organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­imidazolium acetate

aYuncheng University, College of Chemistry, Yuncheng 044000, People's Republic of China
*Correspondence e-mail: xiadaocheng1976@yahoo.com.cn

(Received 5 February 2010; accepted 8 February 2010; online 17 February 2010)

There are two 2-phenyl­imidazole cations and two acetate anions in the asymmetric unit of the title mol­ecular salt, C9H9N2+·C2H3O2. The dihredral angles between the five- and six-membered rings are 5.50 (2) and 6.90 (2)° in the two molecules. The structure is stabilized by N—H⋯O and weak C—H⋯O hydrogen-bonding inter­actions between the cations and anions, resulting in chains propagating in [110].

Related literature

For related structures, see: Liu et al. (2008[Liu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Ping, G.-J. (2008). CrystEngCommun, 10, 565-572.]); Yang et al. (2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]); Xia et al. (2009[Xia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N2+·C2H3O2

  • Mr = 204.23

  • Monoclinic, P 21 /n

  • a = 10.0320 (6) Å

  • b = 11.0043 (7) Å

  • c = 19.3936 (9) Å

  • β = 97.982 (5)°

  • V = 2120.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.17 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.57, Tmax = 0.81

  • 9257 measured reflections

  • 4331 independent reflections

  • 2142 reflections with I > 2 σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 0.82

  • 4331 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.75 2.606 (2) 172
N2—H2⋯O3 0.86 1.86 2.720 (2) 175
N3—H3⋯O2 0.86 1.81 2.667 (2) 175
N4—H4⋯O4ii 0.86 1.76 2.609 (2) 169
C2—H2A⋯O3 0.93 2.48 3.374 (2) 161
C6—H6⋯O1i 0.93 2.52 3.407 (3) 158
C8—H8⋯O4iii 0.93 2.53 3.430 (2) 164
C14—H14⋯O4ii 0.93 2.55 3.439 (2) 159
C18—H18⋯O2 0.93 2.41 3.309 (2) 162
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Phenylimidazole has been extensively used to build supramolecular architectures (Liu et al., 2008; Yang et al., 2008). Continuing our research in this important field (Xia et al., 2009), we now report the preparation and crystal structure of the title compound, (I).

There are two 2-phenylimidazole cations and two acetate anions in the asymmetric unit of the title compound (Fig. 1). In the crystal, the cations and anions are linked into chains along [110] by the N—H···O H–bonding interactions (Table 1) thus stabilizing the structure. The structure is further stabilized by rather weak non-classical interactions of the type C—H···O.

Related literature top

For related structures, see: Liu et al. (2008); Yang et al. (2008); Xia et al. (2009).

Experimental top

A mixture of 2-phenylimidazole (0.5 mmol), CH3COOH (0.5 mmol) and H2O (30 mmol) was mixed. After one week, colorless crystals of (I) were yielded at room temperature (27% yield).

Refinement top

All H atoms on C and N atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 and 0.96 Å for aryl and methyl H-atoms, respectively) and refined as riding, with Uiso(H) = 1.5Ueq(methyl-C atoms) and 1.2Ueq(the rest of the carrier C/N atoms).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXT (Sheldrick, 2008)L.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
2-Phenylimidazolium acetate top
Crystal data top
C9H9N2+·C2H3O2F(000) = 864
Mr = 204.23Dx = 1.280 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4331 reflections
a = 10.0320 (6) Åθ = 2.1–26.4°
b = 11.0043 (7) ŵ = 0.09 mm1
c = 19.3936 (9) ÅT = 293 K
β = 97.982 (5)°Block, colorless
V = 2120.2 (2) Å30.21 × 0.18 × 0.17 mm
Z = 8
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
4331 independent reflections
Radiation source: fine-focus sealed tube2142 reflections with I > 2.o σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 26.4°, θmin = 2.1°
ω scanh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 913
Tmin = 0.57, Tmax = 0.81l = 1824
9257 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0675P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max = 0.001
4331 reflectionsΔρmax = 0.17 e Å3
272 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0175 (15)
Crystal data top
C9H9N2+·C2H3O2V = 2120.2 (2) Å3
Mr = 204.23Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.0320 (6) ŵ = 0.09 mm1
b = 11.0043 (7) ÅT = 293 K
c = 19.3936 (9) Å0.21 × 0.18 × 0.17 mm
β = 97.982 (5)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
4331 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2142 reflections with I > 2.o σ(I)
Tmin = 0.57, Tmax = 0.81Rint = 0.023
9257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.82Δρmax = 0.17 e Å3
4331 reflectionsΔρmin = 0.16 e Å3
272 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03640 (17)0.18563 (16)0.46297 (8)0.0512 (5)
C20.1416 (2)0.1044 (2)0.46747 (10)0.0877 (7)
H2A0.20150.09940.50850.105*
C30.1595 (3)0.0308 (2)0.41253 (11)0.1005 (9)
H3A0.23130.02330.41670.121*
C40.0733 (2)0.03613 (19)0.35197 (10)0.0788 (6)
H4A0.08560.01390.31470.095*
C50.0309 (2)0.1154 (2)0.34671 (11)0.0829 (7)
H50.09040.11960.30550.100*
C60.0498 (2)0.18957 (19)0.40128 (10)0.0732 (6)
H60.12200.24340.39650.088*
C70.01993 (17)0.26654 (16)0.52036 (8)0.0495 (4)
C80.05331 (19)0.36114 (18)0.62119 (9)0.0629 (5)
H80.08910.38290.66630.075*
C90.0501 (2)0.41439 (18)0.58166 (9)0.0683 (6)
H90.09920.48050.59430.082*
C100.5548 (2)0.2029 (2)0.49467 (11)0.0949 (8)
H100.58010.21310.54230.114*
C110.6097 (2)0.1266 (2)0.45397 (11)0.0956 (8)
H110.68070.07370.46790.115*
C120.44891 (18)0.22354 (17)0.38869 (9)0.0559 (5)
C130.35306 (17)0.26213 (15)0.32912 (8)0.0504 (4)
C140.3567 (2)0.2150 (2)0.26411 (10)0.0761 (6)
H140.42470.16090.25700.091*
C150.2611 (2)0.2466 (2)0.20906 (10)0.0883 (7)
H150.26480.21280.16540.106*
C160.1615 (2)0.32649 (19)0.21777 (10)0.0710 (6)
H160.09720.34780.18050.085*
C170.1577 (2)0.37441 (19)0.28156 (10)0.0806 (7)
H170.09010.42920.28820.097*
C180.2532 (2)0.34293 (19)0.33701 (10)0.0768 (6)
H180.24920.37740.38050.092*
C190.32986 (18)0.48865 (18)0.55858 (9)0.0571 (5)
C200.4364 (2)0.4355 (2)0.61201 (10)0.0811 (7)
H20A0.43950.47980.65480.122*
H20B0.52220.44080.59560.122*
H20C0.41570.35180.61980.122*
C210.30718 (17)0.07402 (17)0.69394 (8)0.0518 (5)
C220.2379 (2)0.14122 (19)0.74594 (10)0.0787 (6)
H22A0.25430.10060.79010.118*
H22B0.14290.14350.73030.118*
H22C0.27220.22270.75080.118*
N10.07063 (15)0.35460 (14)0.51965 (7)0.0600 (4)
H10.13230.37120.48560.072*
N20.09625 (14)0.26903 (13)0.58294 (6)0.0540 (4)
H20.16160.22030.59660.065*
N30.45439 (16)0.26380 (15)0.45407 (7)0.0711 (5)
H30.40340.31870.46810.085*
N40.54380 (16)0.13943 (14)0.38802 (7)0.0701 (5)
H40.56080.09970.35200.084*
O10.26407 (14)0.57803 (13)0.57651 (6)0.0737 (4)
O20.31032 (13)0.44328 (12)0.49935 (6)0.0750 (4)
O30.29723 (12)0.11352 (12)0.63317 (6)0.0673 (4)
O40.37241 (12)0.02072 (11)0.71421 (5)0.0642 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0531 (11)0.0512 (11)0.0485 (10)0.0027 (9)0.0046 (8)0.0053 (8)
C20.1034 (17)0.0981 (17)0.0551 (12)0.0501 (14)0.0114 (11)0.0115 (12)
C30.118 (2)0.1063 (19)0.0703 (14)0.0594 (16)0.0112 (13)0.0202 (13)
C40.0918 (16)0.0745 (15)0.0666 (13)0.0126 (13)0.0009 (11)0.0162 (11)
C50.0869 (16)0.0860 (16)0.0676 (13)0.0161 (13)0.0186 (11)0.0186 (12)
C60.0732 (14)0.0746 (14)0.0667 (12)0.0202 (11)0.0086 (10)0.0083 (11)
C70.0524 (11)0.0502 (11)0.0460 (9)0.0071 (9)0.0076 (8)0.0084 (8)
C80.0749 (13)0.0677 (14)0.0461 (9)0.0115 (11)0.0084 (9)0.0007 (10)
C90.0818 (14)0.0701 (14)0.0532 (11)0.0242 (11)0.0107 (10)0.0026 (10)
C100.1201 (19)0.1024 (19)0.0555 (12)0.0555 (16)0.0113 (12)0.0029 (12)
C110.1139 (19)0.1034 (19)0.0626 (13)0.0610 (16)0.0123 (12)0.0016 (13)
C120.0571 (12)0.0536 (12)0.0560 (11)0.0114 (9)0.0041 (8)0.0002 (9)
C130.0475 (10)0.0484 (11)0.0533 (10)0.0040 (9)0.0002 (8)0.0026 (8)
C140.0737 (14)0.0895 (16)0.0623 (12)0.0335 (12)0.0003 (10)0.0080 (11)
C150.0917 (17)0.1143 (19)0.0546 (12)0.0340 (15)0.0044 (11)0.0150 (12)
C160.0619 (13)0.0847 (15)0.0610 (12)0.0135 (11)0.0106 (10)0.0015 (11)
C170.0730 (14)0.0889 (16)0.0731 (13)0.0335 (12)0.0144 (11)0.0154 (12)
C180.0798 (14)0.0843 (15)0.0598 (11)0.0301 (12)0.0129 (10)0.0202 (11)
C190.0555 (11)0.0621 (13)0.0525 (11)0.0081 (10)0.0036 (9)0.0016 (10)
C200.0828 (15)0.0834 (16)0.0703 (13)0.0202 (12)0.0138 (11)0.0009 (11)
C210.0486 (10)0.0578 (12)0.0454 (10)0.0007 (9)0.0057 (8)0.0034 (9)
C220.1009 (16)0.0776 (15)0.0563 (11)0.0177 (13)0.0065 (10)0.0068 (11)
N10.0645 (10)0.0650 (10)0.0488 (9)0.0173 (8)0.0021 (7)0.0056 (8)
N20.0579 (9)0.0567 (10)0.0467 (8)0.0109 (7)0.0045 (7)0.0057 (7)
N30.0800 (11)0.0759 (12)0.0542 (9)0.0321 (9)0.0024 (8)0.0026 (8)
N40.0808 (11)0.0694 (11)0.0567 (9)0.0303 (9)0.0022 (8)0.0028 (8)
O10.0818 (9)0.0766 (10)0.0590 (8)0.0280 (8)0.0030 (6)0.0086 (7)
O20.0823 (10)0.0845 (10)0.0550 (8)0.0301 (8)0.0018 (7)0.0102 (7)
O30.0727 (9)0.0785 (10)0.0495 (7)0.0216 (7)0.0042 (6)0.0081 (6)
O40.0705 (9)0.0657 (9)0.0519 (7)0.0191 (7)0.0074 (6)0.0006 (6)
Geometric parameters (Å, º) top
C1—C21.376 (2)C13—C181.364 (2)
C1—C61.376 (2)C13—C141.369 (2)
C1—C71.453 (2)C14—C151.377 (2)
C2—C31.370 (3)C14—H140.9300
C2—H2A0.9300C15—C161.359 (3)
C3—C41.360 (3)C15—H150.9300
C3—H3A0.9300C16—C171.350 (3)
C4—C51.354 (3)C16—H160.9300
C4—H4A0.9300C17—C181.381 (2)
C5—C61.370 (3)C17—H170.9300
C5—H50.9300C18—H180.9300
C6—H60.9300C19—O21.2429 (19)
C7—N11.327 (2)C19—O11.260 (2)
C7—N21.3425 (19)C19—C201.500 (2)
C8—C91.337 (2)C20—H20A0.9600
C8—N21.361 (2)C20—H20B0.9600
C8—H80.9300C20—H20C0.9600
C9—N11.361 (2)C21—O31.2470 (19)
C9—H90.9300C21—O41.264 (2)
C10—C111.323 (3)C21—C221.497 (3)
C10—N31.366 (2)C22—H22A0.9600
C10—H100.9300C22—H22B0.9600
C11—N41.363 (2)C22—H22C0.9600
C11—H110.9300N1—H10.8600
C12—N41.329 (2)N2—H20.8600
C12—N31.337 (2)N3—H30.8600
C12—C131.460 (2)N4—H40.8600
C2—C1—C6117.35 (17)C16—C15—C14120.78 (19)
C2—C1—C7121.14 (15)C16—C15—H15119.6
C6—C1—C7121.48 (16)C14—C15—H15119.6
C3—C2—C1121.11 (17)C17—C16—C15118.79 (17)
C3—C2—H2A119.4C17—C16—H16120.6
C1—C2—H2A119.4C15—C16—H16120.6
C4—C3—C2120.7 (2)C16—C17—C18120.70 (19)
C4—C3—H3A119.7C16—C17—H17119.6
C2—C3—H3A119.7C18—C17—H17119.6
C5—C4—C3119.0 (2)C13—C18—C17121.13 (18)
C5—C4—H4A120.5C13—C18—H18119.4
C3—C4—H4A120.5C17—C18—H18119.4
C4—C5—C6120.92 (18)O2—C19—O1123.17 (15)
C4—C5—H5119.5O2—C19—C20119.18 (18)
C6—C5—H5119.5O1—C19—C20117.65 (16)
C5—C6—C1120.98 (19)C19—C20—H20A109.5
C5—C6—H6119.5C19—C20—H20B109.5
C1—C6—H6119.5H20A—C20—H20B109.5
N1—C7—N2107.34 (15)C19—C20—H20C109.5
N1—C7—C1126.18 (14)H20A—C20—H20C109.5
N2—C7—C1126.44 (15)H20B—C20—H20C109.5
C9—C8—N2107.04 (15)O3—C21—O4123.46 (17)
C9—C8—H8126.5O3—C21—C22118.73 (16)
N2—C8—H8126.5O4—C21—C22117.81 (16)
C8—C9—N1107.77 (17)C21—C22—H22A109.5
C8—C9—H9126.1C21—C22—H22B109.5
N1—C9—H9126.1H22A—C22—H22B109.5
C11—C10—N3107.58 (17)C21—C22—H22C109.5
C11—C10—H10126.2H22A—C22—H22C109.5
N3—C10—H10126.2H22B—C22—H22C109.5
C10—C11—N4107.85 (17)C7—N1—C9108.93 (14)
C10—C11—H11126.1C7—N1—H1125.5
N4—C11—H11126.1C9—N1—H1125.5
N4—C12—N3107.75 (14)C7—N2—C8108.91 (14)
N4—C12—C13126.08 (16)C7—N2—H2125.5
N3—C12—C13126.14 (17)C8—N2—H2125.5
C18—C13—C14117.67 (15)C12—N3—C10108.30 (16)
C18—C13—C12120.96 (16)C12—N3—H3125.9
C14—C13—C12121.32 (17)C10—N3—H3125.9
C13—C14—C15120.93 (19)C12—N4—C11108.52 (16)
C13—C14—H14119.5C12—N4—H4125.7
C15—C14—H14119.5C11—N4—H4125.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.752.606 (2)172
N2—H2···O30.861.862.720 (2)175
N3—H3···O20.861.812.667 (2)175
N4—H4···O4ii0.861.762.609 (2)169
C2—H2A···O30.932.483.374 (2)161
C6—H6···O1i0.932.523.407 (3)158
C8—H8···O4iii0.932.533.430 (2)164
C14—H14···O4ii0.932.553.439 (2)159
C18—H18···O20.932.413.309 (2)162
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H9N2+·C2H3O2
Mr204.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.0320 (6), 11.0043 (7), 19.3936 (9)
β (°) 97.982 (5)
V3)2120.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.18 × 0.17
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.57, 0.81
No. of measured, independent and
observed [I > 2.o σ(I)] reflections
9257, 4331, 2142
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 0.82
No. of reflections4331
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXT (Sheldrick, 2008)L.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.752.606 (2)172
N2—H2···O30.861.862.720 (2)175
N3—H3···O20.861.812.667 (2)175
N4—H4···O4ii0.861.762.609 (2)169
C2—H2A···O30.932.483.374 (2)161
C6—H6···O1i0.932.523.407 (3)158
C8—H8···O4iii0.932.533.430 (2)164
C14—H14···O4ii0.932.553.439 (2)159
C18—H18···O20.932.413.309 (2)162
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

We thank Yuncheng University for support.

References

First citationLiu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Ping, G.-J. (2008). CrystEngCommun, 10, 565–572.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds