organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­imidazole di­hydrogen phosphate phospho­ric acid

aYuncheng University, College of Chemistry, Yuncheng 044000, People's Republic of China
*Correspondence e-mail: xiadaocheng1976@yahoo.com.cn

(Received 5 February 2010; accepted 8 February 2010; online 13 February 2010)

The crystal structure of the title compound, C9H9N2+·H2PO4·H3PO4, is stabilized by N—H⋯O and O—H⋯O hydrogen-bonding inter­actions, resulting in a two-dimensional network.

Related literature

For related structures, see: Liu et al. (2008[Liu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Ping, G.-J. (2008). CrystEngCommun, 10, 565-572.]); Yang et al. (2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]); Xia et al. (2009[Xia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N2+·H2PO4·H3PO4

  • Mr = 340.16

  • Monoclinic, P 21 /c

  • a = 17.1875 (12) Å

  • b = 4.7220 (3) Å

  • c = 17.7585 (14) Å

  • β = 99.767 (7)°

  • V = 1420.38 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.61, Tmax = 0.84

  • 5555 measured reflections

  • 2893 independent reflections

  • 1549 reflections with I > 2.0 σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.080

  • S = 0.87

  • 2893 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2i 0.82 1.91 2.563 (2) 136
O3—H3A⋯O2ii 0.82 1.76 2.546 (2) 159
O8—H8A⋯O6iii 0.82 2.01 2.553 (2) 123
N2—H2⋯O6iii 0.86 2.05 2.859 (3) 157
N1—H1B⋯O4 0.86 2.02 2.871 (3) 169
O7—H7⋯O4iv 0.82 1.76 2.536 (3) 158
O1—H1⋯O3iii 0.82 2.19 2.625 (2) 113
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+2; (iii) x, y+1, z; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Phenylimidazole is a good candidate for building supramolecular architectures (Liu et al., 2008; Yang et al., 2008). Continuing our research in this important field (Xia et al., 2009), we now report the preparation and crystal structure of the title compound, (I).

The asymmetric unit of the title compound contains one 2-phenylimidazole cation, one dihydrogen phosphate anion and one phosphoric acid molecule (Fig. 1). The structure is stabilized by the O—H···O and N—H···O H–bonding interactions (Table 1); a rather weak interaction of the type C—H···O is also present in the structure.

Related literature top

For related structures, see: Liu et al. (2008); Yang et al. (2008); Xia et al. (2009).

Experimental top

A mixture of 2-phenylimidazole (0.5 mmol), phosphoric acid (1 mmol) and H2O (30 mmol) was mixed. After two weeks, colorless crystals of (I) were yielded at room temperature (18% yield).

Refinement top

All H atoms on C and N atoms were positioned geometrically with distances O—H, N—H and C—H = 0.82, 0.86 and 0.93 Å, respectively, and were refined in riding mode, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C/N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
2-Phenylimidazole dihydrogen phosphate phosphoric acid top
Crystal data top
C9H9N2+·H2PO4·H3PO4F(000) = 704
Mr = 340.16Dx = 1.591 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2893 reflections
a = 17.1875 (12) Åθ = 2.3–26.4°
b = 4.7220 (3) ŵ = 0.35 mm1
c = 17.7585 (14) ÅT = 293 K
β = 99.767 (7)°Block, colorless
V = 1420.38 (17) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
2893 independent reflections
Radiation source: fine-focus sealed tube1549 reflections with I > 2.0 σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.0 pixels mm-1θmax = 26.4°, θmin = 2.3°
ω scanh = 2121
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 54
Tmin = 0.61, Tmax = 0.84l = 1322
5555 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
2893 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C9H9N2+·H2PO4·H3PO4V = 1420.38 (17) Å3
Mr = 340.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.1875 (12) ŵ = 0.35 mm1
b = 4.7220 (3) ÅT = 293 K
c = 17.7585 (14) Å0.25 × 0.22 × 0.20 mm
β = 99.767 (7)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
2893 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1549 reflections with I > 2.0 σ(I)
Tmin = 0.61, Tmax = 0.84Rint = 0.038
5555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 0.87Δρmax = 0.27 e Å3
2893 reflectionsΔρmin = 0.37 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.21882 (4)0.03732 (14)0.43687 (4)0.0302 (2)
P20.42236 (4)0.04439 (15)0.89806 (4)0.0299 (2)
O40.35030 (10)0.0447 (4)0.84416 (10)0.0393 (5)
O50.28575 (10)0.0703 (4)0.50061 (9)0.0381 (5)
H5A0.30470.21620.48640.057*
O30.48015 (11)0.2115 (3)0.91299 (11)0.0381 (5)
H3A0.51990.16350.94250.057*
O60.18630 (11)0.3002 (3)0.46455 (11)0.0388 (5)
O20.40773 (10)0.1605 (4)0.97411 (10)0.0380 (5)
O70.25178 (11)0.0717 (4)0.36199 (10)0.0428 (5)
H70.28770.18820.36820.064*
O10.46827 (11)0.2710 (4)0.85825 (11)0.0399 (5)
H10.43990.40910.84660.060*
O80.15458 (10)0.1928 (4)0.41974 (11)0.0405 (5)
H8A0.17380.33650.40450.061*
N20.26383 (14)0.5520 (5)0.61475 (12)0.0382 (6)
H20.23090.61520.57650.046*
N10.31292 (13)0.3278 (5)0.71534 (12)0.0395 (6)
H1B0.31760.21810.75450.047*
C50.16191 (18)0.0460 (7)0.72484 (19)0.0548 (9)
H50.20370.01780.76490.066*
C80.37239 (17)0.4892 (6)0.69554 (17)0.0443 (8)
H80.42420.49910.72120.053*
C60.17162 (16)0.2248 (6)0.66598 (16)0.0361 (7)
C30.0300 (2)0.0510 (8)0.6673 (2)0.0657 (10)
H30.01740.14540.66760.079*
C90.34158 (17)0.6299 (6)0.63224 (17)0.0429 (8)
H90.36790.75650.60520.051*
C20.03804 (19)0.1260 (9)0.6094 (2)0.0719 (11)
H2A0.00430.15310.56990.086*
C70.24664 (16)0.3649 (6)0.66528 (15)0.0332 (7)
C10.10825 (19)0.2679 (8)0.60773 (18)0.0604 (10)
H1A0.11280.39110.56780.072*
C40.0923 (2)0.0905 (8)0.7256 (2)0.0691 (10)
H40.08700.21090.76580.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0327 (4)0.0264 (4)0.0305 (4)0.0009 (3)0.0027 (3)0.0005 (3)
P20.0291 (4)0.0297 (4)0.0301 (4)0.0019 (3)0.0027 (3)0.0022 (3)
O40.0320 (10)0.0512 (12)0.0313 (11)0.0061 (9)0.0042 (9)0.0072 (9)
O50.0402 (11)0.0425 (11)0.0293 (11)0.0111 (9)0.0012 (9)0.0036 (9)
O30.0348 (11)0.0290 (10)0.0457 (13)0.0045 (8)0.0063 (9)0.0022 (9)
O60.0451 (12)0.0271 (10)0.0430 (13)0.0067 (9)0.0036 (10)0.0010 (9)
O20.0331 (11)0.0520 (12)0.0283 (11)0.0102 (9)0.0033 (9)0.0007 (9)
O70.0525 (13)0.0445 (12)0.0315 (12)0.0114 (10)0.0077 (9)0.0030 (9)
O10.0448 (12)0.0311 (10)0.0461 (13)0.0029 (9)0.0136 (10)0.0066 (9)
O80.0350 (12)0.0289 (10)0.0547 (15)0.0002 (9)0.0011 (10)0.0008 (9)
N20.0431 (15)0.0443 (14)0.0263 (14)0.0063 (12)0.0031 (11)0.0070 (12)
N10.0407 (16)0.0522 (15)0.0246 (14)0.0007 (12)0.0023 (12)0.0090 (11)
C50.0418 (19)0.065 (2)0.054 (2)0.0073 (17)0.0042 (16)0.0145 (18)
C80.0353 (17)0.061 (2)0.0354 (18)0.0041 (15)0.0028 (14)0.0083 (16)
C60.0346 (18)0.0438 (17)0.0296 (19)0.0066 (14)0.0049 (14)0.0059 (14)
C30.042 (2)0.079 (3)0.077 (3)0.0129 (19)0.013 (2)0.012 (2)
C90.0433 (19)0.0520 (19)0.0337 (19)0.0065 (16)0.0073 (15)0.0051 (15)
C20.041 (2)0.117 (3)0.051 (3)0.001 (2)0.0093 (18)0.004 (2)
C70.0368 (17)0.0394 (16)0.0234 (16)0.0082 (14)0.0052 (14)0.0019 (13)
C10.041 (2)0.097 (3)0.039 (2)0.0023 (18)0.0026 (17)0.0111 (18)
C40.051 (2)0.081 (3)0.074 (3)0.0155 (19)0.007 (2)0.018 (2)
Geometric parameters (Å, º) top
P1—O61.4790 (18)N1—C81.368 (3)
P1—O71.5400 (19)N1—H1B0.8600
P1—O81.5421 (18)C5—C41.361 (4)
P1—O51.5559 (17)C5—C61.376 (4)
P2—O41.4916 (18)C5—H50.9300
P2—O21.5175 (19)C8—C91.335 (4)
P2—O31.5579 (18)C8—H80.9300
P2—O11.568 (2)C6—C11.384 (4)
O5—H5A0.8200C6—C71.451 (4)
O3—H3A0.8200C3—C21.350 (5)
O7—H70.8200C3—C41.370 (4)
O1—H10.8200C3—H30.9300
O8—H8A0.8200C9—H90.9300
N2—C71.328 (3)C2—C11.385 (5)
N2—C91.370 (3)C2—H2A0.9300
N2—H20.8600C1—H1A0.9300
N1—C71.332 (3)C4—H40.9300
O6—P1—O7114.43 (11)C6—C5—H5119.4
O6—P1—O8111.01 (11)C9—C8—N1106.7 (3)
O7—P1—O8105.07 (11)C9—C8—H8126.7
O6—P1—O5107.86 (10)N1—C8—H8126.7
O7—P1—O5109.12 (10)C5—C6—C1118.5 (3)
O8—P1—O5109.25 (10)C5—C6—C7120.6 (3)
O4—P2—O2115.35 (11)C1—C6—C7120.9 (3)
O4—P2—O3109.06 (11)C2—C3—C4119.5 (3)
O2—P2—O3109.01 (10)C2—C3—H3120.3
O4—P2—O1109.26 (11)C4—C3—H3120.3
O2—P2—O1109.08 (11)C8—C9—N2106.8 (3)
O3—P2—O1104.53 (11)C8—C9—H9126.6
P1—O5—H5A109.5N2—C9—H9126.6
P2—O3—H3A109.5C3—C2—C1121.2 (3)
P1—O7—H7109.5C3—C2—H2A119.4
P2—O1—H1109.5C1—C2—H2A119.4
P1—O8—H8A109.5N2—C7—N1106.0 (2)
C7—N2—C9110.2 (2)N2—C7—C6127.5 (2)
C7—N2—H2124.9N1—C7—C6126.5 (3)
C9—N2—H2124.9C6—C1—C2119.4 (3)
C7—N1—C8110.3 (2)C6—C1—H1A120.3
C7—N1—H1B124.9C2—C1—H1A120.3
C8—N1—H1B124.9C5—C4—C3120.3 (3)
C4—C5—C6121.2 (3)C5—C4—H4119.9
C4—C5—H5119.4C3—C4—H4119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2i0.821.912.563 (2)136
O3—H3A···O2ii0.821.762.546 (2)159
O8—H8A···O6iii0.822.012.553 (2)123
N2—H2···O6iii0.862.052.859 (3)157
N1—H1B···O40.862.022.871 (3)169
O7—H7···O4iv0.821.762.536 (3)158
O1—H1···O3iii0.822.192.625 (2)113
C9—H9···O5iii0.932.603.154 (3)119
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+2; (iii) x, y+1, z; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H9N2+·H2PO4·H3PO4
Mr340.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.1875 (12), 4.7220 (3), 17.7585 (14)
β (°) 99.767 (7)
V3)1420.38 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.61, 0.84
No. of measured, independent and
observed [I > 2.0 σ(I)] reflections
5555, 2893, 1549
Rint0.038
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.080, 0.87
No. of reflections2893
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.37

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2i0.821.912.563 (2)136
O3—H3A···O2ii0.821.762.546 (2)159
O8—H8A···O6iii0.822.012.553 (2)123
N2—H2···O6iii0.862.052.859 (3)157
N1—H1B···O40.862.022.871 (3)169
O7—H7···O4iv0.821.762.536 (3)158
O1—H1···O3iii0.822.192.625 (2)113
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+2; (iii) x, y+1, z; (iv) x, y1/2, z1/2.
 

Acknowledgements

We thank Yuncheng University for support.

References

First citationLiu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Ping, G.-J. (2008). CrystEngCommun, 10, 565–572.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds