metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­[N′-(2-hy­droxy­benzyl­­idene)isonicotinohydrazide-κN]silver(I) nitrate

aDepartment of Chemistry, Faculty of Science, Imom Khomeini International University, Ghazvin, Iran, bDepartment of Chemistry, Faculty of Science, Islamic Azad University Ardebil Branch, Ardebil, Iran, and cFaculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
*Correspondence e-mail: shghamamy@yahoo.com

(Received 15 January 2010; accepted 8 February 2010; online 13 February 2010)

In the title compound, [Ag(C13H11N3O2)2(H2O)]NO3, two N atoms from two pyridine rings of two N′-(2-hydroxy­benzyl­idene)isonicotinohydrazide ligands coordinate to the AgI atom, forming a nearly linear geometry with an N—Ag—N angle of 171.63 (6)°; a water O atom is located at the apical site, completing the T-shaped coordination. The crystal structure is stabilized by extensive O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonding.

Related literature

For factors affecting the coordination geometry of silver, see: Dong et al. (2004[Dong, Y.-B., Zhao, X., Huang, R.-Q., Smith, M. D. & zur Loye, H.-C. (2004). Inorg. Chem. 43, 5603-5612.]); Niu et al. (2009a[Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Wan, X.-S., Zhang, H.-Y., Niu, Y.-Y. & Meng, L.-Y. (2009a). CrystEngComm, 11, 1373-1382.]); Sumby & Hardie (2005[Sumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395-6399.]); Abu-Youssef et al. (2007[Abu-Youssef, M. A. M., Dey, R., Gohar, Y., Massoud, A. A., Ohrstrom, L. & Langer, V. (2007). Inorg. Chem. 46, 5893-5903.]). For related structures, see: Li et al. (2006[Li, B., Gao, P., Ye, L., Yang, G.-D. & Wu, L.-X. (2006). Acta Cryst. E62, m3238-m3239.]); Näther & Beck (2004[Näther, C. & Beck, A. (2004). Acta Cryst. E60, m1678-m1680.]); Niu et al. (2009b[Niu, C.-Y., Zhang, H.-Y. & Wan, X.-S. (2009b). Acta Cryst. E65, m1285.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C13H11N3O2)2(H2O)]NO3

  • Mr = 670.39

  • Monoclinic, P 21 /c

  • a = 11.7194 (6) Å

  • b = 12.6459 (6) Å

  • c = 18.5719 (9) Å

  • β = 104.738 (1)°

  • V = 2661.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 120 K

  • 0.55 × 0.45 × 0.30 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.686, Tmax = 0.791

  • 26832 measured reflections

  • 6427 independent reflections

  • 5518 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.07

  • 6427 reflections

  • 403 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O7i 0.84 (3) 2.01 (3) 2.844 (2) 171 (3)
O1W—H2W⋯O2ii 0.79 (3) 2.04 (3) 2.821 (2) 172 (3)
N2—H2N⋯O6 0.84 (3) 2.09 (3) 2.880 (2) 157 (2)
N5—H5N⋯O7iii 0.90 (3) 1.97 (3) 2.863 (2) 169 (2)
O2—H2O⋯N3 0.85 (3) 1.79 (3) 2.560 (2) 150 (2)
O4—H4O⋯N6 0.81 (2) 1.86 (2) 2.607 (2) 153 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is noteworthy that the coordination geometry of the silver metal center can be affected by many factors, such as coordination nature of organic ligands, temperature, counteranions, etc. (Dong et al., 2004; Niu et al., 2009a; Sumby & Hardie, 2005; Abu-Youssef et al., 2007). The crystal structures of bis(pyridine-4-carboxylic acid-N)silver(I) nitrate dihydrate (Li et al., 2006), chlorotris(3-methylpyridine-N)silver(I) (Näther & Beck, 2004) and bis[N0-(3-cyanobenzylidene)isonicotinohydrazide]silver(I) trifluoroacetate (Niu et al., 2009b) have been reported. We have synthsized a new coordination complex of silver using N'-(2-hydroxybenzylidene)isonicotinohydrazide ligand, (I), and determined its crystal structure which is presented in this article.

The central Ag atom in (I) is coordinated by two nitrogen atoms from two pyridine rings of two different ligands and a water O atom located at the apical site, defining slightly distorted linear coordination geometry (Fig. 1). The cations, anions and solvent water molecules are linked by O—H···O, O—H···N and N—H···O hydrogen bonds into a three-dimensional network (Table 1).

Related literature top

For factors affecting the coordination geometry of the silver metal center, see: Dong et al. (2004); Niu et al. (2009a); Sumby & Hardie (2005); Abu-Youssef et al. (2007). For related structures, see: Li et al. (2006); Näther & Beck (2004); Niu et al. (2009b).

Experimental top

A solution of N'-(2-hydroxybenzylidene)isonicotinohydrazide (0.14 g, 1 mol) in CH3OH (10 ml) was added to an aqueous solution of AgNO3 (0.1 g, 1 mol) in water (5 ml) with stirring at 333 K. A small amount of precipitate was removed from the resulting solution to grow crystals for crystallographic study. Prism shaped colorless crystals of (I) were obtained by slow evaporation of the solvent from a solution of (I) in CCl4 at room temperature over a period of 3 d.

Refinement top

The hydrogen atoms bonded to N and O atoms were located from a difference Fourier map and were allowed to refine freely. The aryl H atoms were placed in calculated position with C—H = 0.95 Å in riding mode, with Uiso(H) = 1.2Ueq of the carrier C atoms. The residual electron density in the final difference map was located in the close proximity of Ag atom and was essentially meaningless.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Aquabis[N'-(2-hydroxybenzylidene)isonicotinohydrazide- κN]silver(I) nitrate top
Crystal data top
[Ag(C13H11N3O2)2(H2O)]NO3F(000) = 1360
Mr = 670.39Dx = 1.673 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 530 reflections
a = 11.7194 (6) Åθ = 3–28°
b = 12.6459 (6) ŵ = 0.82 mm1
c = 18.5719 (9) ÅT = 120 K
β = 104.738 (1)°Prism, colourless
V = 2661.8 (2) Å30.55 × 0.45 × 0.30 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6427 independent reflections
Radiation source: normal-focus sealed tube5518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1515
Tmin = 0.686, Tmax = 0.791k = 1616
26832 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0415P)2 + 1.2646P]
where P = (Fo2 + 2Fc2)/3
6427 reflections(Δ/σ)max = 0.002
403 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Ag(C13H11N3O2)2(H2O)]NO3V = 2661.8 (2) Å3
Mr = 670.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7194 (6) ŵ = 0.82 mm1
b = 12.6459 (6) ÅT = 120 K
c = 18.5719 (9) Å0.55 × 0.45 × 0.30 mm
β = 104.738 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6427 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
5518 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.791Rint = 0.026
26832 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.04 e Å3
6427 reflectionsΔρmin = 0.57 e Å3
403 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.775957 (12)0.740141 (11)0.273949 (7)0.02310 (6)
O10.34784 (12)0.58945 (10)0.05478 (8)0.0300 (3)
O20.13029 (13)0.62068 (10)0.23755 (8)0.0270 (3)
H2O0.174 (2)0.642 (2)0.1962 (14)0.039 (7)*
O31.18823 (12)0.93761 (10)0.59595 (8)0.0296 (3)
O41.41552 (13)0.91337 (11)0.78672 (8)0.0281 (3)
H4O1.373 (2)0.8915 (19)0.7484 (14)0.036 (7)*
N10.64148 (14)0.72810 (12)0.17184 (8)0.0205 (3)
N20.31651 (14)0.76550 (12)0.06954 (8)0.0187 (3)
H2N0.3355 (19)0.827 (2)0.0542 (12)0.026 (6)*
N30.23344 (14)0.74841 (11)0.13455 (9)0.0184 (3)
N40.91745 (13)0.77455 (12)0.37111 (8)0.0196 (3)
N51.23864 (14)0.76411 (12)0.61217 (9)0.0187 (3)
H5N1.239 (2)0.700 (2)0.5912 (15)0.045 (7)*
N61.31761 (13)0.78524 (12)0.67872 (8)0.0197 (3)
C20.59564 (16)0.63071 (15)0.14847 (10)0.0246 (4)
H2A0.62440.57100.17870.030*
C30.50945 (16)0.61508 (14)0.08293 (10)0.0235 (4)
H3A0.48070.54600.06870.028*
C40.46537 (15)0.70135 (14)0.03811 (9)0.0194 (3)
C50.51035 (16)0.80089 (14)0.06191 (10)0.0216 (3)
H5A0.48200.86180.03290.026*
C60.59588 (16)0.81041 (15)0.12748 (10)0.0229 (4)
H6A0.62480.87920.14260.027*
C70.37251 (15)0.67941 (14)0.03274 (10)0.0200 (3)
C80.17347 (15)0.82700 (14)0.16895 (9)0.0194 (3)
H8A0.18790.89680.14990.023*
C90.08375 (15)0.80705 (14)0.23707 (10)0.0200 (3)
C100.06388 (16)0.70525 (15)0.26912 (10)0.0210 (3)
C110.02388 (17)0.68925 (17)0.33365 (10)0.0273 (4)
H11A0.03550.62090.35550.033*
C120.09495 (17)0.77244 (17)0.36661 (11)0.0280 (4)
H12A0.15530.76080.41090.034*
C130.07862 (17)0.87339 (17)0.33525 (10)0.0281 (4)
H13A0.12820.93020.35750.034*
C140.01051 (16)0.88956 (15)0.27153 (10)0.0241 (4)
H14A0.02240.95840.25060.029*
C160.96229 (16)0.87207 (14)0.38692 (10)0.0234 (4)
H16A0.93440.92720.35220.028*
C171.04701 (16)0.89570 (14)0.45134 (10)0.0231 (4)
H19B1.07720.96550.46020.028*
C181.08769 (15)0.81621 (14)0.50305 (9)0.0194 (3)
C191.04189 (16)0.71489 (15)0.48736 (10)0.0207 (3)
H19A1.06780.65870.52150.025*
C200.95837 (16)0.69751 (14)0.42146 (10)0.0211 (3)
H20A0.92800.62800.41090.025*
C211.17579 (15)0.84614 (14)0.57436 (9)0.0200 (3)
C221.38215 (15)0.70897 (14)0.71241 (10)0.0200 (3)
H22A1.37360.64010.69130.024*
C231.46765 (16)0.72811 (14)0.78232 (10)0.0209 (3)
C241.48193 (16)0.82865 (15)0.81647 (10)0.0224 (4)
C251.56702 (17)0.84345 (16)0.88292 (10)0.0279 (4)
H25A1.57600.91090.90620.033*
C261.63897 (18)0.76048 (17)0.91552 (11)0.0303 (4)
H26A1.69720.77180.96080.036*
C271.62699 (17)0.66057 (17)0.88272 (11)0.0309 (4)
H27A1.67680.60400.90520.037*
C281.54123 (17)0.64503 (16)0.81680 (10)0.0264 (4)
H28A1.53200.57690.79450.032*
N70.23978 (14)0.99376 (11)0.00096 (8)0.0240 (3)
O50.14711 (16)1.04260 (14)0.02193 (9)0.0520 (5)
O60.31228 (13)0.98880 (11)0.03995 (8)0.0314 (3)
O70.26376 (13)0.94629 (10)0.06137 (7)0.0284 (3)
O1W0.76685 (14)0.54006 (11)0.30562 (9)0.0308 (3)
H1W0.759 (2)0.519 (2)0.3471 (15)0.039 (7)*
H2W0.801 (3)0.496 (2)0.2897 (16)0.055 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01855 (9)0.03073 (9)0.01712 (8)0.00154 (5)0.00076 (6)0.00185 (5)
O10.0320 (7)0.0221 (7)0.0302 (7)0.0029 (5)0.0025 (6)0.0047 (5)
O20.0318 (7)0.0214 (6)0.0253 (7)0.0001 (5)0.0029 (6)0.0062 (5)
O30.0332 (7)0.0218 (7)0.0290 (7)0.0022 (5)0.0009 (6)0.0058 (5)
O40.0323 (7)0.0235 (7)0.0249 (7)0.0031 (5)0.0005 (6)0.0050 (5)
N10.0221 (8)0.0266 (8)0.0132 (7)0.0085 (6)0.0052 (6)0.0035 (6)
N20.0184 (7)0.0197 (7)0.0154 (7)0.0004 (5)0.0008 (6)0.0019 (5)
N30.0173 (7)0.0232 (7)0.0146 (7)0.0013 (5)0.0037 (6)0.0008 (5)
N40.0150 (7)0.0264 (8)0.0164 (7)0.0022 (6)0.0021 (6)0.0014 (6)
N50.0191 (7)0.0195 (7)0.0159 (7)0.0015 (5)0.0013 (6)0.0021 (5)
N60.0180 (7)0.0246 (7)0.0152 (7)0.0021 (6)0.0020 (6)0.0019 (6)
C20.0235 (9)0.0239 (9)0.0252 (9)0.0064 (7)0.0039 (7)0.0050 (7)
C30.0244 (9)0.0212 (8)0.0238 (9)0.0037 (7)0.0040 (7)0.0011 (7)
C40.0196 (8)0.0206 (8)0.0185 (8)0.0033 (6)0.0057 (7)0.0011 (6)
C50.0213 (9)0.0209 (9)0.0219 (9)0.0012 (7)0.0038 (7)0.0013 (7)
C60.0219 (9)0.0231 (9)0.0223 (9)0.0023 (7)0.0029 (7)0.0010 (7)
C70.0171 (8)0.0233 (8)0.0190 (8)0.0028 (6)0.0037 (6)0.0002 (6)
C80.0198 (8)0.0198 (8)0.0178 (8)0.0020 (6)0.0034 (6)0.0018 (6)
C90.0202 (8)0.0222 (8)0.0183 (8)0.0035 (7)0.0057 (7)0.0006 (6)
C100.0201 (8)0.0241 (9)0.0200 (8)0.0031 (7)0.0071 (7)0.0011 (7)
C110.0253 (9)0.0357 (11)0.0205 (9)0.0067 (8)0.0054 (7)0.0057 (8)
C120.0178 (9)0.0488 (12)0.0149 (8)0.0055 (8)0.0005 (7)0.0011 (8)
C130.0230 (9)0.0377 (11)0.0226 (9)0.0023 (8)0.0039 (7)0.0087 (8)
C140.0269 (9)0.0248 (9)0.0206 (9)0.0011 (7)0.0062 (7)0.0024 (7)
C160.0252 (9)0.0213 (8)0.0234 (9)0.0046 (7)0.0059 (7)0.0044 (7)
C170.0263 (9)0.0190 (8)0.0237 (9)0.0006 (7)0.0054 (7)0.0001 (7)
C180.0192 (8)0.0207 (8)0.0189 (8)0.0020 (6)0.0060 (7)0.0010 (6)
C190.0197 (8)0.0217 (8)0.0197 (8)0.0001 (7)0.0034 (7)0.0030 (7)
C200.0222 (8)0.0200 (8)0.0188 (8)0.0012 (7)0.0014 (7)0.0012 (6)
C210.0196 (8)0.0213 (8)0.0192 (8)0.0003 (6)0.0053 (7)0.0006 (6)
C220.0214 (8)0.0198 (8)0.0183 (8)0.0023 (7)0.0040 (7)0.0009 (6)
C230.0191 (8)0.0260 (9)0.0174 (8)0.0034 (7)0.0042 (7)0.0009 (7)
C240.0203 (8)0.0262 (9)0.0208 (8)0.0057 (7)0.0056 (7)0.0002 (7)
C250.0262 (10)0.0348 (10)0.0219 (9)0.0109 (8)0.0046 (7)0.0032 (8)
C260.0202 (9)0.0496 (13)0.0180 (9)0.0098 (8)0.0006 (7)0.0044 (8)
C270.0241 (10)0.0411 (11)0.0261 (10)0.0006 (8)0.0036 (8)0.0104 (8)
C280.0261 (9)0.0283 (9)0.0242 (9)0.0001 (7)0.0052 (7)0.0046 (7)
N70.0332 (8)0.0160 (7)0.0185 (7)0.0010 (6)0.0012 (6)0.0018 (5)
O50.0536 (11)0.0551 (11)0.0430 (9)0.0335 (9)0.0045 (8)0.0096 (8)
O60.0413 (8)0.0264 (7)0.0276 (7)0.0055 (6)0.0108 (6)0.0014 (5)
O70.0404 (8)0.0210 (6)0.0192 (6)0.0051 (6)0.0007 (6)0.0023 (5)
O1W0.0431 (9)0.0238 (7)0.0281 (8)0.0042 (6)0.0138 (7)0.0015 (6)
Geometric parameters (Å, º) top
Ag1—N12.1406 (16)C10—C111.381 (3)
Ag1—N42.1616 (15)C11—C121.384 (3)
Ag1—O1W2.6059 (14)C11—H11A0.9500
O1—C71.219 (2)C12—C131.396 (3)
O2—C101.364 (2)C12—H12A0.9500
O2—H2O0.85 (3)C13—C141.380 (3)
O3—C211.221 (2)C13—H13A0.9500
O4—C241.356 (2)C14—H14A0.9500
O4—H4O0.81 (3)C16—C171.379 (3)
N1—C61.350 (2)C16—H16A0.9500
N1—C21.369 (2)C17—C181.388 (2)
N2—N31.362 (2)C17—H19B0.9500
N2—C71.362 (2)C18—C191.391 (3)
N2—H2N0.83 (2)C18—C211.506 (2)
N3—C81.289 (2)C19—C201.377 (2)
N4—C161.343 (2)C19—H19A0.9500
N4—C201.351 (2)C20—H20A0.9500
N5—C211.360 (2)C22—C231.444 (3)
N5—N61.369 (2)C22—H22A0.9500
N5—H5N0.90 (3)C23—C281.406 (3)
N6—C221.286 (2)C23—C241.412 (3)
C2—C31.384 (3)C24—C251.388 (3)
C2—H2A0.9500C25—C261.385 (3)
C3—C41.390 (2)C25—H25A0.9500
C3—H3A0.9500C26—C271.394 (3)
C4—C51.393 (3)C26—H26A0.9500
C4—C71.505 (2)C27—C281.386 (3)
C5—C61.372 (2)C27—H27A0.9500
C5—H5A0.9500C28—H28A0.9500
C6—H6A0.9500N7—O51.224 (2)
C8—C91.447 (2)N7—O61.250 (2)
C8—H8A0.9500N7—O71.2705 (19)
C9—C141.398 (2)O1W—H1W0.84 (3)
C9—C101.412 (3)O1W—H2W0.79 (3)
N1—Ag1—N4171.63 (6)C13—C12—H12A119.8
N1—Ag1—O1W93.88 (5)C14—C13—C12119.12 (18)
N4—Ag1—O1W94.23 (5)C14—C13—H13A120.4
C10—O2—H2O106.6 (17)C12—C13—H13A120.4
C24—O4—H4O104.5 (18)C13—C14—C9121.63 (18)
C6—N1—C2115.94 (16)C13—C14—H14A119.2
C6—N1—Ag1125.00 (13)C9—C14—H14A119.2
C2—N1—Ag1119.07 (11)N4—C16—C17122.94 (16)
N3—N2—C7117.57 (15)N4—C16—H16A118.5
N3—N2—H2N121.2 (15)C17—C16—H16A118.5
C7—N2—H2N121.1 (15)C16—C17—C18119.21 (17)
C8—N3—N2119.60 (14)C16—C17—H19B120.4
C16—N4—C20117.42 (16)C18—C17—H19B120.4
C16—N4—Ag1122.79 (12)C17—C18—C19118.41 (16)
C20—N4—Ag1119.63 (12)C17—C18—C21117.67 (16)
C21—N5—N6118.07 (15)C19—C18—C21123.88 (16)
C21—N5—H5N121.6 (17)C20—C19—C18118.85 (17)
N6—N5—H5N119.4 (17)C20—C19—H19A120.6
C22—N6—N5118.16 (15)C18—C19—H19A120.6
N1—C2—C3123.16 (16)N4—C20—C19123.17 (17)
N1—C2—H2A118.4N4—C20—H20A118.4
C3—C2—H2A118.4C19—C20—H20A118.4
C2—C3—C4119.45 (17)O3—C21—N5123.33 (16)
C2—C3—H3A120.3O3—C21—C18121.66 (16)
C4—C3—H3A120.3N5—C21—C18115.00 (15)
C3—C4—C5117.81 (17)N6—C22—C23119.96 (16)
C3—C4—C7117.06 (16)N6—C22—H22A120.0
C5—C4—C7125.13 (16)C23—C22—H22A120.0
C6—C5—C4119.55 (17)C28—C23—C24118.66 (17)
C6—C5—H5A120.2C28—C23—C22119.27 (17)
C4—C5—H5A120.2C24—C23—C22122.05 (17)
N1—C6—C5124.09 (17)O4—C24—C25117.62 (17)
N1—C6—H6A118.0O4—C24—C23122.56 (16)
C5—C6—H6A118.0C25—C24—C23119.82 (18)
O1—C7—N2122.33 (16)C26—C25—C24120.42 (19)
O1—C7—C4121.53 (16)C26—C25—H25A119.8
N2—C7—C4116.13 (15)C24—C25—H25A119.8
N3—C8—C9118.84 (16)C25—C26—C27120.87 (19)
N3—C8—H8A120.6C25—C26—H26A119.6
C9—C8—H8A120.6C27—C26—H26A119.6
C14—C9—C10118.10 (16)C28—C27—C26118.96 (19)
C14—C9—C8119.67 (16)C28—C27—H27A120.5
C10—C9—C8122.18 (16)C26—C27—H27A120.5
O2—C10—C11118.38 (17)C27—C28—C23121.28 (19)
O2—C10—C9121.24 (16)C27—C28—H28A119.4
C11—C10—C9120.38 (18)C23—C28—H28A119.4
C10—C11—C12120.25 (19)O5—N7—O6121.33 (16)
C10—C11—H11A119.9O5—N7—O7120.08 (17)
C12—C11—H11A119.9O6—N7—O7118.59 (15)
C11—C12—C13120.50 (18)H1W—O1W—H2W108 (3)
C11—C12—H12A119.8
O1W—Ag1—N1—C6175.36 (14)C12—C13—C14—C90.9 (3)
O1W—Ag1—N1—C24.07 (14)C10—C9—C14—C130.3 (3)
O1W—Ag1—N4—C16178.91 (14)C8—C9—C14—C13177.92 (17)
O1W—Ag1—N4—C203.61 (14)C20—N4—C16—C170.1 (3)
C7—N2—N3—C8175.98 (16)Ag1—N4—C16—C17175.52 (14)
C21—N5—N6—C22175.93 (16)N4—C16—C17—C180.7 (3)
C6—N1—C2—C31.2 (3)C16—C17—C18—C190.6 (3)
Ag1—N1—C2—C3179.31 (14)C16—C17—C18—C21177.08 (16)
N1—C2—C3—C40.5 (3)C17—C18—C19—C200.0 (3)
C2—C3—C4—C50.3 (3)C21—C18—C19—C20177.56 (17)
C2—C3—C4—C7179.53 (16)C16—N4—C20—C190.6 (3)
C3—C4—C5—C60.4 (3)Ag1—N4—C20—C19174.99 (14)
C7—C4—C5—C6179.42 (17)C18—C19—C20—N40.6 (3)
C2—N1—C6—C51.1 (3)N6—N5—C21—O31.7 (3)
Ag1—N1—C6—C5179.44 (14)N6—N5—C21—C18177.92 (14)
C4—C5—C6—N10.3 (3)C17—C18—C21—O319.3 (3)
N3—N2—C7—O12.5 (3)C19—C18—C21—O3158.27 (18)
N3—N2—C7—C4178.87 (15)C17—C18—C21—N5161.04 (16)
C3—C4—C7—O19.2 (3)C19—C18—C21—N521.4 (2)
C5—C4—C7—O1170.63 (17)N5—N6—C22—C23179.24 (16)
C3—C4—C7—N2169.47 (16)N6—C22—C23—C28177.15 (17)
C5—C4—C7—N210.7 (3)N6—C22—C23—C241.2 (3)
N2—N3—C8—C9178.63 (15)C28—C23—C24—O4179.40 (17)
N3—C8—C9—C14174.16 (16)C22—C23—C24—O41.0 (3)
N3—C8—C9—C103.3 (3)C28—C23—C24—C250.3 (3)
C14—C9—C10—O2178.56 (16)C22—C23—C24—C25178.70 (17)
C8—C9—C10—O21.0 (3)O4—C24—C25—C26178.97 (17)
C14—C9—C10—C111.5 (3)C23—C24—C25—C260.8 (3)
C8—C9—C10—C11179.04 (17)C24—C25—C26—C270.4 (3)
O2—C10—C11—C12178.61 (16)C25—C26—C27—C280.3 (3)
C9—C10—C11—C121.5 (3)C26—C27—C28—C230.8 (3)
C10—C11—C12—C130.2 (3)C24—C23—C28—C270.4 (3)
C11—C12—C13—C141.0 (3)C22—C23—C28—C27177.98 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O7i0.84 (3)2.01 (3)2.844 (2)171 (3)
O1W—H2W···O2ii0.79 (3)2.04 (3)2.821 (2)172 (3)
N2—H2N···O60.84 (3)2.09 (3)2.880 (2)157 (2)
N5—H5N···O7iii0.90 (3)1.97 (3)2.863 (2)169 (2)
O2—H2O···N30.85 (3)1.79 (3)2.560 (2)150 (2)
O4—H4O···N60.81 (2)1.86 (2)2.607 (2)153 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(C13H11N3O2)2(H2O)]NO3
Mr670.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.7194 (6), 12.6459 (6), 18.5719 (9)
β (°) 104.738 (1)
V3)2661.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.55 × 0.45 × 0.30
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.686, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
26832, 6427, 5518
Rint0.026
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.07
No. of reflections6427
No. of parameters403
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.04, 0.57

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O7i0.84 (3)2.01 (3)2.844 (2)171 (3)
O1W—H2W···O2ii0.79 (3)2.04 (3)2.821 (2)172 (3)
N2—H2N···O60.84 (3)2.09 (3)2.880 (2)157 (2)
N5—H5N···O7iii0.90 (3)1.97 (3)2.863 (2)169 (2)
O2—H2O···N30.85 (3)1.79 (3)2.560 (2)150 (2)
O4—H4O···N60.81 (2)1.86 (2)2.607 (2)153 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Dr M. Amirnasr, Dr A R. Mahjoub and Dr N. Safari for valuable discussions.

References

First citationAbu-Youssef, M. A. M., Dey, R., Gohar, Y., Massoud, A. A., Ohrstrom, L. & Langer, V. (2007). Inorg. Chem. 46, 5893–5903.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationDong, Y.-B., Zhao, X., Huang, R.-Q., Smith, M. D. & zur Loye, H.-C. (2004). Inorg. Chem. 43, 5603–5612.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, B., Gao, P., Ye, L., Yang, G.-D. & Wu, L.-X. (2006). Acta Cryst. E62, m3238–m3239.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Beck, A. (2004). Acta Cryst. E60, m1678–m1680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNiu, C.-Y., Wu, B.-L., Zheng, X.-F., Wan, X.-S., Zhang, H.-Y., Niu, Y.-Y. & Meng, L.-Y. (2009a). CrystEngComm, 11, 1373–1382.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, C.-Y., Zhang, H.-Y. & Wan, X.-S. (2009b). Acta Cryst. E65, m1285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395–6399.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds