metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Azido­(benzoyl­acetonato-κ2O,O′)[1-phenyl-3-(2-pyridylmethyl­imino)but-1-en-1-olato-κ3N,N′,O]cobalt(III)

aNational Changhua University of Education, Department of Chemistry, Changhua, Taiwan 50058
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 4 January 2010; accepted 27 January 2010; online 3 February 2010)

In the title complex, [Co(C16H15N2O)(C10H9O2)(N3)], the CoII atom adopts an octa­hedral coordination geometry by a tridentate Schiff base, a bidentate benzoyl­acetonate and an azide ligand. The imine N atom of the tridentate ligand is trans to the benzoyl O atom of the bidentate ligand and the azide ligand is trans to the acetyl O atom of the bidentate ligand. Non-classical intra­molecular Car­yl—H⋯O hydrogen bonds are present in the structure.

Related literature

For the preparation of the ligand, see: Ray et al. (2009[Ray, A., Pilet, G., Gómez-García, C. J. & Mitra, S. (2009). Polyhedron, 28, 511-520.]). For the crystal structure of a related complex, see: Clearfield et al. (1978[Clearfield, A., Gopal, R., Kline, R. J., Sipski, M. & Urban, L. O. (1978). J. Coord. Chem. 7, 163-169.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C16H15N2O)(C10H9O2)(N3)]

  • Mr = 513.43

  • Monoclinic, P 21 /c

  • a = 14.029 (3) Å

  • b = 14.386 (3) Å

  • c = 12.423 (3) Å

  • β = 102.752 (6)°

  • V = 2445.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 298 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.709, Tmax = 0.809

  • 29548 measured reflections

  • 5064 independent reflections

  • 2004 reflections with I > 2σ(I)

  • Rint = 0.143

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.147

  • S = 0.88

  • 5064 reflections

  • 319 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.93 2.38 2.699 (6) 100
C16—H16⋯O2 0.93 2.41 2.917 (6) 114
C26—H26⋯O2 0.93 2.34 2.661 (5) 100

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

The title complex, (I), was prepared by a one-pot reaction between an unpurified batch of the ligand precursor, (1Z,3E)-3-((pyridin-2-yl)methylimino)-1-phenylbut-1-en-1-ol, sodium azide, and cobalt acetate tetrahydrate in methanol. The complex consists of a tridentate Schiff base ligand, a benzoylacetonate ligand, and an azide ligand. The Co atom adopts an octahedral geometry. The presence of the bidentate ligand is due to the remaining benzolylacetone in the unpurified batch of the tridenatate ligand precursor. Non-classical intramolecular hydrogen bonds of the type Caryl—H···O are present in the structure.

The crystal structure of cobalt azido complex with Schiff base ligand has been reported (Clearfield et al., 1978).

Related literature top

For the preparation of the ligand, see: Ray et al. (2009). For the crystal structure of a related complex, see: Clearfield et al. (1978).

Experimental top

The tridentate Schiff ligand precursor, (1Z,3E)-3-((pyridin-2-yl)methylimino)-1-phenylbut-1-en-1-ol, was prepared according to the literature procedure (Ray et al., 2009). To an unpurified batch of the ligand precursor (ca 2.0 mmol), a methanolic solution (20 ml) of cobalt acetate tetrahydrate (0.249 g, 1.0 mmol) was added, followed by the addition, with constant stirring, of a solution of sodium azide (0.065 g, 1.0 mmol) in minimum volume of water/methanol mixture. The final solution was kept at room temperature yielding brown square-shaped crystals suitable for X-ray diffraction after a few days. Crystals were isolated by filtration and were air-dried.

Refinement top

All the H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93, 0.96 and 0.97, Å for aryl, methyl and methylene type H-atoms, respectively, while Uiso(H) = 1.5 Ueq (C) for the methyl and 1.2 Ueq (C) for all the other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 35% displacement ellipsoids for non-H atoms. The H atoms are dipicted by circles of an arbitrary radius.
Azido(benzoylacetonato-κ2O,O')[1-phenyl-3-(2- pyridylmethylimino)but-1-en-1-olato-κ3N,N',O]cobalt(III) top
Crystal data top
[Co(C16H15N2O)(C10H9O2)(N3)]F(000) = 1064
Mr = 513.43Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 715 reflections
a = 14.029 (3) Åθ = 2.2–19.8°
b = 14.386 (3) ŵ = 0.74 mm1
c = 12.423 (3) ÅT = 298 K
β = 102.752 (6)°Square prism, brown
V = 2445.4 (9) Å30.50 × 0.40 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
5064 independent reflections
Radiation source: fine-focus sealed tube2004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.143
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.709, Tmax = 0.809k = 1817
29548 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0651P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.001
5064 reflectionsΔρmax = 0.52 e Å3
319 parametersΔρmin = 0.29 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (4)
Crystal data top
[Co(C16H15N2O)(C10H9O2)(N3)]V = 2445.4 (9) Å3
Mr = 513.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.029 (3) ŵ = 0.74 mm1
b = 14.386 (3) ÅT = 298 K
c = 12.423 (3) Å0.50 × 0.40 × 0.30 mm
β = 102.752 (6)°
Data collection top
Bruker SMART APEXII
diffractometer
5064 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2004 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.809Rint = 0.143
29548 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.147H-atom parameters constrained
S = 0.88Δρmax = 0.52 e Å3
5064 reflectionsΔρmin = 0.29 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7324 (4)1.1726 (4)0.4878 (4)0.0851 (15)
H10.75831.13740.43830.102*
C20.7474 (4)1.2670 (5)0.4919 (5)0.112 (2)
H20.78201.29520.44510.135*
C30.7099 (5)1.3205 (5)0.5676 (6)0.130 (2)
H30.72171.38410.57360.156*
C40.6557 (5)1.2776 (5)0.6323 (5)0.125 (2)
H40.62811.31280.68040.150*
C50.6418 (4)1.1841 (4)0.6269 (4)0.0926 (16)
H50.60581.15640.67270.111*
C60.6800 (3)1.1285 (4)0.5547 (4)0.0659 (12)
C70.6688 (3)1.0260 (3)0.5500 (3)0.0608 (12)
C80.6028 (3)0.9800 (3)0.5984 (3)0.0633 (12)
H80.56251.01670.63110.076*
C90.5903 (3)0.8841 (3)0.6033 (3)0.0575 (12)
C100.5208 (3)0.8478 (3)0.6717 (4)0.0714 (13)
H10B0.49190.89930.70210.107*
H10A0.55620.80970.73060.107*
H10C0.47030.81160.62570.107*
C110.6247 (4)0.7255 (3)0.5649 (4)0.0812 (14)
H11A0.55550.71130.55190.097*
H11B0.65530.70540.63900.097*
C120.6696 (3)0.6748 (3)0.4822 (4)0.0627 (12)
C130.6583 (3)0.5820 (4)0.4625 (4)0.0775 (14)
H130.62180.54640.50120.093*
C140.7015 (3)0.5409 (3)0.3845 (4)0.0752 (14)
H140.69480.47750.37010.090*
C150.7548 (3)0.5966 (4)0.3286 (4)0.0683 (13)
H150.78430.57110.27530.082*
C160.7636 (3)0.6887 (4)0.3523 (3)0.0634 (12)
H160.79960.72540.31410.076*
C170.9868 (3)0.8414 (3)0.7072 (3)0.0724 (13)
H17A0.96910.88510.75780.109*
H17B1.05310.85230.70170.109*
H17C0.98100.77930.73340.109*
C180.9201 (3)0.8529 (3)0.5958 (4)0.0616 (12)
C190.9564 (3)0.8776 (3)0.5056 (4)0.0744 (14)
H191.02350.88690.51800.089*
C200.9042 (3)0.8899 (3)0.3995 (4)0.0575 (11)
C210.9506 (3)0.9039 (3)0.3039 (4)0.0612 (12)
C221.0523 (3)0.9007 (3)0.3166 (4)0.0705 (13)
H221.09250.89570.38670.085*
C231.0931 (4)0.9051 (3)0.2247 (5)0.0862 (16)
H231.16060.90150.23380.103*
C241.0358 (4)0.9147 (4)0.1210 (5)0.0917 (17)
H241.06380.91790.05990.110*
C250.9365 (4)0.9193 (4)0.1087 (4)0.0953 (17)
H250.89670.92520.03850.114*
C260.8941 (4)0.9153 (3)0.2001 (4)0.0772 (14)
H260.82660.92060.19040.093*
Co10.72505 (4)0.85915 (4)0.46535 (5)0.0621 (3)
N10.7223 (2)0.7297 (2)0.4290 (3)0.0593 (9)
N20.6382 (2)0.8246 (3)0.5547 (3)0.0585 (9)
N30.6147 (3)0.8765 (3)0.3428 (3)0.0777 (12)
N40.6194 (3)0.9354 (3)0.2769 (4)0.0749 (11)
N50.6216 (4)0.9907 (3)0.2103 (4)0.1157 (17)
O10.7286 (2)0.9854 (2)0.4994 (2)0.0706 (9)
O20.8099 (2)0.88660 (19)0.3693 (2)0.0676 (8)
O30.8291 (2)0.83817 (19)0.5923 (2)0.0642 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.084 (4)0.069 (4)0.106 (4)0.009 (3)0.031 (3)0.008 (3)
C20.132 (5)0.076 (5)0.140 (6)0.001 (4)0.054 (4)0.025 (4)
C30.165 (7)0.072 (5)0.164 (7)0.001 (4)0.061 (6)0.006 (5)
C40.185 (7)0.068 (5)0.140 (6)0.019 (4)0.076 (5)0.001 (4)
C50.127 (5)0.069 (4)0.090 (4)0.013 (3)0.043 (3)0.005 (3)
C60.059 (3)0.069 (4)0.067 (3)0.016 (3)0.009 (2)0.007 (3)
C70.055 (3)0.069 (4)0.059 (3)0.016 (2)0.014 (2)0.005 (2)
C80.056 (3)0.076 (4)0.063 (3)0.009 (2)0.023 (2)0.000 (2)
C90.045 (2)0.076 (4)0.053 (3)0.002 (2)0.013 (2)0.005 (2)
C100.063 (3)0.091 (4)0.067 (3)0.001 (2)0.029 (2)0.001 (3)
C110.094 (4)0.068 (4)0.096 (4)0.002 (3)0.051 (3)0.003 (3)
C120.068 (3)0.063 (3)0.062 (3)0.002 (2)0.025 (2)0.005 (3)
C130.095 (4)0.075 (4)0.068 (3)0.007 (3)0.031 (3)0.003 (3)
C140.098 (4)0.061 (3)0.069 (3)0.008 (3)0.023 (3)0.005 (3)
C150.072 (3)0.074 (4)0.060 (3)0.009 (3)0.015 (3)0.008 (3)
C160.061 (3)0.071 (4)0.061 (3)0.007 (2)0.018 (2)0.002 (3)
C170.075 (3)0.074 (4)0.065 (3)0.002 (2)0.009 (3)0.003 (2)
C180.069 (3)0.054 (3)0.065 (3)0.005 (2)0.021 (3)0.003 (2)
C190.065 (3)0.092 (4)0.066 (3)0.014 (3)0.015 (3)0.003 (3)
C200.057 (3)0.056 (3)0.065 (3)0.004 (2)0.025 (2)0.006 (2)
C210.062 (3)0.067 (3)0.060 (3)0.007 (2)0.025 (3)0.001 (2)
C220.068 (3)0.088 (4)0.059 (3)0.002 (2)0.021 (3)0.011 (3)
C230.072 (4)0.096 (4)0.102 (5)0.003 (3)0.041 (4)0.009 (3)
C240.078 (4)0.131 (5)0.072 (4)0.010 (3)0.028 (3)0.009 (3)
C250.082 (4)0.140 (5)0.067 (4)0.019 (3)0.022 (3)0.003 (3)
C260.069 (3)0.116 (4)0.050 (3)0.012 (3)0.019 (3)0.006 (3)
Co10.0620 (4)0.0668 (5)0.0648 (4)0.0038 (3)0.0301 (3)0.0043 (3)
N10.061 (2)0.065 (3)0.055 (2)0.0059 (18)0.0195 (19)0.0001 (18)
N20.056 (2)0.072 (3)0.052 (2)0.0026 (18)0.0216 (18)0.0094 (18)
N30.080 (3)0.089 (3)0.074 (3)0.002 (2)0.038 (2)0.005 (2)
N40.090 (3)0.074 (3)0.067 (3)0.023 (2)0.031 (2)0.0026 (19)
N50.177 (5)0.088 (4)0.088 (4)0.037 (3)0.043 (3)0.022 (3)
O10.0675 (19)0.064 (2)0.090 (2)0.0054 (15)0.0381 (18)0.0053 (16)
O20.066 (2)0.076 (2)0.070 (2)0.0016 (16)0.0349 (16)0.0089 (16)
O30.060 (2)0.078 (2)0.0572 (19)0.0035 (16)0.0173 (15)0.0026 (15)
Geometric parameters (Å, º) top
C1—C21.372 (7)C15—H150.9300
C1—C61.380 (6)C16—N11.355 (5)
C1—H10.9300C16—H160.9300
C2—C31.404 (7)C17—C181.498 (6)
C2—H20.9300C17—H17A0.9600
C3—C41.370 (8)C17—H17B0.9600
C3—H30.9300C17—H17C0.9600
C4—C51.359 (7)C18—O31.285 (5)
C4—H40.9300C18—C191.376 (6)
C5—C61.394 (6)C19—C201.370 (6)
C5—H50.9300C19—H190.9300
C6—C71.484 (6)C20—O21.295 (5)
C7—O11.294 (4)C20—C211.488 (5)
C7—C81.378 (5)C21—C261.366 (6)
C8—C91.393 (6)C21—C221.402 (6)
C8—H80.9300C22—C231.387 (6)
C9—N21.314 (5)C22—H220.9300
C9—C101.521 (5)C23—C241.367 (6)
C10—H10B0.9600C23—H230.9300
C10—H10A0.9600C24—C251.370 (6)
C10—H10C0.9600C24—H240.9300
C11—N21.447 (5)C25—C261.395 (6)
C11—C121.507 (6)C25—H250.9300
C11—H11A0.9700C26—H260.9300
C11—H11B0.9700Co1—O11.862 (3)
C12—N11.350 (5)Co1—N21.887 (3)
C12—C131.360 (6)Co1—O21.903 (3)
C13—C141.383 (6)Co1—N11.915 (4)
C13—H130.9300Co1—O31.922 (3)
C14—C151.382 (6)Co1—N31.933 (4)
C14—H140.9300N3—N41.190 (5)
C15—C161.358 (6)N4—N51.153 (5)
C2—C1—C6122.0 (5)C18—C17—H17C109.5
C2—C1—H1119.0H17A—C17—H17C109.5
C6—C1—H1119.0H17B—C17—H17C109.5
C1—C2—C3119.4 (6)O3—C18—C19123.9 (4)
C1—C2—H2120.3O3—C18—C17115.2 (4)
C3—C2—H2120.3C19—C18—C17120.9 (4)
C4—C3—C2119.0 (6)C20—C19—C18127.0 (4)
C4—C3—H3120.5C20—C19—H19116.5
C2—C3—H3120.5C18—C19—H19116.5
C5—C4—C3120.6 (6)O2—C20—C19124.7 (4)
C5—C4—H4119.7O2—C20—C21111.9 (4)
C3—C4—H4119.7C19—C20—C21123.4 (4)
C4—C5—C6121.9 (5)C26—C21—C22118.3 (4)
C4—C5—H5119.1C26—C21—C20120.3 (4)
C6—C5—H5119.1C22—C21—C20121.3 (4)
C1—C6—C5117.1 (5)C23—C22—C21120.0 (4)
C1—C6—C7120.0 (4)C23—C22—H22120.0
C5—C6—C7122.9 (5)C21—C22—H22120.0
O1—C7—C8124.4 (4)C24—C23—C22121.2 (5)
O1—C7—C6113.1 (4)C24—C23—H23119.4
C8—C7—C6122.4 (4)C22—C23—H23119.4
C7—C8—C9126.7 (4)C23—C24—C25118.8 (5)
C7—C8—H8116.7C23—C24—H24120.6
C9—C8—H8116.7C25—C24—H24120.6
N2—C9—C8122.9 (4)C24—C25—C26120.9 (5)
N2—C9—C10119.2 (4)C24—C25—H25119.6
C8—C9—C10117.9 (4)C26—C25—H25119.6
C9—C10—H10B109.5C21—C26—C25120.7 (5)
C9—C10—H10A109.5C21—C26—H26119.6
H10B—C10—H10A109.5C25—C26—H26119.6
C9—C10—H10C109.5O1—Co1—N296.43 (14)
H10B—C10—H10C109.5O1—Co1—O287.17 (12)
H10A—C10—H10C109.5N2—Co1—O2176.08 (15)
N2—C11—C12109.6 (4)O1—Co1—N1179.28 (14)
N2—C11—H11A109.8N2—Co1—N184.29 (16)
C12—C11—H11A109.8O2—Co1—N192.11 (13)
N2—C11—H11B109.8O1—Co1—O389.39 (12)
C12—C11—H11B109.8N2—Co1—O387.02 (13)
H11A—C11—H11B108.2O2—Co1—O394.59 (12)
N1—C12—C13122.7 (4)N1—Co1—O390.73 (13)
N1—C12—C11114.0 (4)O1—Co1—N391.70 (16)
C13—C12—C11123.2 (4)N2—Co1—N389.32 (15)
C12—C13—C14119.6 (4)O2—Co1—N389.01 (14)
C12—C13—H13120.2N1—Co1—N388.23 (16)
C14—C13—H13120.2O3—Co1—N3176.28 (14)
C13—C14—C15118.3 (5)C12—N1—C16117.1 (4)
C13—C14—H14120.9C12—N1—Co1116.0 (3)
C15—C14—H14120.9C16—N1—Co1126.8 (3)
C16—C15—C14119.4 (4)C9—N2—C11120.8 (3)
C16—C15—H15120.3C9—N2—Co1124.1 (3)
C14—C15—H15120.3C11—N2—Co1115.1 (3)
N1—C16—C15122.9 (4)N4—N3—Co1118.5 (3)
N1—C16—H16118.5N5—N4—N3177.6 (6)
C15—C16—H16118.5C7—O1—Co1124.2 (3)
C18—C17—H17A109.5C20—O2—Co1124.5 (3)
C18—C17—H17B109.5C18—O3—Co1124.8 (3)
H17A—C17—H17B109.5
C6—C1—C2—C31.0 (9)N2—Co1—N1—C123.3 (3)
C1—C2—C3—C42.7 (10)O2—Co1—N1—C12178.3 (3)
C2—C3—C4—C52.8 (11)O3—Co1—N1—C1283.6 (3)
C3—C4—C5—C61.2 (10)N3—Co1—N1—C1292.8 (3)
C2—C1—C6—C50.5 (7)N2—Co1—N1—C16173.3 (3)
C2—C1—C6—C7177.8 (5)O2—Co1—N1—C165.2 (3)
C4—C5—C6—C10.4 (8)O3—Co1—N1—C1699.8 (3)
C4—C5—C6—C7177.9 (5)N3—Co1—N1—C1683.8 (3)
C1—C6—C7—O114.6 (6)C8—C9—N2—C11178.2 (4)
C5—C6—C7—O1163.7 (4)C10—C9—N2—C110.6 (6)
C1—C6—C7—C8167.4 (4)C8—C9—N2—Co13.5 (6)
C5—C6—C7—C814.4 (7)C10—C9—N2—Co1178.9 (3)
O1—C7—C8—C91.3 (7)C12—C11—N2—C9167.4 (4)
C6—C7—C8—C9176.5 (4)C12—C11—N2—Co111.1 (5)
C7—C8—C9—N24.2 (7)O1—Co1—N2—C99.8 (3)
C7—C8—C9—C10173.5 (4)N1—Co1—N2—C9170.1 (3)
N2—C11—C12—N18.4 (6)O3—Co1—N2—C998.8 (3)
N2—C11—C12—C13171.7 (4)N3—Co1—N2—C981.8 (3)
N1—C12—C13—C140.5 (7)O1—Co1—N2—C11171.8 (3)
C11—C12—C13—C14179.6 (4)N1—Co1—N2—C118.3 (3)
C12—C13—C14—C150.2 (7)O3—Co1—N2—C1182.8 (3)
C13—C14—C15—C160.5 (7)N3—Co1—N2—C1196.6 (3)
C14—C15—C16—N10.0 (7)O1—Co1—N3—N450.9 (4)
O3—C18—C19—C200.4 (8)N2—Co1—N3—N4147.3 (4)
C17—C18—C19—C20179.5 (4)O2—Co1—N3—N436.3 (4)
C18—C19—C20—O25.4 (8)N1—Co1—N3—N4128.4 (4)
C18—C19—C20—C21171.3 (4)C8—C7—O1—Co19.0 (6)
O2—C20—C21—C262.6 (6)C6—C7—O1—Co1173.0 (3)
C19—C20—C21—C26179.7 (4)N2—Co1—O1—C712.5 (3)
O2—C20—C21—C22173.9 (4)O2—Co1—O1—C7166.0 (3)
C19—C20—C21—C223.2 (6)O3—Co1—O1—C799.4 (3)
C26—C21—C22—C232.8 (6)N3—Co1—O1—C777.0 (3)
C20—C21—C22—C23173.8 (4)C19—C20—O2—Co12.6 (6)
C21—C22—C23—C241.5 (7)C21—C20—O2—Co1174.4 (2)
C22—C23—C24—C250.4 (8)O1—Co1—O2—C2086.7 (3)
C23—C24—C25—C260.6 (8)N1—Co1—O2—C2093.4 (3)
C22—C21—C26—C253.0 (7)O3—Co1—O2—C202.5 (3)
C20—C21—C26—C25173.6 (4)N3—Co1—O2—C20178.4 (3)
C24—C25—C26—C212.0 (8)C19—C18—O3—Co16.4 (6)
C13—C12—N1—C161.0 (6)C17—C18—O3—Co1173.6 (3)
C11—C12—N1—C16179.1 (4)O1—Co1—O3—C1880.2 (3)
C13—C12—N1—Co1177.9 (4)N2—Co1—O3—C18176.7 (3)
C11—C12—N1—Co12.2 (5)O2—Co1—O3—C186.9 (3)
C15—C16—N1—C120.7 (6)N1—Co1—O3—C1899.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.382.699 (6)100
C16—H16···O20.932.412.917 (6)114
C26—H26···O20.932.342.661 (5)100

Experimental details

Crystal data
Chemical formula[Co(C16H15N2O)(C10H9O2)(N3)]
Mr513.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.029 (3), 14.386 (3), 12.423 (3)
β (°) 102.752 (6)
V3)2445.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.709, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
29548, 5064, 2004
Rint0.143
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.147, 0.88
No. of reflections5064
No. of parameters319
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.382.699 (6)99.7
C16—H16···O20.932.412.917 (6)113.9
C26—H26···O20.932.342.661 (5)99.9
 

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClearfield, A., Gopal, R., Kline, R. J., Sipski, M. & Urban, L. O. (1978). J. Coord. Chem. 7, 163–169.  CrossRef CAS Web of Science Google Scholar
First citationRay, A., Pilet, G., Gómez-García, C. J. & Mitra, S. (2009). Polyhedron, 28, 511–520.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds