organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o653-o654

Bis(phenyl­sulfin­yl)methane

aCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, bDepartamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 11 February 2010; accepted 13 February 2010; online 20 February 2010)

Two independent mol­ecules comprise the asymmetric unit of the title compound, C13H12O2S2, which differ in terms of minor variations in the relative orientations of the benzene rings [the O–S–C–C torsion angles for the first independent mol­ecule are −6.66 (17) and −12.88 (19)° compared with −21.70 (18) and 4.83 (16)° for the second mol­ecule]. Supra­molecular chains sustained by C—H⋯O contacts and aligned along the a axis are found in the crystal structure. These are held in place in the three dimensional structure by C—H⋯π inter­actions.

Related literature

For the synthesis of bis­(phenyl­sulfin­yl)methane, see Shriner et al. (1930[Shriner, R. L., Struck, H. C. & Jorison, W. J. (1930). J. Am. Chem. Soc. 52, 2060-2069]); Greene & Shevlin (1971[Greene, J. L. & Shevlin, P. B. (1971). J. Chem. Soc. Chem. Commun. pp. 1092-1093.]); Hajipour et al. (2005[Hajipour, A. R., Kooshki, B. & Ruoho, A. E. (2005). Tetrahedron Lett. 46, 5503-5506.]). For separation of the meso and racemic forms, see Greene & Shevlin (1971[Greene, J. L. & Shevlin, P. B. (1971). J. Chem. Soc. Chem. Commun. pp. 1092-1093.]). For the structure of the meso form, see: Kannan et al. (2003[Kannan, S., Usman, A. & Fun, H.-K. (2003). Acta Cryst. C59, o268-o270.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12O2S2

  • Mr = 264.37

  • Monoclinic, P 21 /c

  • a = 8.4368 (4) Å

  • b = 17.1966 (7) Å

  • c = 17.1387 (6) Å

  • β = 95.251 (3)°

  • V = 2476.12 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 120 K

  • 0.32 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.636, Tmax = 0.746

  • 41505 measured reflections

  • 5503 independent reflections

  • 4545 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.02

  • 5503 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C21–C26 and C2–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3 0.95 2.39 3.268 (2) 153
C5—H5⋯O1i 0.95 2.47 3.302 (3) 146
C12—H12⋯O2ii 0.95 2.57 3.240 (2) 128
C22—H22⋯O2 0.95 2.35 3.285 (2) 170
C24—H24⋯O4iii 0.95 2.57 3.335 (2) 138
C4—H4⋯S2i 0.95 2.87 3.484 (2) 124
C9—H9⋯Cg1iv 0.95 2.67 3.553 (2) 154
C16—H16⋯Cg2v 0.95 2.78 3.682 (2) 159
C18—H18⋯Cg2vi 0.95 2.96 3.744 (2) 141
Symmetry codes: (i) x+1, y, z; (ii) -x, -y, -z+1; (iii) x-1, y, z; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) -x+1, -y, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Crystals of the title compound, (I), a known species (Shriner et al., 1930; Greene & Shevlin, 1971; Hajipour et al., 2005), were obtained from an attempted co-crystallisation experiment (see Experimental section). Two independent molecules comprise the crystallographic asymmetric unit of (I), Figs 1 and 2. The conformations of the molecules differ only in the relative orientations of the benzene rings as illustrated in the overlay diagram, Fig. 3. These differences are quantified in terms of the O1–S1–C1–C7 and O2–S2–C8–C13 torsion angles of -6.66 (17) and -12.88 (19) °, respectively, for the first independent molecule, and for the second molecule of -21.70 (18) and 4.83 (16) °, respectively, for O3–S3–C15–C20 and O4–S4–C21–C26 torsion angles. The relative orientations of the sulfinyl groups are virtually identical as seen in the O1–S1–S2–O2 and O3–S3–S4–O4 torsion angles of -123.31 (8) and -125.32 (8) °, respectively. These are quite distinct from the equivalent value of -178.0 (1) ° found in the meso stereo-isomer (Kannan et al., 2003). Otherwise, the equivalent bond distances in the three molecules show no special trends.

The crystal packing comprises supramolecular chains of molecules aligned along the a axis. These are sustained by C–H···O interactions as well as C–H···S and C18–H···π contacts, Fig. 4 and Table 1. Chains stack in the crystal structure being held together by C–H···π contacts, Fig. 5.

Related literature top

For the synthesis of bis(phenylsulfinyl)methane, see Shriner et al. (1930); Greene & Shevlin (1971); Hajipour et al. (2005). For separation of the meso and racemic forms, see Greene & Shevlin (1971). For the structure of the meso form, see: Kannan et al. (2003).

Experimental top

The title compound was prepared in accord with literature procedures (Shriner et al., 1930; Greene & Shevlin, 1971; Hajipour et al., 2005). The compound was isolated unchanged on slow evaporation of an ethanol solution containing equimolar (1 mmol) amounts of bis(phenylsulfinyl)methane and H2NCOCH2CH2SnCl3. The sample used in the X-ray study was further recrystallised from EtOH; m.pt. 452-454 K. Lit. value 454-456 K.(Greene & Shevlin, 1971).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the first independent molecule in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of the second independent molecule in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. An overlay diagram highlighting the different conformations found for the independent molecules in (I). The red molecule corresponds to the molecule shown in Fig. 1.
[Figure 4] Fig. 4. A view of a supramolecular chain aligned along the a axis in (I). The C–H···O interactions are shown as orange dashed lines. Hydrogen atoms not involved in C–H···O contacts are omitted for clarity.
[Figure 5] Fig. 5. A view in projection down the a axis of the unit cell contents in (I). The two shorter of the C–H···O interactions are shown as orange dashed lines, and C–H···π interactions are shown as purple dashed lines.
Bis(phenylsulfinyl)methane top
Crystal data top
C13H12O2S2F(000) = 1104
Mr = 264.37Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 114673 reflections
a = 8.4368 (4) Åθ = 2.9–27.5°
b = 17.1966 (7) ŵ = 0.42 mm1
c = 17.1387 (6) ÅT = 120 K
β = 95.251 (3)°Block, colourless
V = 2476.12 (18) Å30.32 × 0.30 × 0.20 mm
Z = 8
Data collection top
Nonius KappaCCD area-detector
diffractometer
5503 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode4545 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.045
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2222
Tmin = 0.636, Tmax = 0.746l = 2222
41505 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0584P)2 + 1.1709P]
where P = (Fo2 + 2Fc2)/3
5503 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C13H12O2S2V = 2476.12 (18) Å3
Mr = 264.37Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.4368 (4) ŵ = 0.42 mm1
b = 17.1966 (7) ÅT = 120 K
c = 17.1387 (6) Å0.32 × 0.30 × 0.20 mm
β = 95.251 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5503 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
4545 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.746Rint = 0.045
41505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
5503 reflectionsΔρmin = 0.40 e Å3
307 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24251 (6)0.13741 (2)0.22205 (3)0.02771 (12)
S20.04038 (6)0.03440 (3)0.30510 (3)0.02665 (12)
S30.49132 (6)0.19368 (3)0.49191 (3)0.02721 (12)
S40.28505 (6)0.29593 (3)0.39107 (3)0.02590 (12)
O10.12552 (17)0.12780 (8)0.15191 (9)0.0349 (3)
O20.02544 (18)0.09565 (8)0.36612 (9)0.0376 (3)
O30.49884 (19)0.13910 (9)0.42450 (8)0.0386 (4)
O40.39757 (17)0.36142 (8)0.41079 (8)0.0333 (3)
C10.2401 (2)0.04591 (10)0.27607 (11)0.0264 (4)
H1A0.26740.00200.24250.032*
H1B0.31820.04750.32280.032*
C20.4359 (2)0.12423 (10)0.18987 (11)0.0252 (4)
C30.5695 (2)0.14283 (10)0.24020 (11)0.0274 (4)
H30.55850.15990.29220.033*
C40.7181 (3)0.13606 (10)0.21331 (12)0.0322 (5)
H40.81030.14790.24720.039*
C50.7339 (3)0.11204 (12)0.13709 (13)0.0358 (5)
H50.83670.10790.11900.043*
C60.6003 (3)0.09403 (12)0.08740 (12)0.0355 (5)
H60.61170.07730.03540.043*
C70.4492 (2)0.10045 (11)0.11357 (11)0.0298 (4)
H70.35700.08870.07960.036*
C80.0703 (2)0.05729 (10)0.35320 (10)0.0233 (4)
C90.0409 (2)0.12363 (11)0.30828 (11)0.0276 (4)
H90.01340.11980.25340.033*
C100.0522 (3)0.19562 (11)0.34478 (12)0.0309 (4)
H100.03350.24170.31480.037*
C110.0907 (2)0.20043 (11)0.42499 (12)0.0315 (4)
H110.09830.24990.44980.038*
C120.1184 (2)0.13364 (12)0.46918 (11)0.0310 (4)
H120.14480.13740.52410.037*
C130.1076 (2)0.06116 (11)0.43344 (10)0.0267 (4)
H130.12550.01510.46350.032*
C140.2918 (2)0.23495 (10)0.47830 (10)0.0251 (4)
H14A0.26990.26640.52450.030*
H14B0.21130.19310.47120.030*
C150.4548 (2)0.13864 (10)0.57708 (10)0.0237 (4)
C160.4973 (2)0.17217 (11)0.64956 (11)0.0270 (4)
H160.54870.22130.65330.032*
C170.4632 (3)0.13243 (12)0.71669 (11)0.0315 (4)
H170.48910.15500.76680.038*
C180.3916 (2)0.06008 (12)0.71060 (12)0.0313 (4)
H180.36710.03350.75660.038*
C190.3554 (2)0.02628 (11)0.63801 (12)0.0329 (4)
H190.30870.02400.63440.040*
C200.3872 (2)0.06544 (11)0.57028 (11)0.0288 (4)
H200.36280.04240.52020.035*
C210.0874 (2)0.33204 (10)0.39779 (10)0.0231 (4)
C220.0427 (2)0.28285 (10)0.38143 (10)0.0258 (4)
H220.02760.22940.37010.031*
C230.1946 (2)0.31345 (11)0.38202 (11)0.0303 (4)
H230.28470.28060.37220.036*
C240.2157 (2)0.39202 (12)0.39694 (11)0.0303 (4)
H240.32020.41270.39660.036*
C250.0852 (3)0.44035 (11)0.41228 (11)0.0313 (4)
H250.10030.49400.42250.038*
C260.0681 (2)0.41032 (11)0.41268 (10)0.0275 (4)
H260.15820.44310.42300.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0279 (3)0.0202 (2)0.0356 (3)0.00118 (17)0.0060 (2)0.00111 (17)
S20.0245 (3)0.0232 (2)0.0328 (3)0.00320 (17)0.00547 (19)0.00257 (17)
S30.0234 (3)0.0320 (2)0.0261 (2)0.00392 (18)0.00189 (18)0.00415 (17)
S40.0247 (3)0.0307 (2)0.0223 (2)0.00229 (17)0.00193 (18)0.00337 (17)
O10.0284 (8)0.0322 (7)0.0432 (8)0.0031 (6)0.0023 (6)0.0076 (6)
O20.0444 (9)0.0238 (7)0.0476 (8)0.0039 (6)0.0212 (7)0.0038 (6)
O30.0416 (9)0.0494 (9)0.0247 (7)0.0163 (7)0.0033 (6)0.0021 (6)
O40.0245 (8)0.0385 (8)0.0367 (8)0.0059 (6)0.0008 (6)0.0093 (6)
C10.0264 (11)0.0237 (9)0.0294 (9)0.0006 (7)0.0038 (8)0.0020 (7)
C20.0281 (11)0.0193 (8)0.0281 (9)0.0013 (7)0.0031 (7)0.0043 (7)
C30.0320 (11)0.0216 (9)0.0276 (9)0.0030 (7)0.0022 (8)0.0045 (7)
C40.0296 (12)0.0230 (9)0.0421 (11)0.0034 (7)0.0062 (9)0.0094 (8)
C50.0267 (12)0.0346 (11)0.0474 (12)0.0005 (8)0.0105 (9)0.0100 (9)
C60.0363 (13)0.0401 (11)0.0314 (10)0.0000 (9)0.0098 (9)0.0014 (8)
C70.0313 (12)0.0296 (10)0.0276 (9)0.0019 (8)0.0018 (8)0.0019 (7)
C80.0196 (10)0.0242 (8)0.0264 (9)0.0002 (7)0.0033 (7)0.0004 (7)
C90.0301 (11)0.0277 (9)0.0248 (9)0.0001 (8)0.0010 (8)0.0024 (7)
C100.0325 (12)0.0240 (9)0.0366 (10)0.0004 (8)0.0052 (8)0.0038 (7)
C110.0302 (12)0.0281 (10)0.0370 (11)0.0028 (8)0.0077 (8)0.0080 (8)
C120.0270 (11)0.0410 (11)0.0249 (9)0.0045 (8)0.0025 (8)0.0039 (8)
C130.0244 (10)0.0295 (9)0.0259 (9)0.0010 (7)0.0008 (7)0.0052 (7)
C140.0223 (10)0.0270 (9)0.0258 (9)0.0029 (7)0.0010 (7)0.0042 (7)
C150.0210 (10)0.0241 (9)0.0257 (9)0.0049 (7)0.0007 (7)0.0001 (7)
C160.0273 (11)0.0232 (9)0.0300 (9)0.0006 (7)0.0002 (8)0.0035 (7)
C170.0320 (12)0.0378 (11)0.0243 (9)0.0064 (8)0.0005 (8)0.0028 (8)
C180.0273 (11)0.0347 (10)0.0329 (10)0.0075 (8)0.0072 (8)0.0097 (8)
C190.0289 (11)0.0252 (9)0.0447 (12)0.0017 (8)0.0034 (9)0.0032 (8)
C200.0268 (11)0.0283 (9)0.0304 (10)0.0004 (8)0.0029 (8)0.0038 (7)
C210.0255 (10)0.0248 (9)0.0184 (8)0.0007 (7)0.0010 (7)0.0024 (6)
C220.0303 (11)0.0225 (8)0.0241 (9)0.0015 (7)0.0008 (7)0.0025 (7)
C230.0268 (11)0.0352 (10)0.0284 (10)0.0055 (8)0.0004 (8)0.0073 (8)
C240.0267 (11)0.0401 (11)0.0245 (9)0.0070 (8)0.0047 (8)0.0043 (8)
C250.0365 (12)0.0291 (9)0.0276 (9)0.0075 (8)0.0010 (8)0.0021 (7)
C260.0324 (11)0.0249 (9)0.0245 (9)0.0019 (8)0.0022 (8)0.0005 (7)
Geometric parameters (Å, º) top
S1—O11.4931 (15)C10—H100.9500
S1—C21.784 (2)C11—C121.384 (3)
S1—C11.8268 (18)C11—H110.9500
S2—O21.4978 (14)C12—C131.388 (3)
S2—C81.7864 (18)C12—H120.9500
S2—C11.811 (2)C13—H130.9500
S3—O31.4945 (14)C14—H14A0.9900
S3—C151.7898 (18)C14—H14B0.9900
S3—C141.8220 (19)C15—C201.383 (3)
S4—O41.4917 (14)C15—C161.386 (3)
S4—C211.7928 (19)C16—C171.391 (3)
S4—C141.8225 (18)C16—H160.9500
C1—H1A0.9900C17—C181.383 (3)
C1—H1B0.9900C17—H170.9500
C2—C71.385 (3)C18—C191.382 (3)
C2—C31.393 (3)C18—H180.9500
C3—C41.380 (3)C19—C201.389 (3)
C3—H30.9500C19—H190.9500
C4—C51.388 (3)C20—H200.9500
C4—H40.9500C21—C261.383 (3)
C5—C61.384 (3)C21—C221.394 (3)
C5—H50.9500C22—C231.387 (3)
C6—C71.394 (3)C22—H220.9500
C6—H60.9500C23—C241.390 (3)
C7—H70.9500C23—H230.9500
C8—C131.384 (2)C24—C251.385 (3)
C8—C91.386 (2)C24—H240.9500
C9—C101.386 (3)C25—C261.392 (3)
C9—H90.9500C25—H250.9500
C10—C111.386 (3)C26—H260.9500
O1—S1—C2107.03 (9)C11—C12—C13120.18 (17)
O1—S1—C1105.99 (8)C11—C12—H12119.9
C2—S1—C195.76 (8)C13—C12—H12119.9
O2—S2—C8108.42 (8)C8—C13—C12118.78 (17)
O2—S2—C1104.77 (9)C8—C13—H13120.6
C8—S2—C197.34 (8)C12—C13—H13120.6
O3—S3—C15108.72 (8)S3—C14—S4106.76 (10)
O3—S3—C14104.46 (8)S3—C14—H14A110.4
C15—S3—C1494.86 (8)S4—C14—H14A110.4
O4—S4—C21107.47 (8)S3—C14—H14B110.4
O4—S4—C14106.09 (8)S4—C14—H14B110.4
C21—S4—C1496.09 (8)H14A—C14—H14B108.6
S2—C1—S1106.69 (10)C20—C15—C16121.66 (17)
S2—C1—H1A110.4C20—C15—S3120.88 (14)
S1—C1—H1A110.4C16—C15—S3117.46 (14)
S2—C1—H1B110.4C15—C16—C17118.74 (17)
S1—C1—H1B110.4C15—C16—H16120.6
H1A—C1—H1B108.6C17—C16—H16120.6
C7—C2—C3121.43 (18)C18—C17—C16120.11 (18)
C7—C2—S1119.05 (15)C18—C17—H17119.9
C3—C2—S1119.39 (15)C16—C17—H17119.9
C4—C3—C2118.86 (18)C19—C18—C17120.36 (18)
C4—C3—H3120.6C19—C18—H18119.8
C2—C3—H3120.6C17—C18—H18119.8
C3—C4—C5120.52 (19)C18—C19—C20120.32 (18)
C3—C4—H4119.7C18—C19—H19119.8
C5—C4—H4119.7C20—C19—H19119.8
C6—C5—C4120.2 (2)C15—C20—C19118.73 (17)
C6—C5—H5119.9C15—C20—H20120.6
C4—C5—H5119.9C19—C20—H20120.6
C5—C6—C7120.09 (19)C26—C21—C22121.60 (18)
C5—C6—H6120.0C26—C21—S4118.37 (14)
C7—C6—H6120.0C22—C21—S4119.80 (14)
C2—C7—C6118.90 (18)C23—C22—C21118.68 (17)
C2—C7—H7120.5C23—C22—H22120.7
C6—C7—H7120.5C21—C22—H22120.7
C13—C8—C9121.68 (17)C22—C23—C24120.29 (18)
C13—C8—S2120.71 (14)C22—C23—H23119.9
C9—C8—S2117.37 (14)C24—C23—H23119.9
C8—C9—C10118.88 (17)C23—C24—C25120.35 (19)
C8—C9—H9120.6C23—C24—H24119.8
C10—C9—H9120.6C25—C24—H24119.8
C11—C10—C9120.08 (17)C24—C25—C26120.03 (18)
C11—C10—H10120.0C24—C25—H25120.0
C9—C10—H10120.0C26—C25—H25120.0
C10—C11—C12120.39 (17)C21—C26—C25119.03 (18)
C10—C11—H11119.8C21—C26—H26120.5
C12—C11—H11119.8C25—C26—H26120.5
O2—S2—C1—S169.82 (11)O3—S3—C14—S468.19 (11)
C8—S2—C1—S1178.88 (9)C15—S3—C14—S4178.96 (9)
O1—S1—C1—S261.94 (11)O4—S4—C14—S365.87 (11)
C2—S1—C1—S2171.52 (10)C21—S4—C14—S3176.05 (9)
O1—S1—C2—C76.66 (17)O3—S3—C15—C2021.70 (18)
C1—S1—C2—C7102.03 (15)C14—S3—C15—C2085.36 (17)
O1—S1—C2—C3169.22 (13)O3—S3—C15—C16158.16 (15)
C1—S1—C2—C382.09 (15)C14—S3—C15—C1694.78 (16)
C7—C2—C3—C41.0 (3)C20—C15—C16—C173.3 (3)
S1—C2—C3—C4176.81 (13)S3—C15—C16—C17176.85 (15)
C2—C3—C4—C50.8 (3)C15—C16—C17—C181.5 (3)
C3—C4—C5—C60.5 (3)C16—C17—C18—C190.9 (3)
C4—C5—C6—C70.4 (3)C17—C18—C19—C201.6 (3)
C3—C2—C7—C61.0 (3)C16—C15—C20—C192.7 (3)
S1—C2—C7—C6176.77 (15)S3—C15—C20—C19177.49 (15)
C5—C6—C7—C20.7 (3)C18—C19—C20—C150.2 (3)
O2—S2—C8—C1312.88 (19)O4—S4—C21—C264.83 (16)
C1—S2—C8—C1395.40 (17)C14—S4—C21—C26113.84 (14)
O2—S2—C8—C9161.56 (15)O4—S4—C21—C22179.36 (13)
C1—S2—C8—C990.15 (16)C14—S4—C21—C2271.63 (15)
C13—C8—C9—C101.2 (3)C26—C21—C22—C231.5 (3)
S2—C8—C9—C10175.59 (15)S4—C21—C22—C23175.83 (13)
C8—C9—C10—C110.6 (3)C21—C22—C23—C241.4 (3)
C9—C10—C11—C120.1 (3)C22—C23—C24—C250.8 (3)
C10—C11—C12—C130.0 (3)C23—C24—C25—C260.1 (3)
C9—C8—C13—C121.2 (3)C22—C21—C26—C250.8 (3)
S2—C8—C13—C12175.36 (15)S4—C21—C26—C25175.27 (14)
C11—C12—C13—C80.5 (3)C24—C25—C26—C210.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C21–C26 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.952.393.268 (2)153
C5—H5···O1i0.952.473.302 (3)146
C12—H12···O2ii0.952.573.240 (2)128
C22—H22···O20.952.353.285 (2)170
C24—H24···O4iii0.952.573.335 (2)138
C4—H4···S2i0.952.873.484 (2)124
C9—H9···Cg1iv0.952.673.553 (2)154
C16—H16···Cg2v0.952.783.682 (2)159
C18—H18···Cg2vi0.952.963.744 (2)141
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H12O2S2
Mr264.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)8.4368 (4), 17.1966 (7), 17.1387 (6)
β (°) 95.251 (3)
V3)2476.12 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.32 × 0.30 × 0.20
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.636, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
41505, 5503, 4545
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.02
No. of reflections5503
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.40

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C21–C26 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.952.393.268 (2)153
C5—H5···O1i0.952.473.302 (3)146
C12—H12···O2ii0.952.573.240 (2)128
C22—H22···O20.952.353.285 (2)170
C24—H24···O4iii0.952.573.335 (2)138
C4—H4···S2i0.952.873.484 (2)124
C9—H9···Cg1iv0.952.673.553 (2)154
C16—H16···Cg2v0.952.783.682 (2)159
C18—H18···Cg2vi0.952.963.744 (2)141
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGreene, J. L. & Shevlin, P. B. (1971). J. Chem. Soc. Chem. Commun. pp. 1092–1093.  CrossRef Google Scholar
First citationHajipour, A. R., Kooshki, B. & Ruoho, A. E. (2005). Tetrahedron Lett. 46, 5503–5506.  Web of Science CrossRef CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKannan, S., Usman, A. & Fun, H.-K. (2003). Acta Cryst. C59, o268–o270.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShriner, R. L., Struck, H. C. & Jorison, W. J. (1930). J. Am. Chem. Soc. 52, 2060–2069  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o653-o654
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds