflectionsl = 1313
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0155P)2 + 0.2107P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.054(Δ/σ)max = 0.002
wR(F2) = 0.100Δρmax = 0.28 e Å3
S = 1.19Δρmin = 0.17 e Å3
2677 reflectionsAbsolute structure: Flack (1983), 1245 Friedel pairs
130 parametersAbsolute structure parameter: 0.09 (10)
1 restraint
Crystal data top
C11H12N+·ClV = 496.55 (12) Å3
Mr = 193.67Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.3395 (7) ŵ = 0.34 mm1
b = 9.3355 (15) ÅT = 298 K
c = 10.1432 (13) Å0.35 × 0.13 × 0.11 mm
β = 100.864 (10)°
Data collection top
Stoe IPDS II
diffractometer
2677 independent reflections
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2005)
2098 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.968Rint = 0.065
5801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.28 e Å3
S = 1.19Δρmin = 0.17 e Å3
2677 reflectionsAbsolute structure: Flack (1983), 1245 Friedel pairs
130 parametersAbsolute structure parameter: 0.09 (10)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6260 (6)0.3230 (3)0.7737 (3)0.0472 (8)
H1A0.58520.22420.74870.057*
H1B0.77930.34810.74060.057*
C20.4110 (5)0.4171 (3)0.7057 (3)0.0387 (6)
C30.2613 (6)0.4950 (3)0.7758 (3)0.0442 (7)
H30.29410.49190.86910.053*
C40.0597 (6)0.5793 (4)0.7084 (4)0.0505 (8)
H40.03750.63260.75770.061*
C50.0047 (6)0.5840 (3)0.5736 (3)0.0501 (8)
H50.13130.63960.5310.06*
C60.1509 (5)0.5057 (3)0.4954 (3)0.0409 (7)
C70.0961 (7)0.5081 (3)0.3544 (4)0.0529 (9)
H70.04230.5610.31040.063*
C80.2421 (8)0.4342 (4)0.2810 (4)0.0591 (9)
H80.20430.43730.18770.071*
C90.4484 (7)0.3540 (4)0.3465 (4)0.0571 (9)
H90.54810.30390.29620.069*
C100.5064 (6)0.3476 (3)0.4826 (4)0.0486 (8)
H100.64540.29330.52380.058*
C110.3593 (5)0.4221 (3)0.5631 (3)0.0395 (6)
N10.6799 (6)0.3336 (3)0.9219 (3)0.0495 (7)
H1C0.708 (8)0.418 (5)0.955 (4)0.069 (12)*
H1D0.835 (7)0.288 (3)0.957 (3)0.046 (9)*
H1E0.546 (8)0.298 (4)0.957 (4)0.065 (12)*
Cl10.79683 (14)0.66025 (10)1.01767 (8)0.04759 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0375 (17)0.0408 (16)0.062 (2)0.0020 (14)0.0058 (15)0.0015 (15)
C20.0302 (14)0.0284 (13)0.0570 (18)0.0001 (11)0.0074 (13)0.0007 (12)
C30.0404 (16)0.0394 (15)0.0531 (19)0.0020 (13)0.0096 (14)0.0017 (13)
C40.0441 (18)0.0429 (16)0.067 (2)0.0118 (14)0.0171 (16)0.0025 (16)
C50.0401 (17)0.0416 (16)0.068 (2)0.0088 (14)0.0095 (16)0.0115 (15)
C60.0335 (16)0.0328 (13)0.056 (2)0.0042 (11)0.0083 (13)0.0032 (13)
C70.050 (2)0.0468 (18)0.060 (2)0.0081 (15)0.0048 (16)0.0078 (16)
C80.069 (2)0.056 (2)0.053 (2)0.0188 (19)0.0126 (18)0.0009 (17)
C90.061 (2)0.0467 (18)0.069 (2)0.0062 (16)0.0242 (19)0.0125 (17)
C100.0424 (18)0.0398 (16)0.064 (2)0.0014 (13)0.0104 (16)0.0065 (15)
C110.0308 (14)0.0318 (13)0.0561 (18)0.0066 (11)0.0087 (13)0.0008 (13)
N10.0387 (16)0.0421 (16)0.0640 (19)0.0032 (13)0.0002 (14)0.0029 (14)
Cl10.0426 (3)0.0466 (3)0.0527 (4)0.0046 (4)0.0067 (3)0.0113 (4)
Geometric parameters (Å, º) top
C1—N11.480 (5)C6—C111.425 (4)
C1—C21.506 (4)C7—C81.363 (5)
C1—H1A0.97C7—H70.93
C1—H1B0.97C8—C91.393 (5)
C2—C31.374 (4)C8—H80.93
C2—C111.421 (4)C9—C101.357 (5)
C3—C41.402 (4)C9—H90.93
C3—H30.93C10—C111.418 (4)
C4—C51.344 (5)C10—H100.93
C4—H40.93N1—H1C0.86 (4)
C5—C61.416 (4)N1—H1D0.94 (3)
C5—H50.93N1—H1E0.92 (4)
C6—C71.405 (5)
N1—C1—C2114.3 (3)C8—C7—C6121.1 (3)
N1—C1—H1A108.7C8—C7—H7119.4
C2—C1—H1A108.7C6—C7—H7119.4
N1—C1—H1B108.7C7—C8—C9119.6 (3)
C2—C1—H1B108.7C7—C8—H8120.2
H1A—C1—H1B107.6C9—C8—H8120.2
C3—C2—C11119.2 (3)C10—C9—C8121.2 (3)
C3—C2—C1122.7 (3)C10—C9—H9119.4
C11—C2—C1118.1 (3)C8—C9—H9119.4
C2—C3—C4120.9 (3)C9—C10—C11121.3 (3)
C2—C3—H3119.6C9—C10—H10119.4
C4—C3—H3119.6C11—C10—H10119.4
C5—C4—C3121.0 (3)C10—C11—C2123.2 (3)
C5—C4—H4119.5C10—C11—C6117.3 (3)
C3—C4—H4119.5C2—C11—C6119.5 (3)
C4—C5—C6121.0 (3)C1—N1—H1C116 (3)
C4—C5—H5119.5C1—N1—H1D110.2 (19)
C6—C5—H5119.5H1C—N1—H1D101 (3)
C7—C6—C5122.0 (3)C1—N1—H1E111 (2)
C7—C6—C11119.5 (3)H1C—N1—H1E106 (4)
C5—C6—C11118.4 (3)H1D—N1—H1E113 (3)
N1—C1—C2—C36.2 (4)C8—C9—C10—C110.1 (5)
N1—C1—C2—C11175.2 (3)C9—C10—C11—C2179.2 (3)
C11—C2—C3—C40.1 (5)C9—C10—C11—C61.0 (5)
C1—C2—C3—C4178.8 (3)C3—C2—C11—C10178.7 (3)
C2—C3—C4—C51.2 (5)C1—C2—C11—C102.6 (4)
C3—C4—C5—C60.9 (5)C3—C2—C11—C61.1 (4)
C4—C5—C6—C7179.5 (3)C1—C2—C11—C6177.6 (3)
C4—C5—C6—C110.4 (5)C7—C6—C11—C101.6 (4)
C5—C6—C7—C8178.7 (3)C5—C6—C11—C10178.5 (3)
C11—C6—C7—C81.4 (4)C7—C6—C11—C2178.5 (3)
C6—C7—C8—C90.4 (5)C5—C6—C11—C21.4 (4)
C7—C8—C9—C100.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl10.86 (5)2.37 (5)3.226 (3)172 (3)
N1—H1D···Cl1i0.94 (4)2.27 (4)3.187 (3)164 (3)
N1—H1E···Cl1ii0.92 (4)2.29 (4)3.172 (3)161 (3)
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC11H12N+·Cl
Mr193.67
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)5.3395 (7), 9.3355 (15), 10.1432 (13)
β (°) 100.864 (10)
V3)496.55 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.35 × 0.13 × 0.11
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-RED and X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.952, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
5801, 2677, 2098
Rint0.065
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.100, 1.19
No. of reflections2677
No. of parameters130
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.17
Absolute structureFlack (1983), 1245 Friedel pairs
Absolute structure parameter0.09 (10)

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl10.86 (5)2.37 (5)3.226 (3)172 (3)
N1—H1D···Cl1i0.94 (4)2.27 (4)3.187 (3)164 (3)
N1—H1E···Cl1ii0.92 (4)2.29 (4)3.172 (3)161 (3)
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+1, y1/2, z+2.
 

Acknowledgements

The authors wish to acknowledge Shahid Beheshti University, GC, for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSada, K., Inoue, K., Tanaka, T., Tanaka, A., Epergyes, A., Nagahama, S., Matsumoto, A. & Miyala, M. (2004). J. Am. Chem. Soc. 126, 1764–1771.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds