organic compounds
2-(2,7-Dimethoxy-1-naphthoyl)benzoic acid
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp
In the title compound, C20H16O5, the dihedral angle between the naphthalene ring system and the benzene ring is 67.43 (5)°. The bridging carbonyl C—C(=O)—C plane makes dihedral angles of 82.64 (6) and 41.79 (7)°, respectively, with the naphthalene ring system and the benzene ring. The dihedral angle between the carboxy O—C(=O)—C plane and the benzene ring is 36.38 (7)° and that between the bridging carbonyl C—C(=O)—C plane and the carboxy O—C(=O)—C plane is 51.88 (8)°. The is stabilized by intermolecular O—H⋯O and C—H⋯O hydrogen-bonding interactions. An intramolecular C—H⋯O hydrogen bond occurs between a naphthalene H atom and the carbonyl O atom of the carboxy group.
Related literature
For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For related structures, see: Mitsui, Nakaema et al. (2008); Mitsui, Noguchi et al. (2009); Watanabe, Nakaema, Muto et al. (2010); Watanabe, Nakaema, Nishijima et al. (2010); Hijikata et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810006847/om2323sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810006847/om2323Isup2.hkl
The title compound was prepared by AlCl3-mediated regioselective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene with acetic anhydride. Single crystals suitable for X-ray diffraction were obtained by recrystallization from diethyl ether.
Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 3.65 (3H, s), 3.78 (3H, s), 7.00 (1H, dd, J = 2.4, 9.0 Hz), 7.43-7.58 (4H, m), 7.66 (1H, d, J = 9.0 Hz), 7.84-7.88 (2H, m); 13C NMR (75.0 MHz, CDCl3) δ 55.3, 56.5, 102.7, 110.5, 117.4, 124.4, 129.4, 129.5, 129.9, 130.9, 131.4, 133.8, 142.1, 157.1, 159.6, 198.0; IR (KBr): 1698, 1627, 1512; HRMS (m/z): [M+H]+ Calcd for C20H17O5, 337.1076; Found, 337.1057.
All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å, and with Uĩso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C20H16O5 | F(000) = 704 |
Mr = 336.33 | Dx = 1.354 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54187 Å |
Hall symbol: -P 2ybc | Cell parameters from 26822 reflections |
a = 10.8311 (2) Å | θ = 3.1–68.2° |
b = 10.61451 (19) Å | µ = 0.81 mm−1 |
c = 15.4492 (3) Å | T = 296 K |
β = 111.728 (1)° | Block, colorless |
V = 1649.95 (5) Å3 | 0.60 × 0.60 × 0.30 mm |
Z = 4 |
Rigaku R-AXIS- APID diffractometer | 3023 independent reflections |
Radiation source: rotating anode | 2710 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 10.00 pixels mm-1 | θmax = 68.2°, θmin = 4.4° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (NUMABS; Higashi, 1999) | k = −12→12 |
Tmin = 0.711, Tmax = 0.785 | l = −18→18 |
29727 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0481P)2 + 0.2862P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3023 reflections | Δρmax = 0.16 e Å−3 |
233 parameters | Δρmin = −0.12 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0021 (3) |
C20H16O5 | V = 1649.95 (5) Å3 |
Mr = 336.33 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 10.8311 (2) Å | µ = 0.81 mm−1 |
b = 10.61451 (19) Å | T = 296 K |
c = 15.4492 (3) Å | 0.60 × 0.60 × 0.30 mm |
β = 111.728 (1)° |
Rigaku R-AXIS- APID diffractometer | 3023 independent reflections |
Absorption correction: multi-scan (NUMABS; Higashi, 1999) | 2710 reflections with I > 2σ(I) |
Tmin = 0.711, Tmax = 0.785 | Rint = 0.028 |
29727 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.16 e Å−3 |
3023 reflections | Δρmin = −0.12 e Å−3 |
233 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.40529 (9) | 0.47494 (10) | 0.24166 (7) | 0.0630 (3) | |
O2 | 0.36166 (9) | 0.19907 (10) | 0.24736 (6) | 0.0647 (3) | |
O3 | 0.54599 (9) | 0.15634 (11) | 0.36707 (7) | 0.0709 (3) | |
H1 | 0.5589 (19) | 0.100 (2) | 0.3272 (14) | 0.104 (6)* | |
O4 | 0.30544 (10) | 0.73160 (9) | 0.28563 (8) | 0.0726 (3) | |
O5 | −0.05580 (10) | 0.17144 (10) | 0.06622 (8) | 0.0725 (3) | |
C1 | 0.18889 (11) | 0.54939 (12) | 0.21895 (8) | 0.0487 (3) | |
C2 | 0.18877 (13) | 0.67861 (13) | 0.22803 (10) | 0.0580 (3) | |
C3 | 0.07232 (16) | 0.74830 (15) | 0.18184 (12) | 0.0706 (4) | |
H3 | 0.0716 | 0.8349 | 0.1906 | 0.085* | |
C4 | −0.03897 (15) | 0.68890 (15) | 0.12452 (11) | 0.0707 (4) | |
H4 | −0.1149 | 0.7362 | 0.0937 | 0.085* | |
C5 | −0.04262 (13) | 0.55796 (14) | 0.11051 (9) | 0.0590 (3) | |
C6 | −0.15566 (13) | 0.49476 (17) | 0.04818 (11) | 0.0711 (4) | |
H6 | −0.2311 | 0.5412 | 0.0148 | 0.085* | |
C7 | −0.15665 (14) | 0.36879 (17) | 0.03601 (11) | 0.0710 (4) | |
H7 | −0.2324 | 0.3292 | −0.0048 | 0.085* | |
C8 | −0.04226 (12) | 0.29720 (14) | 0.08549 (9) | 0.0576 (3) | |
C9 | 0.06985 (11) | 0.35343 (12) | 0.14630 (9) | 0.0505 (3) | |
H9 | 0.1442 | 0.3050 | 0.1787 | 0.061* | |
C10 | 0.07285 (11) | 0.48552 (12) | 0.16004 (8) | 0.0495 (3) | |
C11 | 0.31457 (11) | 0.47747 (11) | 0.27012 (8) | 0.0447 (3) | |
C12 | 0.33101 (10) | 0.41688 (11) | 0.36061 (7) | 0.0409 (3) | |
C13 | 0.40131 (10) | 0.30406 (11) | 0.39141 (7) | 0.0402 (3) | |
C14 | 0.43259 (12) | 0.26655 (13) | 0.48298 (8) | 0.0511 (3) | |
H14 | 0.4795 | 0.1921 | 0.5037 | 0.061* | |
C15 | 0.39508 (14) | 0.33816 (15) | 0.54409 (9) | 0.0605 (4) | |
H15 | 0.4171 | 0.3121 | 0.6055 | 0.073* | |
C16 | 0.32540 (13) | 0.44760 (14) | 0.51365 (9) | 0.0607 (4) | |
H16 | 0.3004 | 0.4960 | 0.5546 | 0.073* | |
C17 | 0.29207 (12) | 0.48650 (12) | 0.42223 (9) | 0.0523 (3) | |
H17 | 0.2431 | 0.5600 | 0.4019 | 0.063* | |
C18 | 0.43300 (11) | 0.21726 (11) | 0.32640 (7) | 0.0424 (3) | |
C19 | 0.32145 (18) | 0.86387 (15) | 0.28282 (13) | 0.0792 (5) | |
H19A | 0.4114 | 0.8861 | 0.3201 | 0.095* | |
H19B | 0.2620 | 0.9052 | 0.3069 | 0.095* | |
H19C | 0.3017 | 0.8900 | 0.2196 | 0.095* | |
C20 | 0.05113 (17) | 0.09279 (16) | 0.11674 (13) | 0.0798 (5) | |
H20A | 0.0300 | 0.0072 | 0.0966 | 0.096* | |
H20B | 0.0671 | 0.0990 | 0.1820 | 0.096* | |
H20C | 0.1293 | 0.1185 | 0.1061 | 0.096* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0532 (5) | 0.0731 (6) | 0.0744 (6) | 0.0134 (4) | 0.0372 (5) | 0.0261 (5) |
O2 | 0.0577 (5) | 0.0842 (7) | 0.0423 (5) | 0.0184 (5) | 0.0068 (4) | −0.0127 (4) |
O3 | 0.0549 (5) | 0.0910 (8) | 0.0539 (5) | 0.0303 (5) | 0.0051 (4) | −0.0173 (5) |
O4 | 0.0693 (6) | 0.0470 (5) | 0.0925 (8) | −0.0002 (5) | 0.0194 (6) | 0.0074 (5) |
O5 | 0.0589 (6) | 0.0676 (6) | 0.0757 (7) | −0.0136 (5) | 0.0073 (5) | 0.0077 (5) |
C1 | 0.0445 (6) | 0.0497 (7) | 0.0544 (7) | 0.0074 (5) | 0.0212 (5) | 0.0128 (5) |
C2 | 0.0566 (8) | 0.0524 (7) | 0.0659 (8) | 0.0054 (6) | 0.0238 (6) | 0.0107 (6) |
C3 | 0.0750 (10) | 0.0527 (8) | 0.0863 (10) | 0.0201 (7) | 0.0326 (8) | 0.0185 (7) |
C4 | 0.0591 (8) | 0.0723 (10) | 0.0796 (10) | 0.0264 (7) | 0.0245 (8) | 0.0246 (8) |
C5 | 0.0472 (7) | 0.0696 (9) | 0.0616 (8) | 0.0142 (6) | 0.0216 (6) | 0.0198 (6) |
C6 | 0.0434 (7) | 0.0907 (12) | 0.0713 (9) | 0.0153 (7) | 0.0121 (6) | 0.0229 (8) |
C7 | 0.0430 (7) | 0.0918 (12) | 0.0670 (9) | −0.0025 (7) | 0.0073 (6) | 0.0146 (8) |
C8 | 0.0459 (7) | 0.0673 (8) | 0.0574 (7) | −0.0049 (6) | 0.0165 (6) | 0.0115 (6) |
C9 | 0.0398 (6) | 0.0567 (7) | 0.0531 (7) | 0.0037 (5) | 0.0151 (5) | 0.0141 (5) |
C10 | 0.0411 (6) | 0.0580 (7) | 0.0518 (6) | 0.0067 (5) | 0.0200 (5) | 0.0138 (5) |
C11 | 0.0402 (6) | 0.0435 (6) | 0.0520 (6) | −0.0009 (5) | 0.0190 (5) | 0.0036 (5) |
C12 | 0.0340 (5) | 0.0447 (6) | 0.0449 (6) | −0.0026 (4) | 0.0154 (4) | −0.0013 (5) |
C13 | 0.0345 (5) | 0.0464 (6) | 0.0388 (5) | −0.0007 (4) | 0.0125 (4) | −0.0013 (4) |
C14 | 0.0502 (7) | 0.0599 (7) | 0.0410 (6) | 0.0052 (6) | 0.0143 (5) | 0.0036 (5) |
C15 | 0.0610 (8) | 0.0820 (10) | 0.0397 (6) | 0.0000 (7) | 0.0200 (6) | −0.0030 (6) |
C16 | 0.0622 (8) | 0.0724 (9) | 0.0560 (7) | −0.0029 (7) | 0.0319 (6) | −0.0168 (6) |
C17 | 0.0493 (7) | 0.0511 (7) | 0.0623 (7) | 0.0009 (5) | 0.0274 (6) | −0.0056 (6) |
C18 | 0.0383 (5) | 0.0476 (6) | 0.0398 (6) | 0.0030 (5) | 0.0128 (5) | 0.0003 (5) |
C19 | 0.0928 (12) | 0.0515 (8) | 0.0992 (12) | −0.0041 (8) | 0.0423 (10) | 0.0056 (8) |
C20 | 0.0753 (10) | 0.0634 (9) | 0.0870 (11) | −0.0022 (8) | 0.0142 (8) | −0.0008 (8) |
O1—C11 | 1.2163 (13) | C8—C9 | 1.3670 (18) |
O2—C18 | 1.1945 (13) | C9—C10 | 1.4166 (18) |
O3—C18 | 1.3195 (14) | C9—H9 | 0.9300 |
O3—H1 | 0.91 (2) | C11—C12 | 1.4885 (16) |
O4—C2 | 1.3684 (17) | C12—C17 | 1.3884 (16) |
O4—C19 | 1.4173 (18) | C12—C13 | 1.4042 (16) |
O5—C8 | 1.3637 (18) | C13—C14 | 1.3856 (16) |
O5—C20 | 1.4065 (19) | C13—C18 | 1.4935 (15) |
C1—C2 | 1.3788 (19) | C14—C15 | 1.3849 (18) |
C1—C10 | 1.4215 (17) | C14—H14 | 0.9300 |
C1—C11 | 1.5046 (15) | C15—C16 | 1.370 (2) |
C2—C3 | 1.4074 (19) | C15—H15 | 0.9300 |
C3—C4 | 1.358 (2) | C16—C17 | 1.3850 (19) |
C3—H3 | 0.9300 | C16—H16 | 0.9300 |
C4—C5 | 1.405 (2) | C17—H17 | 0.9300 |
C4—H4 | 0.9300 | C19—H19A | 0.9600 |
C5—C6 | 1.415 (2) | C19—H19B | 0.9600 |
C5—C10 | 1.4256 (16) | C19—H19C | 0.9600 |
C6—C7 | 1.350 (2) | C20—H20A | 0.9600 |
C6—H6 | 0.9300 | C20—H20B | 0.9600 |
C7—C8 | 1.4126 (19) | C20—H20C | 0.9600 |
C7—H7 | 0.9300 | ||
C18—O3—H1 | 110.5 (12) | C12—C11—C1 | 118.89 (9) |
C2—O4—C19 | 118.76 (12) | C17—C12—C13 | 119.07 (10) |
C8—O5—C20 | 117.39 (11) | C17—C12—C11 | 116.93 (11) |
C2—C1—C10 | 120.37 (11) | C13—C12—C11 | 123.23 (10) |
C2—C1—C11 | 119.08 (11) | C14—C13—C12 | 119.21 (10) |
C10—C1—C11 | 120.53 (11) | C14—C13—C18 | 118.63 (10) |
O4—C2—C1 | 116.08 (12) | C12—C13—C18 | 121.94 (9) |
O4—C2—C3 | 123.52 (13) | C15—C14—C13 | 121.04 (12) |
C1—C2—C3 | 120.37 (14) | C15—C14—H14 | 119.5 |
C4—C3—C2 | 119.94 (14) | C13—C14—H14 | 119.5 |
C4—C3—H3 | 120.0 | C16—C15—C14 | 119.65 (12) |
C2—C3—H3 | 120.0 | C16—C15—H15 | 120.2 |
C3—C4—C5 | 121.82 (13) | C14—C15—H15 | 120.2 |
C3—C4—H4 | 119.1 | C15—C16—C17 | 120.35 (12) |
C5—C4—H4 | 119.1 | C15—C16—H16 | 119.8 |
C4—C5—C6 | 122.79 (13) | C17—C16—H16 | 119.8 |
C4—C5—C10 | 118.80 (13) | C16—C17—C12 | 120.65 (12) |
C6—C5—C10 | 118.40 (13) | C16—C17—H17 | 119.7 |
C7—C6—C5 | 121.64 (13) | C12—C17—H17 | 119.7 |
C7—C6—H6 | 119.2 | O2—C18—O3 | 122.85 (11) |
C5—C6—H6 | 119.2 | O2—C18—C13 | 124.36 (10) |
C6—C7—C8 | 119.83 (14) | O3—C18—C13 | 112.69 (9) |
C6—C7—H7 | 120.1 | O4—C19—H19A | 109.5 |
C8—C7—H7 | 120.1 | O4—C19—H19B | 109.5 |
O5—C8—C9 | 125.01 (12) | H19A—C19—H19B | 109.5 |
O5—C8—C7 | 113.99 (13) | O4—C19—H19C | 109.5 |
C9—C8—C7 | 121.00 (14) | H19A—C19—H19C | 109.5 |
C8—C9—C10 | 120.03 (11) | H19B—C19—H19C | 109.5 |
C8—C9—H9 | 120.0 | O5—C20—H20A | 109.5 |
C10—C9—H9 | 120.0 | O5—C20—H20B | 109.5 |
C9—C10—C1 | 122.26 (10) | H20A—C20—H20B | 109.5 |
C9—C10—C5 | 119.11 (12) | O5—C20—H20C | 109.5 |
C1—C10—C5 | 118.59 (12) | H20A—C20—H20C | 109.5 |
O1—C11—C12 | 119.88 (10) | H20B—C20—H20C | 109.5 |
O1—C11—C1 | 121.07 (10) | ||
C19—O4—C2—C1 | 166.64 (13) | C6—C5—C10—C9 | −0.91 (18) |
C19—O4—C2—C3 | −15.3 (2) | C4—C5—C10—C1 | −2.41 (18) |
C10—C1—C2—O4 | −179.44 (11) | C6—C5—C10—C1 | 176.71 (12) |
C11—C1—C2—O4 | −1.13 (18) | C2—C1—C11—O1 | −77.60 (16) |
C10—C1—C2—C3 | 2.4 (2) | C10—C1—C11—O1 | 100.70 (14) |
C11—C1—C2—C3 | −179.30 (12) | C2—C1—C11—C12 | 97.80 (14) |
O4—C2—C3—C4 | 178.89 (14) | C10—C1—C11—C12 | −83.90 (14) |
C1—C2—C3—C4 | −3.1 (2) | O1—C11—C12—C17 | 132.79 (12) |
C2—C3—C4—C5 | 1.0 (2) | C1—C11—C12—C17 | −42.67 (15) |
C3—C4—C5—C6 | −177.30 (14) | O1—C11—C12—C13 | −37.07 (17) |
C3—C4—C5—C10 | 1.8 (2) | C1—C11—C12—C13 | 147.48 (11) |
C4—C5—C6—C7 | −179.97 (15) | C17—C12—C13—C14 | −1.43 (16) |
C10—C5—C6—C7 | 0.9 (2) | C11—C12—C13—C14 | 168.22 (11) |
C5—C6—C7—C8 | −0.7 (2) | C17—C12—C13—C18 | 173.01 (10) |
C20—O5—C8—C9 | 3.8 (2) | C11—C12—C13—C18 | −17.34 (16) |
C20—O5—C8—C7 | −176.41 (14) | C12—C13—C14—C15 | 0.31 (18) |
C6—C7—C8—O5 | −179.36 (14) | C18—C13—C14—C15 | −174.32 (11) |
C6—C7—C8—C9 | 0.4 (2) | C13—C14—C15—C16 | 0.3 (2) |
O5—C8—C9—C10 | 179.34 (12) | C14—C15—C16—C17 | 0.2 (2) |
C7—C8—C9—C10 | −0.4 (2) | C15—C16—C17—C12 | −1.4 (2) |
C8—C9—C10—C1 | −176.87 (11) | C13—C12—C17—C16 | 1.96 (17) |
C8—C9—C10—C5 | 0.67 (18) | C11—C12—C17—C16 | −168.33 (11) |
C2—C1—C10—C9 | 177.90 (12) | C14—C13—C18—O2 | 139.14 (13) |
C11—C1—C10—C9 | −0.38 (17) | C12—C13—C18—O2 | −35.33 (18) |
C2—C1—C10—C5 | 0.35 (17) | C14—C13—C18—O3 | −37.23 (15) |
C11—C1—C10—C5 | −177.93 (11) | C12—C13—C18—O3 | 148.30 (11) |
C4—C5—C10—C9 | 179.96 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O1i | 0.91 (2) | 1.83 (2) | 2.7320 (15) | 173.4 (19) |
C7—H7···O3ii | 0.93 | 2.49 | 3.3215 (19) | 150 |
C15—H15···O2iii | 0.93 | 2.48 | 3.3152 (16) | 149 |
C17—H17···O5iv | 0.93 | 2.55 | 3.2821 (18) | 136 |
C9—H9···O2 | 0.93 | 2.47 | 3.3850 (16) | 169 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x−1, −y+1/2, z−1/2; (iii) x, −y+1/2, z+1/2; (iv) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C20H16O5 |
Mr | 336.33 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 10.8311 (2), 10.61451 (19), 15.4492 (3) |
β (°) | 111.728 (1) |
V (Å3) | 1649.95 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.81 |
Crystal size (mm) | 0.60 × 0.60 × 0.30 |
Data collection | |
Diffractometer | Rigaku R-AXIS- APID diffractometer |
Absorption correction | Multi-scan (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.711, 0.785 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29727, 3023, 2710 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.095, 1.04 |
No. of reflections | 3023 |
No. of parameters | 233 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.16, −0.12 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O1i | 0.91 (2) | 1.83 (2) | 2.7320 (15) | 173.4 (19) |
C7—H7···O3ii | 0.93 | 2.49 | 3.3215 (19) | 150 |
C15—H15···O2iii | 0.93 | 2.48 | 3.3152 (16) | 149 |
C17—H17···O5iv | 0.93 | 2.55 | 3.2821 (18) | 136 |
C9—H9···O2 | 0.93 | 2.47 | 3.3850 (16) | 169 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x−1, −y+1/2, z−1/2; (iii) x, −y+1/2, z+1/2; (iv) −x, y+1/2, −z+1/2. |
Acknowledgements
The authors would express their gratitude to Professor Keiichi Noguchi for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by bis(4-bromobenzoyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe, Nakaema, Muto et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. Moreover, the X-ray crystal structural analysis of 1-(4-substituted benzoylated)naphthalenes, i.e., 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008), (4-chlorobenzoyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009), 1-(4-nitrobenzoyl)-2,7-dimethoxynaphthalene (Watanabe, Nakaema, Nishijima et al., 2010) and methyl 4-(2,7-dimethoxy-1-naphthoyl)benzoate (Hijikata et al., 2010), has also revealed essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes.
As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, 1-monoaroylnaphthalene bearing carboxy group, is discussed in this report.
In the molecule of the title compound, shown in Fig. 1, the dihedral angle between the naphthalene ring (C1—C10) and the benzene ring (C12—C17) is 67.43 (5)°. The bridging carbonyl C1—C11(=O1)—C12 plane makes dihedral angles of 82.64 (6)° [C2—C1—C11—O1 torsion angle = -77.60 (16)°] and 41.79 (7)° [O1—C11—C12—C13 torsion angle = -37.07 (17)°], respectively, with the naphthalene ring system and the benzene ring. The dihedral angle between the carboxy O3—C18(=O2)—C13 plane and the benzene ring is 36.38 (7)° [C12—C13—C18—O2 torsion angle = -35.33 (19)°]. The dihedral angle between the bridging carbonyl C1—C11(=O1)—C12 plane and the carboxy O3—C18(=O2)—C13 plane is 51.88 (8)°. The torsion angle between one methoxy group and the naphthalene ring plane is relatively large [C29—O4—C2—C3 = -15.3 (2)°] and that between the other methoxy group and the naphthalene ring plane is rather small [C20—O5—C8—C7 = 3.8 (2)°]. The crystal structure is stabilized by intermolecular O3—H1···O1i [symmetry code: (i) -x+1, y-1/2,-z+1/2] and C—H···O hydrogen-bonding interactions with one intramolecular C9—H9···O2 hydrogen bonding (Table 1, Fig 1, 2).