organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Mesityl-3-methyl­cyclo­butyl)-2-phen­oxy­ethanone

aDepartment of Chemistry, Faculty of Arts and Science, Adiyaman University, 02040 Adıyaman, Turkey, and bDepartment of Engineering Physics, Hacettepe University, Beytepe 06800, Ankara, Turkey
*Correspondence e-mail: carici.xray@gmail.com

(Received 6 January 2010; accepted 1 February 2010; online 6 February 2010)

In the title compound, C22H26O2, the cyclo­butane ring is puckered, with a dihedral angle of 24.97 (9)° between the two C3 planes. In the crystal, inter­molecular non-classical C—H⋯O inter­actions between the methyl­cyclo­butyl CH group and the O atom of the phen­oxy group are found.

Related literature

For related cyclo­butanes, see: Çukurovali et al. (2005[Çukurovalı, A., Özdemir, N., Yılmaz, I. & Dinçer, M. (2005). Acta Cryst. E61, o1754-o1756.]); Dinçer et al. (2004[Dinçer, M., Özdemir, N., Çukurovalı, A., Yılmaz, İ. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1523-o1524.]); Kirilmiş et al. (2005a[Kırılmış, C., Koca, M., Arıcı, C., Heinemann, F. W. & Ahmedzade, M. (2005a). Acta Cryst. E61, o555-o556.],b[Kırılmış, C., Koca, M., Arıcı, C., Heinemann, F. W. & Ahmedzade, M. (2005b). Acta Cryst. E61, o1176-o1177.]); Sari et al. (2002[Sari, U., Güven, K., Yılmaz, I., Çukurovali, A. & Aksoy, I. (2002). Anal. Sci. 18, 725-726.], 2004[Sari, U., Yılmaz, I., Güven, K., Çukurovali, A. & Aksoy, I. (2004). J. Chem. Crystallogr. 34, 571-575.]). For the anti-inflammatory and anti-depressant activity of three-substituted cyclo­butane acid derivatives, see: Roger et al. (1977[Roger, E., Pier, C. J., Paulet, V., Gerard, G., Chepat, J. P. & Robert, G. (1977). Eur. J. Med. Chem. Chem. Ther. pp. 12501-?????.]); Gerard (1979[Gerard, G. (1979). Eur. J. Med. Chem. 14, 493-497.]); Sawhney et al. (1978[Sawhney, S. N., Arora, S. K. & Sing, J. V. (1978). Indian J. Chem. Sect. B, 16, 605-609.]); Brown et al. (1974[Brown, K., Cater, D. P., Cavalla, J. F., Green, D., Newberry, R. A. & Wilson, A. B. (1974). J. Med. Chem. 14, 1177-1181.]); for anti-microbial activity, see: Suziki et al. (1979[Suziki, N., Tanaka, Y. & Dohmori, R. (1979). Chem. Pharm. Bull. 27, 1-11.]); for anti-parasitic activity, see: Slip et al. (1974[Slip, P. I., Closier, M. & Neville, M. (1974). J. Med. Chem. 17, 207-209.]), for herbicidal activity, see: Foerster et al. (1979[Foerster, H., Hofer, W., Mues, V., Eue, L. & Schmidt, R. R. (1979). German Patent 2, 822 155.]) and for their liquid-crystal properties, see: Dehmlow & Schmidt (1990[Dehmlow, E. V. & Schmidt, S. (1990). Liebigs Ann. Chem. 5, 411-414.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26O2

  • Mr = 322.43

  • Triclinic, [P \overline 1]

  • a = 8.5884 (12) Å

  • b = 10.1725 (11) Å

  • c = 11.1018 (12) Å

  • α = 82.364 (4)°

  • β = 68.170 (3)°

  • γ = 86.235 (2)°

  • V = 892.24 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.42 × 0.33 × 0.24 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker–Nonius, 2002[Bruker-Nonius (2002). COLLECT, EVALCCD and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.982

  • 23641 measured reflections

  • 3921 independent reflections

  • 2968 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 1.07

  • 3921 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.99 2.44 3.419 (3) 172 (2)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: COLLECT (Bruker–Nonius, 2002[Bruker-Nonius (2002). COLLECT, EVALCCD and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: EVALCCD (Bruker–Nonius, 2002[Bruker-Nonius (2002). COLLECT, EVALCCD and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: EVALCCD program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It is well known that three-substituted cyclobutane acid derivatives exhibit anti-inflammatory and anti-depressant activities (Roger et al., 1977; Gerard, 1979) and liquid-crystal properties (Dehmlow & Schmidt, 1990), moreover their of various thiazoles derivatives showed herbicidal (Foerster et al., 1979), anti-inflammatory (Sawhney et al., 1978; Brown et al., 1974), anti-microbial (Suziki et al., 1979) or anti-parasitic activity (Slip et al., 1974). Substituted cyclobutane contained similar structures, have been reported in the recent years (Kirilmiş et al., 2005a, 2005b; Sari et al., 2002, 2004;Çukurovali et al., 2005; Dinçer et al., 2004).

The four-atom bridge O2/C16/C15/C11 linking the cyclobutane and phenoxy rings is planar (Fig. 1). The torsion angle of O2—C16—C15—C11 is -1.0 (1)°. It corresponds to the (-) synclinical configuration. The cyclobutane ring is similar puckered as in a related compounds; the C9/C7/C10 plane forms a dihedaral angle of 24.97 (9)° with the C10/C11/C9 plane in the title compound. The same dihedral angles are presented in the literature: 25.74 (6)° - Çukurovali et al., (2005) and 19.8 (3)° - Dinçer et al., (2004). The mesityl and phenoxy rings are planar. The dihedral angle between these ring is 73.90 (5)°. The maximum deviation from mean plane of the atoms for mesityl and phenoxy rings are -0.046 (6)Å for C5 and 0.016 (3)Å for C17, respectively.

There is one intermolcular non-classical C—H···O hydrogen-bonding interactions in the crystal structure. This interactions lead to close packing between the neighbouring molecules. And the structure is stabilized by van der Waals interactions and symmetry-related molecules are linked to form dimerization chains via C—H···O intermolecular non-classical hydrogen bond. Intermolecular van der Waals interactions between the methylcyclobutyl CH group and the O atom of the phenoxy group (Fig. 2, Table 1).

In the IR spectra of 1-(3-mesityl-3-methylcyclobutyl)-2-phenoxy-1-ethanone very important bonds were observed as (ν, cm-1); 1711 (sharp CO stretching) respectively and between 3063–2852 (broad aliphatic and aromatic C—H stretching) and 1070 (ether C–O–C stretching). The 1H-NMR spectra were reported in p.p.m. (δ) relative to tetramethylsilane (SiMe4) as the internal standard and referenced to deuterochloroform (CDCl3). In the 1H-NMR spectra were H signals obtained as (p.p.m.) 1.7 (s, 3H, cyclobutane-CH3), 2.2 (s, 9H, CH3-mesitylene), 2.5–2.9 (m, 4H, cyclobutane CH2), 3.9 (p,1H, cyclobutane CH), 4.2 (s, 2H, O—CH2) and aromatic protons observed at 6.7–7.3 (m, 7H, ArH). Elemental Analysis Calc. for C22H26O2 (322.44 g mol-1): C, 81.95; H, 8.13 Found: C, 81.88; H, 8.05.

Related literature top

For related cyclobutanes, see: Çukurovali et al. (2005); Dinçer et al. (2004); Kirilmiş et al. (2005a,b); Sari et al. (2002, 2004). For the anti-inflammatory and anti-depressant activity of three-substituted cyclobutane acid derivatives, see: Roger et al. (1977); Gerard (1979); Sawhney et al. (1978); Brown et al. (1974); for anti-microbial activity, see: Suziki et al. (1979); for anti-parasitic activity, see: Slip et al. (1974), for herbicidal activity, see: Foerster et al. (1979) and for their liquid-crystal properties, see: Dehmlow & Schmidt (1990).

Experimental top

Elemental analysis were determined on a LECO CHNS–932 auto elemental analysis apparatus. Infrared spectra were obtained by using a Mattson 1000 F T–IR Spectrometer, from 4000–400 cm-1 in KBr pellet. 1H-NMR spectra were recorded on a Jeol FX–90Q Spectrometer 90 MHz.

Synthesis of 1-(3-mesityl-3-methylcyclobutyl)-2-phenoxy-1-ethanone: a mixture of 1-mesityl-1-methyl-3-(2-chloro-1-oxoethyl)cyclobutane (2.64 g, 10 mmol), phenol (1.035 g, 11 mmol) and K2CO3 (1.51 g, 11 mmol) in 200 ml dry acetone was refluxed for 8 h. The reaction mixture was poured into water (500 ml), the insoluble portion was filtered off, washed with water and crystallized from ethanol (yield 85%).

Refinement top

All H atoms were placed geometrically (C—H = 0.95–0.99 Å) and refined in the riding model approximation, with Uiso(H) = 1.2Ueq(C) for CH and CH2, and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: COLLECT (Bruker–Nonius, 2002); cell refinement: EVALCCD (Bruker–Nonius, 2002); data reduction: EVALCCD (Bruker–Nonius, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as a small circles of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram of title compound with the intermolecular H bonds (dashed lines). Symmetry code: (i) -x+1, -y+2, -z+1.
1-(3-Mesityl-3-methylcyclobutyl)-2-phenoxyethanone top
Crystal data top
C22H26O2Z = 2
Mr = 322.43F(000) = 348
Triclinic, P1Dx = 1.200 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5884 (12) ÅCell parameters from 149 reflections
b = 10.1725 (11) Åθ = 6.0–20.0°
c = 11.1018 (12) ŵ = 0.08 mm1
α = 82.364 (4)°T = 100 K
β = 68.170 (3)°Block, colourless
γ = 86.235 (2)°0.42 × 0.33 × 0.24 mm
V = 892.24 (19) Å3
Data collection top
Nonius KappaCCD
diffractometer
3921 independent reflections
Radiation source: fine-focus sealed tube2968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 9 pixels mm-1θmax = 27.1°, θmin = 3.0°
ω–scans with 2.00° and 40 sec per frameh = 1111
Absorption correction: multi-scan
(SADABS; Bruker–Nonius, 2002)
k = 1312
Tmin = 0.969, Tmax = 0.982l = 1414
23641 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.2801P]
where P = (Fo2 + 2Fc2)/3
3921 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C22H26O2γ = 86.235 (2)°
Mr = 322.43V = 892.24 (19) Å3
Triclinic, P1Z = 2
a = 8.5884 (12) ÅMo Kα radiation
b = 10.1725 (11) ŵ = 0.08 mm1
c = 11.1018 (12) ÅT = 100 K
α = 82.364 (4)°0.42 × 0.33 × 0.24 mm
β = 68.170 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3921 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker–Nonius, 2002)
2968 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.982Rint = 0.054
23641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
3921 reflectionsΔρmin = 0.25 e Å3
217 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66157 (19)0.63782 (15)0.69324 (15)0.0191 (3)
C20.6658 (2)0.62422 (15)0.81884 (15)0.0212 (3)
H20.57240.58640.88990.025*
C30.8017 (2)0.66400 (15)0.84382 (15)0.0216 (3)
C40.9374 (2)0.71600 (15)0.73790 (15)0.0202 (3)
H41.03280.74160.75250.024*
C50.93938 (19)0.73229 (15)0.61020 (15)0.0181 (3)
C60.79712 (19)0.69657 (14)0.58680 (15)0.0168 (3)
C70.79622 (18)0.71572 (15)0.44807 (15)0.0175 (3)
C80.8730 (2)0.59338 (16)0.37804 (16)0.0238 (4)
H8A0.87100.60690.28950.036*
H8B0.80790.51500.42670.036*
H8C0.98920.58020.37310.036*
C90.86927 (19)0.84742 (16)0.36088 (15)0.0190 (3)
H9A0.87010.92040.41140.023*
H9B0.98060.83600.29180.023*
C100.62618 (19)0.75748 (15)0.42989 (15)0.0189 (3)
H10B0.57410.68540.40690.023*
H10A0.54400.79980.50380.023*
C110.72371 (19)0.85766 (15)0.31115 (15)0.0181 (3)
H110.75580.81790.22730.022*
C120.5091 (2)0.58448 (17)0.67897 (17)0.0255 (4)
H12A0.54420.54300.59800.038*
H12B0.42980.65750.67610.038*
H12C0.45490.51850.75360.038*
C130.8009 (2)0.64947 (18)0.98136 (16)0.0283 (4)
H13A0.74000.56951.03080.042*
H13B0.74560.72731.02400.042*
H13C0.91660.64210.97840.042*
C141.09987 (19)0.78228 (18)0.50263 (16)0.0233 (4)
H14A1.12770.72950.42940.035*
H14B1.19120.77410.53610.035*
H14C1.08460.87560.47270.035*
C150.63834 (19)0.98988 (16)0.30363 (15)0.0196 (3)
C160.4891 (2)1.00148 (15)0.26088 (16)0.0217 (3)
H16A0.38881.03220.33140.026*
H16B0.51211.06730.18240.026*
C170.35862 (19)0.87125 (16)0.16126 (15)0.0193 (3)
C180.2842 (2)0.98135 (16)0.11452 (16)0.0231 (4)
H180.29681.06740.13370.028*
C190.1910 (2)0.96324 (19)0.03910 (18)0.0302 (4)
H190.14041.03810.00620.036*
C200.1703 (2)0.8385 (2)0.01108 (17)0.0304 (4)
H200.10880.82800.04250.036*
C210.2405 (2)0.72904 (18)0.06224 (18)0.0290 (4)
H210.22400.64270.04590.035*
C220.3340 (2)0.74507 (17)0.13673 (17)0.0253 (4)
H220.38190.66970.17140.030*
O10.68046 (15)1.08915 (12)0.33319 (12)0.0270 (3)
O20.45853 (14)0.87559 (11)0.23207 (11)0.0235 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0195 (8)0.0117 (7)0.0253 (8)0.0002 (6)0.0076 (6)0.0015 (6)
C20.0221 (8)0.0149 (8)0.0224 (8)0.0030 (6)0.0038 (7)0.0004 (6)
C30.0289 (9)0.0143 (7)0.0217 (8)0.0001 (6)0.0088 (7)0.0040 (6)
C40.0214 (8)0.0183 (8)0.0239 (8)0.0011 (6)0.0104 (7)0.0058 (6)
C50.0179 (7)0.0156 (7)0.0211 (8)0.0010 (6)0.0066 (6)0.0056 (6)
C60.0179 (7)0.0129 (7)0.0203 (7)0.0013 (6)0.0069 (6)0.0047 (6)
C70.0159 (7)0.0175 (8)0.0198 (7)0.0008 (6)0.0066 (6)0.0043 (6)
C80.0258 (8)0.0229 (8)0.0263 (8)0.0048 (7)0.0122 (7)0.0099 (7)
C90.0168 (7)0.0216 (8)0.0177 (7)0.0018 (6)0.0047 (6)0.0035 (6)
C100.0174 (7)0.0177 (8)0.0237 (8)0.0006 (6)0.0094 (6)0.0039 (6)
C110.0187 (7)0.0190 (8)0.0182 (7)0.0002 (6)0.0078 (6)0.0048 (6)
C120.0228 (8)0.0225 (9)0.0302 (9)0.0085 (7)0.0104 (7)0.0061 (7)
C130.0371 (10)0.0267 (9)0.0210 (8)0.0066 (8)0.0103 (7)0.0013 (7)
C140.0171 (8)0.0321 (9)0.0218 (8)0.0037 (7)0.0072 (7)0.0049 (7)
C150.0203 (8)0.0197 (8)0.0174 (7)0.0029 (6)0.0048 (6)0.0026 (6)
C160.0219 (8)0.0167 (8)0.0282 (8)0.0012 (6)0.0099 (7)0.0070 (7)
C170.0148 (7)0.0211 (8)0.0218 (8)0.0001 (6)0.0062 (6)0.0036 (6)
C180.0218 (8)0.0190 (8)0.0277 (8)0.0038 (6)0.0093 (7)0.0018 (7)
C190.0283 (9)0.0314 (10)0.0328 (9)0.0060 (7)0.0169 (8)0.0095 (8)
C200.0268 (9)0.0434 (11)0.0240 (9)0.0084 (8)0.0121 (7)0.0023 (8)
C210.0248 (9)0.0301 (9)0.0351 (10)0.0000 (7)0.0106 (8)0.0154 (8)
C220.0215 (8)0.0204 (8)0.0365 (9)0.0040 (7)0.0124 (7)0.0081 (7)
O10.0317 (7)0.0214 (6)0.0334 (7)0.0009 (5)0.0166 (6)0.0082 (5)
O20.0276 (6)0.0151 (6)0.0350 (6)0.0000 (5)0.0196 (5)0.0036 (5)
Geometric parameters (Å, º) top
C1—C21.397 (2)C12—H12A0.9800
C1—C61.410 (2)C12—H12B0.9800
C1—C121.518 (2)C12—H12C0.9800
C2—C31.392 (2)C13—H13A0.9800
C2—H20.9500C13—H13B0.9800
C3—C41.385 (2)C13—H13C0.9800
C3—C131.512 (2)C14—H14A0.9800
C4—C51.399 (2)C14—H14B0.9800
C4—H40.9500C14—H14C0.9800
C5—C61.418 (2)C15—O11.2177 (19)
C5—C141.514 (2)C15—C161.516 (2)
C6—C71.529 (2)C16—O21.4237 (18)
C7—C81.535 (2)C16—H16A0.9900
C7—C91.562 (2)C16—H16B0.9900
C7—C101.571 (2)C17—O21.3682 (18)
C8—H8A0.9800C17—C181.389 (2)
C8—H8B0.9800C17—C221.392 (2)
C8—H8C0.9800C18—C191.391 (2)
C9—C111.536 (2)C18—H180.9500
C9—H9A0.9900C19—C201.383 (3)
C9—H9B0.9900C19—H190.9500
C10—C111.553 (2)C20—C211.387 (3)
C10—H10B0.9900C20—H200.9500
C10—H10A0.9900C21—C221.380 (2)
C11—C151.497 (2)C21—H210.9500
C11—H111.0000C22—H220.9500
C2—C1—C6119.74 (14)C10—C11—H11111.2
C2—C1—C12116.96 (14)C1—C12—H12A109.5
C6—C1—C12123.28 (14)C1—C12—H12B109.5
C3—C2—C1122.43 (15)H12A—C12—H12B109.5
C3—C2—H2118.8C1—C12—H12C109.5
C1—C2—H2118.8H12A—C12—H12C109.5
C4—C3—C2117.38 (14)H12B—C12—H12C109.5
C4—C3—C13121.65 (15)C3—C13—H13A109.5
C2—C3—C13120.97 (15)C3—C13—H13B109.5
C3—C4—C5122.47 (15)H13A—C13—H13B109.5
C3—C4—H4118.8C3—C13—H13C109.5
C5—C4—H4118.8H13A—C13—H13C109.5
C4—C5—C6119.57 (14)H13B—C13—H13C109.5
C4—C5—C14116.94 (14)C5—C14—H14A109.5
C6—C5—C14123.43 (13)C5—C14—H14B109.5
C1—C6—C5118.27 (14)H14A—C14—H14B109.5
C1—C6—C7121.45 (13)C5—C14—H14C109.5
C5—C6—C7120.21 (13)H14A—C14—H14C109.5
C6—C7—C8110.39 (12)H14B—C14—H14C109.5
C6—C7—C9117.38 (12)O1—C15—C11123.12 (14)
C8—C7—C9111.83 (13)O1—C15—C16117.80 (14)
C6—C7—C10118.07 (12)C11—C15—C16119.06 (13)
C8—C7—C10110.26 (12)O2—C16—C15109.41 (13)
C9—C7—C1087.08 (11)O2—C16—H16A109.8
C7—C8—H8A109.5C15—C16—H16A109.8
C7—C8—H8B109.5O2—C16—H16B109.8
H8A—C8—H8B109.5C15—C16—H16B109.8
C7—C8—H8C109.5H16A—C16—H16B108.2
H8A—C8—H8C109.5O2—C17—C18124.76 (14)
H8B—C8—H8C109.5O2—C17—C22115.14 (14)
C11—C9—C789.84 (11)C18—C17—C22120.10 (15)
C11—C9—H9A113.7C17—C18—C19118.77 (16)
C7—C9—H9A113.7C17—C18—H18120.6
C11—C9—H9B113.7C19—C18—H18120.6
C7—C9—H9B113.7C20—C19—C18121.37 (17)
H9A—C9—H9B110.9C20—C19—H19119.3
C11—C10—C788.89 (11)C18—C19—H19119.3
C11—C10—H10B113.8C19—C20—C21119.17 (16)
C7—C10—H10B113.8C19—C20—H20120.4
C11—C10—H10A113.8C21—C20—H20120.4
C7—C10—H10A113.8C22—C21—C20120.27 (16)
H10B—C10—H10A111.1C22—C21—H21119.9
C15—C11—C9117.93 (13)C20—C21—H21119.9
C15—C11—C10114.89 (13)C21—C22—C17120.25 (16)
C9—C11—C1088.64 (11)C21—C22—H22119.9
C15—C11—H11111.2C17—C22—H22119.9
C9—C11—H11111.2C17—O2—C16118.20 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.992.443.419 (3)172 (2)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H26O2
Mr322.43
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.5884 (12), 10.1725 (11), 11.1018 (12)
α, β, γ (°)82.364 (4), 68.170 (3), 86.235 (2)
V3)892.24 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.33 × 0.24
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker–Nonius, 2002)
Tmin, Tmax0.969, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
23641, 3921, 2968
Rint0.054
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.07
No. of reflections3921
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: COLLECT (Bruker–Nonius, 2002), EVALCCD (Bruker–Nonius, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.992.443.419 (3)172 (2)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This study was supported financially by grant DPT/2003 K 120440-1 from the Scientific and Technical Research Council of Turkey (Project Manager Yıldırım Aydogdu). The authors extend special thanks to Frank W. Heinemann for the data collection.

References

First citationBrown, K., Cater, D. P., Cavalla, J. F., Green, D., Newberry, R. A. & Wilson, A. B. (1974). J. Med. Chem. 14, 1177–1181.  CrossRef Web of Science Google Scholar
First citationBruker–Nonius (2002). COLLECT, EVALCCD and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇukurovalı, A., Özdemir, N., Yılmaz, I. & Dinçer, M. (2005). Acta Cryst. E61, o1754–o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDehmlow, E. V. & Schmidt, S. (1990). Liebigs Ann. Chem. 5, 411–414.  Google Scholar
First citationDinçer, M., Özdemir, N., Çukurovalı, A., Yılmaz, İ. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1523–o1524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFoerster, H., Hofer, W., Mues, V., Eue, L. & Schmidt, R. R. (1979). German Patent 2, 822 155.  Google Scholar
First citationGerard, G. (1979). Eur. J. Med. Chem. 14, 493–497.  Google Scholar
First citationKırılmış, C., Koca, M., Arıcı, C., Heinemann, F. W. & Ahmedzade, M. (2005a). Acta Cryst. E61, o555–o556.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKırılmış, C., Koca, M., Arıcı, C., Heinemann, F. W. & Ahmedzade, M. (2005b). Acta Cryst. E61, o1176–o1177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoger, E., Pier, C. J., Paulet, V., Gerard, G., Chepat, J. P. & Robert, G. (1977). Eur. J. Med. Chem. Chem. Ther. pp. 12501–?????Google Scholar
First citationSari, U., Güven, K., Yılmaz, I., Çukurovali, A. & Aksoy, I. (2002). Anal. Sci. 18, 725–726.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSari, U., Yılmaz, I., Güven, K., Çukurovali, A. & Aksoy, I. (2004). J. Chem. Crystallogr. 34, 571–575.  Web of Science CSD CrossRef CAS Google Scholar
First citationSawhney, S. N., Arora, S. K. & Sing, J. V. (1978). Indian J. Chem. Sect. B, 16, 605–609.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlip, P. I., Closier, M. & Neville, M. (1974). J. Med. Chem. 17, 207–209.  PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuziki, N., Tanaka, Y. & Dohmori, R. (1979). Chem. Pharm. Bull. 27, 1–11.  PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds