metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m259-m260

Poly[(μ2-4,4′-bi­pyridine)(μ2-3,5-di­carboxybenzene­sulfonato)silver(I)]

aDepartment of Adult Education, Xinyu College, Xinyu, Jiangxi 338000, People's Republic of China, and bCollege of Chemistry and Life Science, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China
*Correspondence e-mail: gohappyxu@yahoo.com.cn

(Received 26 December 2009; accepted 2 February 2010; online 6 February 2010)

In the title compound, [Ag(C8H5O7S)(C10H8N2)]n, the Ag atom is tetra­coordinated by two 4,4′-bipydidine (4,4′-bipy) N atoms and two monodentate sulfonate O atoms of the 5-sulfoisophthalic acid (H3sip) ligands. Adjacent Ag atoms are bonded through four sulfonate O atoms, forming a dinuclear unit with an Ag⋯Ag separation of 3.384 (5) Å; they are further linked together by the 4,4′-bipy lignds into a chain. Classical inter­molecular O—H⋯O and non-classical intra­molecular C—H⋯O hydrogen bonds are also observed in the two-dimensional supra­molecuar structure.

Related literature

For general background to the design and construction of coordination polymers using multifunctional ligands, see: James (2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]); Kawando & Fujita (2007[Kawando, M. & Fujita, M. (2007). Coord. Chem. Rev. 251, 2592-2605.]); Liu et al. (2007[Liu, Q. Y., Yuan, D. Q. & Xu, L. (2007). Cryst. Growth Des. 7, 1832-1843.], 2008[Liu, Q. Y., Wang, Y. L., Zhao, J. & Xu, L. (2008). Eur. J. Inorg. Chem. pp. 1157-1163.]). For related structures, see: Liu & Xu (2005[Liu, Q. Y. & Xu, L. (2005). CrystEngComm, 7, 87-89.], 2006[Liu, Q. Y. & Xu, L. (2006). Eur. J. Inorg. Chem. pp. 1620-1628.]); Lu et al. (2007[Lu, J., Li, F., Yuan, D. Q. & Cao, R. (2007). Polyhedron, 26, 2979-2986.]). For the synthesis of related compounds, see: Wang et al. (2008[Wang, Y. L., Liu, Q. Y. & Xu, L. (2008). CrystEngComm, 10, 1667-1673.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C8H5O7S)(C10H8N2)]

  • Mr = 509.24

  • Triclinic, [P \overline 1]

  • a = 7.9424 (16) Å

  • b = 9.970 (2) Å

  • c = 11.650 (2) Å

  • α = 83.38 (3)°

  • β = 87.36 (3)°

  • γ = 78.67 (3)°

  • V = 898.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 295 K

  • 0.52 × 0.34 × 0.13 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.615, Tmax = 0.831

  • 7152 measured reflections

  • 3156 independent reflections

  • 2350 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.189

  • S = 1.06

  • 3156 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O5i 0.82 1.81 2.627 (8) 173
O6—H6B⋯O2ii 0.82 1.86 2.630 (8) 155
C1—H1A⋯O1iii 0.93 2.56 3.299 (10) 136
C6—H6A⋯O1iv 0.93 2.49 3.212 (9) 135
C12—H12A⋯O3 0.93 2.59 2.926 (9) 102
C16—H16A⋯O6 0.93 2.39 2.703 (10) 100
C16—H16A⋯O6ii 0.93 2.48 3.376 (9) 162
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x, -y+3, -z+1; (iii) -x, -y+4, -z+2; (iv) -x+1, -y+3, -z+2.

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and construction of coordination polymers from multifunctional ligands with metal ions is one of the most active areas of materials research. The inceasing interest in these materials is stimulated by their intriguing structural diversities and potential applications such as catalysis, molecular magnets and adsorption (James, 2003; Kawando et al., 2007; Liu et al., 2007 and 2008).

As a multidentate O-donor organic aromatic polycarboxylate ligand, 5-sulfoisophthalic acid monosodium salt (NaH2sip) has been used a good organic ligand 'spacer' to obtain many metal-organic complexes (Liu & Xu, 2005 and 2006; Lu et al., 2007; Wang et al., 2008). In this work, with the introduction of a rigid linear ligand, 4,4'-bipy, a novel 1-D organic-inorganic hybrid, Ag(H2sip)(bipy)(I) (H3sip = 5-sulfoisophthalic acid and bipy = 4,4'-bipydidine), has been obtained through hydrothermal self-assembly.

As depicted in Fig. 1, each asymmetric unit in compound I contains one Ag ion, one H2sip and one 4,4'-bipy ligands. The Ag1 ion is tetra-coordinated by two 4,4'-bipy nitrogen atoms with Ag—N distances being 2.194 (39) and 2.184 (40)Å, and two monodentate sulfonate oxygen atom with Ag—O bond lengths of 2.653 (27) and 2.621 (9)Å. The adjacent two Ag atoms are bonded through two oxygen atoms (O1 and O3) from one sulfonate group and its symmtery-related atoms to form a dinuclear unit with the Ag1···Ag1 seperation of 3.384 (5)Å. Such dinuclear units are further linked together by the linkage of 4,4'-bipy to construct 1-D chain-like, as shown in Fig. 2.

In compound I,each 4,4'-bipy ligand bridges two Ag1 ions to yield a 1-D chain along the a axis. While each H2sip- ligand acts as mono-armed ligand using its bidentate sulfonate group, with remaining two carboxylate group uncoordinated.

In the crystal structure of the compound I, classical inter-molecular O—H···O and non-classical intra-molecular C—H···O hydrogen bonds are observed, which link the H2sip-and 4,4'-bipy molecules into a two-dimensional H-bonded network and stabilize the crystal packing.

Related literature top

For general background to the design and construction of coordination polymers using multifunctional ligands, see: James (2003); Kawando & Fujita (2007); Liu et al. (2007, 2008). For related structures, see: Liu & Xu (2005, 2006); Lu et al. (2007). For the synthesis of related compounds, see: Wang et al. (2008).

Experimental top

AgNO3 (0.086 g, 0.50 mmol) and NaH2sip (0.133 g, 0.50 mmol) were dissolved in 10 mL of distilled water by vigorous stirring. 4,4'-bipy (0.078 g, 0.50 mmol) was added to the mixture and stirred for 30 min. The resulting solution was sealed in a teflon-lined stainless autoclave and heated at 433 K for 4 days under autogenous pressure and then cooled to room temperature during 18 h. Yellow block crystals of I suitable for X-ray analysis were collected in 59% yield (based on silver).

Refinement top

All H atoms bound to carbon were refined using a riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). Two hydroxy H atoms were located in a difference map and refined with O—H distance restraints of 0.82Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the structure of title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. View of the 1-D chain in the crystal structure of title compound.
Poly[(µ2-4,4'-bipyridine)(µ2-3,5-dicarboxybenzenesulfonato)silver(I)] top
Crystal data top
[Ag(C8H5O7S)(C10H8N2)]Z = 2
Mr = 509.24F(000) = 508
Triclinic, P1Dx = 1.883 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9424 (16) ÅCell parameters from 7152 reflections
b = 9.970 (2) Åθ = 3.0–25.0°
c = 11.650 (2) ŵ = 1.29 mm1
α = 83.38 (3)°T = 295 K
β = 87.36 (3)°Block, yellow
γ = 78.67 (3)°0.52 × 0.34 × 0.13 mm
V = 898.3 (3) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
3156 independent reflections
Radiation source: fine-focus sealed tube2350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.615, Tmax = 0.831k = 1111
7152 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.0986P)2 + 4.7322P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3156 reflectionsΔρmax = 0.97 e Å3
263 parametersΔρmin = 1.43 e Å3
0 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
[Ag(C8H5O7S)(C10H8N2)]γ = 78.67 (3)°
Mr = 509.24V = 898.3 (3) Å3
Triclinic, P1Z = 2
a = 7.9424 (16) ÅMo Kα radiation
b = 9.970 (2) ŵ = 1.29 mm1
c = 11.650 (2) ÅT = 295 K
α = 83.38 (3)°0.52 × 0.34 × 0.13 mm
β = 87.36 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3156 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2350 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.831Rint = 0.030
7152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.06Δρmax = 0.97 e Å3
3156 reflectionsΔρmin = 1.43 e Å3
263 parameters
Special details top

Geometry. Alls.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.65733 (8)1.58243 (6)0.94443 (6)0.0538 (3)
S10.3909 (2)1.50090 (19)0.72770 (16)0.0418 (5)
N10.1357 (8)2.4038 (6)0.9399 (6)0.0446 (15)
N20.4706 (8)1.7746 (6)0.9457 (6)0.0467 (15)
C10.0690 (10)2.3342 (8)1.0376 (7)0.050 (2)
H1A0.10672.36861.10720.060*
C20.0521 (10)2.2150 (7)1.0411 (7)0.0442 (18)
H2A0.09572.17231.11160.053*
C30.0763 (10)2.3507 (8)0.8420 (7)0.0492 (19)
H3A0.11862.39690.77220.059*
C40.0425 (10)2.2327 (8)0.8396 (7)0.0433 (17)
H4A0.07942.20150.76880.052*
C50.2986 (9)1.9505 (8)1.0438 (7)0.0432 (17)
H5A0.26171.98321.11410.052*
C60.4124 (10)1.8288 (7)1.0428 (7)0.0423 (17)
H6A0.45131.78131.11310.051*
C70.2962 (11)1.9698 (8)0.8416 (7)0.051 (2)
H7A0.25992.01590.77040.061*
C80.4094 (12)1.8445 (8)0.8457 (7)0.054 (2)
H8A0.44451.80740.77690.065*
C90.1099 (9)2.1579 (7)0.9401 (6)0.0366 (15)
C100.2368 (8)2.0268 (7)0.9412 (6)0.0343 (15)
C110.4218 (9)1.3809 (7)0.6227 (6)0.0406 (16)
C120.5797 (9)1.2933 (7)0.6153 (6)0.0409 (17)
H12A0.66811.29900.66300.049*
C130.6045 (9)1.1976 (8)0.5365 (6)0.0415 (17)
C140.4729 (10)1.1858 (8)0.4675 (7)0.0443 (17)
H14A0.48941.11820.41710.053*
C150.3146 (9)1.2759 (8)0.4736 (6)0.0420 (17)
C160.2894 (9)1.3741 (8)0.5512 (6)0.0446 (18)
H16A0.18471.43480.55530.054*
C170.7761 (10)1.1076 (8)0.5217 (7)0.0471 (19)
C180.1776 (10)1.2684 (8)0.3903 (7)0.0461 (18)
O10.3287 (9)1.4280 (6)0.8299 (5)0.0643 (17)
O20.2644 (7)1.6189 (5)0.6839 (5)0.0522 (14)
O30.5564 (7)1.5339 (7)0.7414 (6)0.0626 (17)
O40.8908 (7)1.1182 (7)0.5940 (6)0.071 (2)
H4B0.98251.06910.57820.106*
O50.8050 (7)1.0323 (6)0.4427 (5)0.0567 (15)
O60.0381 (8)1.3629 (8)0.4059 (7)0.083 (2)
H6B0.04091.34790.36950.125*
O70.1923 (8)1.1889 (7)0.3209 (6)0.0678 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0480 (4)0.0396 (4)0.0663 (5)0.0174 (3)0.0110 (3)0.0155 (3)
S10.0382 (10)0.0395 (10)0.0434 (10)0.0099 (8)0.0101 (8)0.0122 (8)
N10.033 (3)0.039 (3)0.058 (4)0.002 (3)0.004 (3)0.005 (3)
N20.041 (3)0.040 (3)0.054 (4)0.008 (3)0.007 (3)0.009 (3)
C10.046 (4)0.048 (4)0.054 (5)0.008 (4)0.010 (4)0.025 (4)
C20.049 (4)0.028 (3)0.053 (4)0.007 (3)0.017 (4)0.009 (3)
C30.041 (4)0.048 (4)0.049 (5)0.013 (4)0.006 (3)0.004 (4)
C40.041 (4)0.043 (4)0.042 (4)0.004 (3)0.002 (3)0.009 (3)
C50.038 (4)0.044 (4)0.042 (4)0.009 (3)0.001 (3)0.009 (3)
C60.045 (4)0.035 (4)0.042 (4)0.006 (3)0.004 (3)0.008 (3)
C70.067 (5)0.038 (4)0.037 (4)0.019 (4)0.009 (4)0.011 (3)
C80.064 (5)0.046 (4)0.049 (5)0.014 (4)0.012 (4)0.023 (4)
C90.031 (3)0.032 (3)0.044 (4)0.005 (3)0.006 (3)0.009 (3)
C100.030 (3)0.029 (3)0.043 (4)0.000 (3)0.004 (3)0.009 (3)
C110.037 (4)0.038 (4)0.042 (4)0.003 (3)0.007 (3)0.000 (3)
C120.034 (4)0.044 (4)0.042 (4)0.008 (3)0.008 (3)0.015 (3)
C130.032 (4)0.045 (4)0.041 (4)0.007 (3)0.003 (3)0.003 (3)
C140.043 (4)0.040 (4)0.048 (4)0.003 (3)0.006 (3)0.010 (3)
C150.038 (4)0.047 (4)0.038 (4)0.005 (3)0.009 (3)0.013 (3)
C160.032 (4)0.051 (4)0.043 (4)0.011 (3)0.000 (3)0.002 (3)
C170.040 (4)0.045 (4)0.051 (4)0.008 (3)0.012 (3)0.008 (4)
C180.043 (4)0.045 (4)0.050 (4)0.000 (3)0.017 (3)0.012 (4)
O10.090 (5)0.049 (3)0.046 (3)0.005 (3)0.011 (3)0.009 (3)
O20.049 (3)0.042 (3)0.061 (3)0.011 (2)0.017 (3)0.010 (3)
O30.044 (3)0.070 (4)0.077 (4)0.006 (3)0.019 (3)0.041 (3)
O40.039 (3)0.083 (5)0.087 (5)0.021 (3)0.019 (3)0.047 (4)
O50.044 (3)0.060 (3)0.064 (4)0.012 (3)0.014 (3)0.030 (3)
O60.048 (4)0.101 (5)0.099 (5)0.027 (4)0.031 (4)0.056 (4)
O70.059 (4)0.075 (4)0.068 (4)0.011 (3)0.023 (3)0.038 (4)
Geometric parameters (Å, º) top
Ag1—N1i2.178 (6)C6—H6A0.9300
Ag1—N22.181 (6)C7—C101.374 (10)
Ag1—O32.658 (7)C7—C81.385 (10)
Ag1—O1ii2.626 (6)C7—H7A0.9300
S1—O31.436 (6)C8—H8A0.9300
S1—O11.441 (6)C9—C101.485 (9)
S1—O21.449 (5)C11—C121.386 (10)
S1—C111.784 (8)C11—C161.387 (10)
N1—C11.336 (10)C12—C131.379 (10)
N1—C31.340 (10)C12—H12A0.9300
N1—Ag1iii2.178 (6)C13—C141.379 (10)
N2—C61.334 (10)C13—C171.492 (10)
N2—C81.346 (10)C14—C151.399 (10)
C1—C21.372 (10)C14—H14A0.9300
C1—H1A0.9300C15—C161.389 (10)
C2—C91.385 (10)C15—C181.508 (10)
C2—H2A0.9300C16—H16A0.9300
C3—C41.358 (10)C17—O51.239 (9)
C3—H3A0.9300C17—O41.295 (9)
C4—C91.383 (10)C18—O71.183 (9)
C4—H4A0.9300C18—O61.326 (10)
C5—C61.364 (10)O4—H4B0.8200
C5—C101.396 (10)O6—H6B0.8200
C5—H5A0.9300
O3—Ag1—N292.9 (2)C8—C7—H7A119.5
O3—Ag1—N1i89.0 (2)N2—C8—C7122.4 (7)
O3—Ag1—O1ii158.2 (3)N2—C8—H8A118.8
N2—Ag1—N1i174.0 (2)C7—C8—H8A118.8
N2—Ag1—O1ii88.5 (2)C4—C9—C2115.1 (6)
O3—S1—O1113.3 (4)C4—C9—C10123.1 (7)
O3—S1—O2113.0 (4)C2—C9—C10121.8 (6)
O1—S1—O2111.8 (4)C7—C10—C5115.5 (6)
O3—S1—C11105.9 (3)C7—C10—C9122.3 (6)
O1—S1—C11104.6 (4)C5—C10—C9122.1 (6)
O2—S1—C11107.6 (3)C12—C11—C16120.8 (7)
C1—N1—C3115.9 (6)C12—C11—S1118.6 (5)
C1—N1—Ag1iii120.9 (5)C16—C11—S1120.6 (5)
C3—N1—Ag1iii123.1 (5)C13—C12—C11119.4 (7)
C6—N2—C8117.0 (6)C13—C12—H12A120.3
C6—N2—Ag1122.8 (5)C11—C12—H12A120.3
C8—N2—Ag1120.2 (5)C14—C13—C12120.8 (7)
N1—C1—C2123.7 (7)C14—C13—C17118.6 (7)
N1—C1—H1A118.2C12—C13—C17120.6 (7)
C2—C1—H1A118.2C13—C14—C15119.7 (7)
C1—C2—C9120.4 (7)C13—C14—H14A120.1
C1—C2—H2A119.8C15—C14—H14A120.1
C9—C2—H2A119.8C16—C15—C14119.8 (7)
N1—C3—C4123.3 (7)C16—C15—C18121.5 (7)
N1—C3—H3A118.4C14—C15—C18118.6 (7)
C4—C3—H3A118.4C11—C16—C15119.4 (7)
C3—C4—C9121.5 (7)C11—C16—H16A120.3
C3—C4—H4A119.3C15—C16—H16A120.3
C9—C4—H4A119.3O5—C17—O4123.6 (7)
C6—C5—C10121.1 (7)O5—C17—C13121.1 (7)
C6—C5—H5A119.5O4—C17—C13115.3 (7)
C10—C5—H5A119.5O7—C18—O6124.6 (7)
N2—C6—C5123.0 (7)O7—C18—C15124.7 (7)
N2—C6—H6A118.5O6—C18—C15110.7 (6)
C5—C6—H6A118.5C17—O4—H4B109.5
C10—C7—C8120.9 (7)C18—O6—H6B109.5
C10—C7—H7A119.5
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y+3, z+2; (iii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O5iv0.821.812.627 (8)173
O6—H6B···O2v0.821.862.630 (8)155
C1—H1A···O1vi0.932.563.299 (10)136
C6—H6A···O1ii0.932.493.212 (9)135
C12—H12A···O30.932.592.926 (9)102
C16—H16A···O60.932.392.703 (10)100
C16—H16A···O6v0.932.483.376 (9)162
Symmetry codes: (ii) x+1, y+3, z+2; (iv) x+2, y+2, z+1; (v) x, y+3, z+1; (vi) x, y+4, z+2.

Experimental details

Crystal data
Chemical formula[Ag(C8H5O7S)(C10H8N2)]
Mr509.24
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.9424 (16), 9.970 (2), 11.650 (2)
α, β, γ (°)83.38 (3), 87.36 (3), 78.67 (3)
V3)898.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.52 × 0.34 × 0.13
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.615, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
7152, 3156, 2350
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.189, 1.06
No. of reflections3156
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 1.43

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O5i0.821.812.627 (8)173.3
O6—H6B···O2ii0.821.862.630 (8)155.3
C1—H1A···O1iii0.932.563.299 (10)136.2
C6—H6A···O1iv0.932.493.212 (9)134.5
C12—H12A···O30.932.592.926 (9)101.8
C16—H16A···O60.932.392.703 (10)99.6
C16—H16A···O6ii0.932.483.376 (9)162.3
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+3, z+1; (iii) x, y+4, z+2; (iv) x+1, y+3, z+2.
 

Acknowledgements

This work was supported by the Jiangxi Provincial Educational Foundation (No. 20060237), the Natural Science Foundation of Fujian Province (No. 2008 J0172) and the Key Laboratory of Jiangxi University for Functional Materials Chemistry

References

First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKawando, M. & Fujita, M. (2007). Coord. Chem. Rev. 251, 2592–2605.  Google Scholar
First citationLiu, Q. Y., Wang, Y. L., Zhao, J. & Xu, L. (2008). Eur. J. Inorg. Chem. pp. 1157–1163.  Web of Science CSD CrossRef Google Scholar
First citationLiu, Q. Y. & Xu, L. (2005). CrystEngComm, 7, 87–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Q. Y. & Xu, L. (2006). Eur. J. Inorg. Chem. pp. 1620–1628.  Web of Science CSD CrossRef Google Scholar
First citationLiu, Q. Y., Yuan, D. Q. & Xu, L. (2007). Cryst. Growth Des. 7, 1832–1843.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, J., Li, F., Yuan, D. Q. & Cao, R. (2007). Polyhedron, 26, 2979–2986.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, Y. L., Liu, Q. Y. & Xu, L. (2008). CrystEngComm, 10, 1667–1673.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m259-m260
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds