metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m328-m329

Bis{N,N,N-tri­methyl-2-oxo-2-[2-(2,3,4- tri­hydroxy­benzyl­­idene)hydrazin­yl]ethanaminium} tetra­chlorido­zincate(II) methanol solvate

a'Vinča' Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, 11001 Belgrade, Serbia, and bDepartment of Chemistry, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
*Correspondence e-mail: snovak@vinca.rs

(Received 1 February 2010; accepted 16 February 2010; online 24 February 2010)

The asymmetric unit of the title compound, (C12H18N3O4)2[ZnCl4]·CH3OH, consists of two Girard reagent-based cations, a tetra­chlorido­zincate anion and a mol­ecule of methanol as solvate. These components are inter­connected in the crystal structure by an extensive network of O—H⋯O, N—H⋯O, C—H⋯O, O—H⋯N, O—H⋯Cl, N—H⋯Cl and C—H⋯Cl hydrogen bonds. The shortest inter­molecular inter­action is realized between the cation and anion [H⋯Cl = 2.29 (5) Å; O—H⋯Cl = 167 (3)°]. C—H⋯O inter­actions also play a important role in the inter­connection of the cations.

Related literature

For the crystal structures of the related Girard reagent-based ligands and coordination compounds, see: Leovac et al. (2006[Leovac, V. M., Mészáros Szécsényi, K., Vojinović-Ješić, Lj. S., Češljević, V. I., Markov, S. & Wadsten, T. (2006). J. Therm. Anal. Cal. 86, 379-384.], 2007[Leovac, V. M., Bogdanović, G. A., Češljević, V. I., Jovanović, Lj. S., Novaković, S. B. & Vojinović-Ješić, Lj. S. (2007). Struct. Chem. 18, 113-119.]); Vojinović et al. (2004[Vojinović, Lj. S., Leovac, V. M., Novaković, S. B., Bogdanović, G. A., Csanadi, J. J. & Češljević, V. I. (2004). Inorg. Chem. Commun. 7, 1264-1268.]) and references therein; Vojinović-Ješić et al. (2008[Vojinović-Ješić, Lj. S., Bogdanović, G. A., Leovac, V. M., Češljević, V. I. & Jovanović, Lj. S. (2008). Struct. Chem. 19, 807-815.], 2010[Vojinović-Ješić, Lj. S., Češljević, V. I., Bogdanović, G. A., Leovac, V. M., Mészáros Szécsényi, K., Divjaković, V. & Joksović, M. D. (2010). Inorg. Chem. Commun. Submitted.]); Revenko et al. (2009[Revenko, M. D., Bourosh, P. N., Palamarchuk, O. V., Lipkowski, J., Gdaniec, J. M. & Simonov, Yu. A. (2009). Russ. J. Inorg. Chem. 54, 1581-1589.]). For the crystal structures containing the tetra­chlorido­zincate ion, see: Jin et al. (2005[Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43-m45.]); Valkonen et al. (2006[Valkonen, A., Ahonen, K. & Kolehmainen, E. (2006). Acta Cryst. C62, m290-m292.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H18N3O4)2[ZnCl4]·CH4O

  • Mr = 775.82

  • Triclinic, [P \overline 1]

  • a = 9.471 (3) Å

  • b = 13.389 (4) Å

  • c = 14.986 (5) Å

  • α = 110.90 (4)°

  • β = 94.91 (4)°

  • γ = 103.94 (5)°

  • V = 1691.9 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 295 K

  • 0.33 × 0.21 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 7056 measured reflections

  • 6632 independent reflections

  • 5226 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.128

  • S = 1.05

  • 6632 reflections

  • 440 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4A—H4A⋯N1A 0.84 (5) 1.82 (5) 2.592 (4) 153 (5)
O5A—H5A⋯Cl2i 0.83 (5) 2.29 (5) 3.094 (4) 167 (3)
O6A—H6A⋯O5A 0.82 (7) 2.30 (6) 2.693 (4) 110 (5)
O6A—H6A⋯Cl4i 0.82 (7) 2.64 (6) 3.317 (3) 141 (5)
O4B—H4B⋯N1B 0.80 (4) 1.86 (4) 2.599 (4) 155 (4)
O5B—H5B⋯O4B 0.77 (6) 2.28 (6) 2.721 (4) 118 (5)
O5B—H5B⋯Cl1ii 0.77 (6) 2.60 (5) 3.217 (3) 139 (5)
O6B—H6B⋯O5B 0.85 (5) 2.32 (5) 2.728 (4) 110 (4)
O6B—H6B⋯Cl4iii 0.85 (5) 2.59 (5) 3.193 (3) 129 (4)
C10A—H10A⋯O1A 0.96 2.34 2.992 (5) 124
C10B—H10F⋯O1B 0.96 2.33 2.978 (4) 124
C10B—H10E⋯O4A 0.96 2.50 3.404 (5) 157
C10B—H10F⋯O1B 0.96 2.33 2.978 (4) 124
C12A—H12A⋯O6Ai 0.96 2.60 3.307 (6) 131
C12A—H12B⋯O1A 0.96 2.41 3.043 (7) 123
C12B—H12E⋯O1B 0.96 2.40 3.028 (5) 123
C12A—H12C⋯Cl1ii 0.96 2.83 3.715 (5) 154
O7—H7O⋯Cl3iv 0.82 2.44 3.251 (4) 169
N2A—H2NA⋯Cl1 0.77 (4) 2.59 (4) 3.287 (3) 154 (4)
N2B—H2NB⋯O7 0.78 (4) 2.05 (4) 2.826 (5) 175 (4)
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z; (iii) -x+2, -y+2, -z+1; (iv) x+1, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The Schiff base derivatives of Girard reagent are recently investigated as ligands in coordination chemistry (Vojinović et al., 2004 and references therein; Leovac et al., 2006, 2007; Revenko et al., 2009; Vojinović-Ješić et al., 2008, 2010). Considering the specific distribution of charge and simultaneous presence of several donor and acceptor atoms these compounds are able to build extensive hydrogen bonding networks consisting of various types of interactions.

The asymmetric unit of the title compound is given in Fig. 1. Two crystallographically independent cations (A and B) display very similar geometry. The bond lengths and angles within the aliphatic parts of the cations are consistent with those of two previously reported Girard-T based hydrazones (Leovac et al., 2007; Revenko et al., 2009).

Excluding the quaternary ammonium groups, non-hydrogen atoms of two cations (A and B) lie in plane, i.e. the root-mean-square deviations of fitted atoms 0.1Å or less. These approximately planar forms of the molecules are stabilized by number of intramolecular hydrogen bonds with the shortest being O4—H4···N1 (see Table 1). The C9—N3 bonds are single and allow for free rotation of the N(CH3)3) moiety (as was observed in complexes (Leovac et al., 2007), yet in each of the cations the deviation of the quaternary ammonium groups is restrained due to intramolecular C—H···O interactions.

Anion (ZnCl4)2- exhibits regular tetrahedral geometry with Zn—Cl distances comparable to similar anions (Jin et al., 2005; Valkonen et al., 2006). Through O—H···Cl, N—H···Cl and C—H···Cl hydrogen bonds the anion intermediates between five different cations. The strongest among these interactions is rather short and directional O5A—H5A···Cl2i (symmetry code: (i) -x, -y+1, -z) (see Table 1). It is worth noticing that the hydroxyl hydrogen involved in this interaction is the only one (from the six in totals) which significantly deviates from the trihydroxybenzyl moiety.

In the crystal packing, centrosymmetrically related cationic molecules, by C—H···O interactions, with H···O distances all shorter than 2.7Å, associate into corresponding AA and BB dimers. The distances between the parallel planes (passing trough all atoms except N(CH3)3) are 3.386 (8) and 3.194 (7)Å for AA and BB dimers respectively. The pairs of AA and BB dimers further arrange in approximately parallel fashion (angle between planes of A and B molecule is 0.92 (8)°) along the c axis with the closest distance between non-H atoms of 3.407 (5)Å (Fig. 2.). The C—H···O hydrogen interactions relating the dimers mainly include the methyl groups from the quaternary ammonium fragment and oxygen O6 which is in para-position concerning the aliphatic fragment.

Related literature top

For the crystal structures of the related Girard reagent-based ligands and coordination compounds, see: Leovac et al. (2006, 2007); Vojinović et al. (2004) and references therein; Vojinović-Ješić et al. (2008, 2010); Revenko et al. (2009). For the crystal structures containing the tetrachloridozincate ion, see: Jin et al. (2005); Valkonen et al. (2006).

Experimental top

To a warm solution of L (L = [(CH3)3NCH2C(O)NHNCHC6H2(OH)3]+ Cl-) (0.15 g, 0.5 mmol) in MeOH (5 ml) was added a solution ZnCl2 (anhydrous) (0.07 g, 0.5 mmol) in MeOH (3 ml). The reaction mixture was refluxed for 45 min. After two days the resulting light-green crystals have been filtered and washed with methanol and ether (yield 37%).

Refinement top

The H atoms bonded to O atoms of trihydroxybenzyl groups and H atoms bonded to N2 atoms (cations A and B) were located in difference map and refined isotropically. C-bound H atoms were placed in calculated positions (C—H 0.93Å, 0.96Å & 0.97Å) and refined as riding, with Uiso(H) = 1.2(or 1.5)Ueq(C). The refinement of the methanol H resulted in unrealistic positional and thermal parameters, therefore the position of this atom was determined geometrically - O7—H7=0.82Å and Uiso(H7) equal to 1.5Ueq(O7).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (cheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with atom labels. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. The intramolecular H-bonds are indicated as dashed lines.
[Figure 2] Fig. 2. The packing diagram of title compound shows the intermolecular H-bonds (dashed lines). H atoms not involved in intermolecular H-bonds are omitted for clarity.
Bis{N,N,N-trimethyl-2-oxo-2-[2-(2,3,4- trihydroxybenzylidene)hydrazinyl]ethanaminium} tetrachloridozincate(II) methanol solvate top
Crystal data top
(C12H18N3O4)2[ZnCl4]·CH4OZ = 2
Mr = 775.82F(000) = 804
Triclinic, P1Dx = 1.523 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.471 (3) ÅCell parameters from 25 reflections
b = 13.389 (4) Åθ = 11.5–19.4°
c = 14.986 (5) ŵ = 1.10 mm1
α = 110.90 (4)°T = 295 K
β = 94.91 (4)°Prism, light-green
γ = 103.94 (5)°0.33 × 0.21 × 0.18 mm
V = 1691.9 (12) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.5°
Graphite monochromatorh = 011
ω/2θ–scansk = 1616
7056 measured reflectionsl = 1818
6632 independent reflections3 standard reflections every 60 min
5226 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0754P)2 + 0.7588P]
where P = (Fo2 + 2Fc2)/3
6632 reflections(Δ/σ)max = 0.001
440 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
(C12H18N3O4)2[ZnCl4]·CH4Oγ = 103.94 (5)°
Mr = 775.82V = 1691.9 (12) Å3
Triclinic, P1Z = 2
a = 9.471 (3) ÅMo Kα radiation
b = 13.389 (4) ŵ = 1.10 mm1
c = 14.986 (5) ÅT = 295 K
α = 110.90 (4)°0.33 × 0.21 × 0.18 mm
β = 94.91 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
7056 measured reflections3 standard reflections every 60 min
6632 independent reflections intensity decay: none
5226 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.81 e Å3
6632 reflectionsΔρmin = 0.58 e Å3
440 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.12662 (4)0.97209 (3)0.27361 (2)0.03615 (12)
Cl10.08234 (9)0.87169 (6)0.36739 (6)0.0457 (2)
Cl20.02229 (10)0.86775 (8)0.12557 (6)0.0582 (2)
Cl30.07728 (10)1.13575 (7)0.34252 (7)0.0550 (2)
Cl40.36959 (9)0.99260 (7)0.25977 (7)0.0542 (2)
O1A0.3976 (3)0.5823 (2)0.2618 (2)0.0630 (7)
O4A0.0152 (3)0.3662 (2)0.11211 (17)0.0436 (5)
O5A0.2207 (3)0.1888 (2)0.00766 (19)0.0516 (6)
O6A0.4465 (3)0.2247 (2)0.10178 (19)0.0547 (6)
O1B0.6208 (3)0.44499 (19)0.23238 (19)0.0510 (6)
O4B0.9987 (2)0.63770 (19)0.40319 (17)0.0425 (5)
O5B1.2379 (3)0.80292 (19)0.52686 (19)0.0508 (6)
O6B1.4654 (3)0.7511 (2)0.60703 (17)0.0484 (6)
N1A0.1257 (3)0.5816 (2)0.19456 (18)0.0365 (5)
N2A0.2344 (3)0.6776 (2)0.25321 (19)0.0382 (6)
N3A0.6305 (3)0.7890 (2)0.36455 (18)0.0427 (6)
N1B0.8729 (2)0.4242 (2)0.31181 (16)0.0327 (5)
N2B0.7550 (3)0.3346 (2)0.25584 (18)0.0336 (5)
N3B0.3590 (3)0.2561 (2)0.14515 (17)0.0354 (5)
C1A0.3662 (3)0.6692 (3)0.2858 (2)0.0390 (6)
C2A0.0097 (3)0.5939 (3)0.1539 (2)0.0365 (6)
H2A0.00150.66510.16550.044*
C3A0.1076 (3)0.4967 (2)0.0901 (2)0.0340 (6)
C4A0.1013 (3)0.3874 (3)0.0709 (2)0.0338 (6)
C5A0.2159 (3)0.2969 (3)0.0080 (2)0.0373 (6)
C6A0.3357 (3)0.3144 (3)0.0383 (2)0.0402 (7)
C7A0.3442 (3)0.4209 (3)0.0204 (2)0.0424 (7)
H7A0.42530.43160.05130.051*
C8A0.2319 (3)0.5109 (3)0.0430 (2)0.0395 (7)
H9A0.23810.58270.05530.047*
C9A0.4695 (3)0.7812 (3)0.3546 (3)0.0446 (7)
H9A10.45360.83810.33240.054*
H9A20.44320.79810.41840.054*
C10A0.6698 (4)0.7172 (4)0.4147 (3)0.0652 (11)
H10B0.77380.72450.41960.098*
H10A0.61420.64050.37770.098*
H10C0.64650.74080.47860.098*
C11A0.7131 (5)0.9079 (3)0.4276 (4)0.0787 (14)
H11A0.69050.95600.39750.118*
H11C0.81770.91670.43580.118*
H11B0.68410.92720.49000.118*
C12A0.6778 (5)0.7560 (5)0.2689 (3)0.0796 (14)
H12C0.78160.76220.27840.119*
H12A0.65980.80420.23770.119*
H12B0.62260.68010.22880.119*
C1B0.6326 (3)0.3538 (2)0.2203 (2)0.0338 (6)
C2B0.9820 (3)0.4038 (2)0.3508 (2)0.0329 (6)
H2B0.98090.33030.33780.039*
C3B1.1081 (3)0.4953 (2)0.41539 (19)0.0307 (6)
C4B1.1095 (3)0.6063 (2)0.4389 (2)0.0319 (6)
C5B1.2296 (3)0.6925 (2)0.5024 (2)0.0346 (6)
C6B1.3468 (3)0.6685 (2)0.54445 (19)0.0347 (6)
C7B1.3446 (3)0.5582 (3)0.5228 (2)0.0377 (6)
H7B1.42230.54200.55160.045*
C8B1.2270 (3)0.4731 (2)0.4586 (2)0.0356 (6)
H8B1.22660.39940.44370.043*
C9B0.5121 (3)0.2445 (2)0.1623 (2)0.0368 (6)
H9B20.53820.20950.09970.044*
H9B10.51010.19480.19630.044*
C10B0.3479 (4)0.3179 (3)0.0803 (2)0.0470 (8)
H10D0.37350.27940.01930.071*
H10F0.41480.39210.11080.071*
H10E0.24840.32180.06930.071*
C11B0.2541 (4)0.1409 (3)0.0978 (3)0.0578 (9)
H11D0.27950.10220.03680.087*
H11E0.15490.14530.08680.087*
H11F0.26070.10120.13940.087*
C12B0.3156 (4)0.3150 (3)0.2399 (2)0.0504 (8)
H12D0.21580.31780.22760.076*
H12E0.38130.38960.27110.076*
H12F0.32210.27510.28130.076*
H4B0.940 (4)0.579 (3)0.370 (3)0.051 (11)*
H5B1.166 (6)0.804 (4)0.500 (4)0.085 (17)*
H6B1.454 (5)0.816 (4)0.621 (3)0.075 (15)*
H4A0.075 (5)0.430 (4)0.143 (3)0.070 (14)*
H5A0.147 (5)0.177 (4)0.030 (3)0.067 (14)*
H6A0.427 (6)0.165 (5)0.114 (4)0.10 (2)*
H2NB0.758 (4)0.276 (3)0.254 (2)0.038 (9)*
H2NA0.212 (4)0.731 (3)0.267 (3)0.044 (11)*
C130.7289 (7)0.0438 (5)0.1584 (4)0.1002 (18)
H13A0.80410.07170.12710.150*
H13B0.63290.03100.12240.150*
H13C0.73800.02510.16080.150*
O70.7452 (4)0.1197 (3)0.2501 (3)0.0843 (10)
H7O0.82650.12960.28110.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03453 (19)0.03438 (19)0.0375 (2)0.00982 (14)0.00078 (14)0.01356 (14)
Cl10.0518 (4)0.0427 (4)0.0458 (4)0.0134 (3)0.0046 (3)0.0223 (3)
Cl20.0511 (5)0.0706 (6)0.0384 (4)0.0232 (4)0.0089 (4)0.0048 (4)
Cl30.0607 (5)0.0396 (4)0.0602 (5)0.0222 (4)0.0016 (4)0.0122 (4)
Cl40.0351 (4)0.0513 (5)0.0666 (5)0.0088 (3)0.0055 (4)0.0155 (4)
O1A0.0412 (13)0.0405 (13)0.0897 (19)0.0182 (11)0.0098 (13)0.0062 (13)
O4A0.0375 (11)0.0466 (13)0.0444 (12)0.0177 (10)0.0002 (10)0.0134 (10)
O5A0.0532 (15)0.0411 (13)0.0540 (14)0.0108 (11)0.0069 (12)0.0139 (11)
O6A0.0368 (12)0.0543 (16)0.0525 (14)0.0054 (11)0.0063 (10)0.0058 (12)
O1B0.0411 (12)0.0402 (12)0.0673 (15)0.0134 (10)0.0047 (11)0.0181 (11)
O4B0.0375 (12)0.0382 (12)0.0512 (13)0.0121 (10)0.0059 (10)0.0194 (11)
O5B0.0522 (14)0.0348 (12)0.0558 (15)0.0079 (10)0.0105 (12)0.0146 (10)
O6B0.0395 (12)0.0476 (14)0.0423 (12)0.0020 (10)0.0094 (10)0.0104 (11)
O70.076 (2)0.0651 (19)0.097 (2)0.0241 (16)0.0165 (17)0.0207 (17)
N1A0.0286 (12)0.0391 (13)0.0355 (13)0.0067 (10)0.0029 (10)0.0103 (10)
N2A0.0276 (12)0.0362 (14)0.0430 (14)0.0110 (11)0.0006 (10)0.0071 (11)
N3A0.0303 (13)0.0478 (15)0.0376 (13)0.0064 (11)0.0032 (10)0.0081 (11)
N1B0.0280 (11)0.0372 (12)0.0299 (11)0.0070 (10)0.0008 (9)0.0123 (10)
N2B0.0293 (12)0.0325 (13)0.0351 (12)0.0083 (10)0.0018 (10)0.0109 (10)
N3B0.0281 (11)0.0474 (14)0.0318 (12)0.0092 (10)0.0002 (9)0.0192 (11)
C1A0.0309 (14)0.0390 (16)0.0417 (16)0.0099 (12)0.0029 (12)0.0108 (13)
C2A0.0346 (15)0.0411 (16)0.0329 (14)0.0120 (12)0.0046 (12)0.0131 (12)
C3A0.0288 (13)0.0432 (16)0.0303 (14)0.0108 (12)0.0056 (11)0.0147 (12)
C4A0.0286 (13)0.0459 (16)0.0292 (13)0.0141 (12)0.0068 (11)0.0149 (12)
C5A0.0355 (15)0.0454 (17)0.0315 (14)0.0123 (13)0.0098 (12)0.0146 (13)
C6A0.0302 (14)0.0538 (18)0.0302 (14)0.0070 (13)0.0049 (11)0.0129 (13)
C7A0.0305 (15)0.061 (2)0.0365 (15)0.0159 (14)0.0002 (12)0.0190 (14)
C8A0.0364 (15)0.0487 (17)0.0365 (15)0.0168 (13)0.0044 (12)0.0177 (13)
C9A0.0315 (15)0.0401 (16)0.0526 (19)0.0124 (13)0.0024 (13)0.0081 (14)
C10A0.054 (2)0.078 (3)0.064 (2)0.029 (2)0.0094 (18)0.027 (2)
C11A0.046 (2)0.054 (2)0.096 (3)0.0037 (18)0.015 (2)0.003 (2)
C12A0.048 (2)0.129 (4)0.041 (2)0.008 (2)0.0077 (17)0.019 (2)
C1B0.0295 (13)0.0395 (16)0.0304 (13)0.0096 (12)0.0018 (11)0.0126 (12)
C2B0.0329 (14)0.0347 (14)0.0302 (14)0.0123 (11)0.0061 (11)0.0101 (11)
C3B0.0273 (13)0.0377 (14)0.0278 (13)0.0101 (11)0.0057 (10)0.0131 (11)
C4B0.0277 (13)0.0418 (15)0.0299 (13)0.0107 (11)0.0049 (11)0.0182 (12)
C5B0.0359 (15)0.0365 (15)0.0304 (14)0.0079 (12)0.0036 (11)0.0143 (12)
C6B0.0306 (14)0.0435 (16)0.0238 (13)0.0063 (12)0.0030 (11)0.0096 (12)
C7B0.0307 (14)0.0494 (17)0.0338 (14)0.0165 (13)0.0029 (11)0.0148 (13)
C8B0.0365 (15)0.0371 (15)0.0343 (14)0.0156 (12)0.0045 (12)0.0126 (12)
C9B0.0318 (14)0.0387 (15)0.0370 (15)0.0123 (12)0.0016 (12)0.0121 (12)
C10B0.0419 (17)0.068 (2)0.0420 (17)0.0188 (16)0.0038 (14)0.0324 (16)
C11B0.0422 (18)0.058 (2)0.058 (2)0.0027 (16)0.0138 (16)0.0210 (18)
C12B0.0444 (18)0.073 (2)0.0389 (17)0.0214 (17)0.0149 (14)0.0230 (16)
C130.108 (4)0.094 (4)0.089 (4)0.060 (3)0.002 (3)0.009 (3)
Geometric parameters (Å, º) top
Zn1—Cl32.2467 (13)O4B—C4B1.357 (3)
Zn1—Cl12.2661 (11)O4B—H4B0.80 (4)
Zn1—Cl22.2731 (18)O5B—C5B1.371 (4)
Zn1—Cl42.2870 (12)O5B—H5B0.77 (5)
O1A—C1A1.208 (4)O6B—C6B1.359 (4)
O4A—C4A1.356 (3)O6B—H6B0.85 (5)
O4A—H4A0.84 (4)N1B—C2B1.276 (4)
O5A—C5A1.369 (4)N1B—N2B1.366 (3)
O5A—H5A0.82 (5)N2B—C1B1.352 (4)
O6A—C6A1.362 (4)N2B—H2NB0.79 (3)
O6A—H6A0.82 (6)N3B—C11B1.493 (4)
N1A—C2A1.285 (4)N3B—C10B1.495 (4)
N1A—N2A1.373 (4)N3B—C12B1.504 (4)
N2A—C1A1.346 (4)N3B—C9B1.506 (4)
N2A—H2NA0.75 (4)C1B—C9B1.523 (4)
N3A—C12A1.484 (5)C2B—C3B1.454 (4)
N3A—C9A1.494 (4)C2B—H2B0.9300
N3A—C11A1.497 (5)C3B—C4B1.396 (4)
N3A—C10A1.505 (5)C3B—C8B1.397 (4)
C1A—C9A1.513 (4)C4B—C5B1.390 (4)
C2A—C3A1.441 (4)C5B—C6B1.389 (4)
C2A—H2A0.9300C6B—C7B1.388 (4)
C3A—C4A1.405 (4)C7B—C8B1.373 (4)
C3A—C8A1.407 (4)C7B—H7B0.9300
C4A—C5A1.382 (4)C8B—H8B0.9300
C5A—C6A1.390 (4)C9B—H9B20.9700
C6A—C7A1.378 (5)C9B—H9B10.9700
C7A—C8A1.371 (5)C10B—H10D0.9600
C7A—H7A0.9300C10B—H10F0.9600
C8A—H9A0.9300C10B—H10E0.9600
C9A—H9A10.9700C11B—H11D0.9600
C9A—H9A20.9700C11B—H11E0.9600
C10A—H10B0.9600C11B—H11F0.9600
C10A—H10A0.9600C12B—H12D0.9600
C10A—H10C0.9600C12B—H12E0.9600
C11A—H11A0.9600C12B—H12F0.9600
C11A—H11C0.9600C13—O71.355 (6)
C11A—H11B0.9600O7—H7O0.8200
C12A—H12C0.9600C13—H13A0.9600
C12A—H12A0.9600C13—H13B0.9600
C12A—H12B0.9600C13—H13C0.9600
O1B—C1B1.203 (4)
Cl3—Zn1—Cl1109.97 (5)H10A—C10A—H10C109.5
Cl3—Zn1—Cl2110.89 (5)N3A—C11A—H11A109.5
Cl1—Zn1—Cl2107.16 (5)N3A—C11A—H11C109.5
Cl3—Zn1—Cl4113.17 (6)H11A—C11A—H11C109.5
Cl1—Zn1—Cl4105.36 (5)N3A—C11A—H11B109.5
Cl2—Zn1—Cl4109.97 (6)H11A—C11A—H11B109.5
C4A—O4A—H4A103 (3)H11C—C11A—H11B109.5
C5A—O5A—H5A108 (3)N3A—C12A—H12C109.5
C6A—O6A—H6A113 (4)N3A—C12A—H12A109.5
C4B—O4B—H4B102 (3)H12C—C12A—H12A109.5
C5B—O5B—H5B106 (4)N3A—C12A—H12B109.5
C6B—O6B—H6B112 (3)H12C—C12A—H12B109.5
C13—O7—H7O109.5H12A—C12A—H12B109.5
C2A—N1A—N2A116.7 (3)O1B—C1B—N2B124.5 (3)
C1A—N2A—N1A118.6 (3)O1B—C1B—C9B124.6 (3)
C1A—N2A—H2NA126 (3)N2B—C1B—C9B110.9 (2)
N1A—N2A—H2NA116 (3)N1B—C2B—C3B120.2 (3)
C12A—N3A—C9A112.0 (3)N1B—C2B—H2B119.9
C12A—N3A—C11A110.4 (3)C3B—C2B—H2B119.9
C9A—N3A—C11A106.7 (3)C4B—C3B—C8B118.9 (3)
C12A—N3A—C10A108.2 (3)C4B—C3B—C2B120.9 (2)
C9A—N3A—C10A112.0 (3)C8B—C3B—C2B120.2 (3)
C11A—N3A—C10A107.4 (3)O4B—C4B—C5B116.0 (3)
C2B—N1B—N2B117.1 (2)O4B—C4B—C3B124.0 (3)
C1B—N2B—N1B118.6 (3)C5B—C4B—C3B120.0 (3)
C1B—N2B—H2NB124 (2)O5B—C5B—C6B117.4 (3)
N1B—N2B—H2NB116 (2)O5B—C5B—C4B122.5 (3)
C11B—N3B—C10B109.3 (2)C6B—C5B—C4B120.1 (3)
C11B—N3B—C12B108.3 (3)O6B—C6B—C7B118.6 (3)
C10B—N3B—C12B109.5 (3)O6B—C6B—C5B121.4 (3)
C11B—N3B—C9B107.3 (2)C7B—C6B—C5B120.1 (3)
C10B—N3B—C9B111.6 (2)C8B—C7B—C6B119.7 (3)
C12B—N3B—C9B110.8 (2)C8B—C7B—H7B120.1
O1A—C1A—N2A123.6 (3)C6B—C7B—H7B120.1
O1A—C1A—C9A124.5 (3)C7B—C8B—C3B121.2 (3)
N2A—C1A—C9A112.0 (3)C7B—C8B—H8B119.4
N1A—C2A—C3A119.6 (3)C3B—C8B—H8B119.4
N1A—C2A—H2A120.2N3B—C9B—C1B114.8 (2)
C3A—C2A—H2A120.2N3B—C9B—H9B2108.6
C4A—C3A—C8A118.3 (3)C1B—C9B—H9B2108.6
C4A—C3A—C2A122.4 (3)N3B—C9B—H9B1108.6
C8A—C3A—C2A119.2 (3)C1B—C9B—H9B1108.6
O4A—C4A—C5A117.7 (3)H9B2—C9B—H9B1107.5
O4A—C4A—C3A122.1 (3)N3B—C10B—H10D109.5
C5A—C4A—C3A120.2 (3)N3B—C10B—H10F109.5
O5A—C5A—C4A122.5 (3)H10D—C10B—H10F109.5
O5A—C5A—C6A117.6 (3)N3B—C10B—H10E109.5
C4A—C5A—C6A119.8 (3)H10D—C10B—H10E109.5
O6A—C6A—C7A119.7 (3)H10F—C10B—H10E109.5
O6A—C6A—C5A119.4 (3)N3B—C11B—H11D109.5
C7A—C6A—C5A121.0 (3)N3B—C11B—H11E109.5
C8A—C7A—C6A119.5 (3)H11D—C11B—H11E109.5
C8A—C7A—H7A120.3N3B—C11B—H11F109.5
C6A—C7A—H7A120.3H11D—C11B—H11F109.5
C7A—C8A—C3A121.3 (3)H11E—C11B—H11F109.5
C7A—C8A—H9A119.4N3B—C12B—H12D109.5
C3A—C8A—H9A119.4N3B—C12B—H12E109.5
N3A—C9A—C1A115.2 (3)H12D—C12B—H12E109.5
N3A—C9A—H9A1108.5N3B—C12B—H12F109.5
C1A—C9A—H9A1108.5H12D—C12B—H12F109.5
N3A—C9A—H9A2108.5H12E—C12B—H12F109.5
C1A—C9A—H9A2108.5O7—C13—H13A109.5
H9A1—C9A—H9A2107.5O7—C13—H13B109.5
N3A—C10A—H10B109.5H13A—C13—H13B109.5
N3A—C10A—H10A109.5O7—C13—H13C109.5
H10B—C10A—H10A109.5H13A—C13—H13C109.5
N3A—C10A—H10C109.5H13B—C13—H13C109.5
H10B—C10A—H10C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4A—H4A···N1A0.84 (5)1.82 (5)2.592 (4)153 (5)
O5A—H5A···Cl2i0.83 (5)2.29 (5)3.094 (4)167 (3)
O6A—H6A···O5A0.82 (7)2.30 (6)2.693 (4)110 (5)
O6A—H6A···Cl4i0.82 (7)2.64 (6)3.317 (3)141 (5)
O4B—H4B···N1B0.80 (4)1.86 (4)2.599 (4)155 (4)
O5B—H5B···O4B0.77 (6)2.28 (6)2.721 (4)118 (5)
O5B—H5B···Cl1ii0.77 (6)2.60 (5)3.217 (3)139 (5)
O6B—H6B···O5B0.85 (5)2.32 (5)2.728 (4)110 (4)
O6B—H6B···Cl4iii0.85 (5)2.59 (5)3.193 (3)129 (4)
C10A—H10A···O1A0.962.342.992 (5)124
C10B—H10F···O1B0.962.332.978 (4)124
C10B—H10E···O4A0.962.503.404 (5)157
C10B—H10F···O1B0.962.332.978 (4)124
C12A—H12A···O6Ai0.962.603.307 (6)131
C12A—H12B···O1A0.962.413.043 (7)123
C12B—H12E···O1B0.962.403.028 (5)123
C12A—H12C···Cl1ii0.962.833.715 (5)154
O7—H7O···Cl3iv0.822.443.251 (4)169
N2A—H2NA···Cl10.77 (4)2.59 (4)3.287 (3)154 (4)
N2B—H2NB···O70.78 (4)2.05 (4)2.826 (5)175 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+2, y+2, z+1; (iv) x+1, y1, z.

Experimental details

Crystal data
Chemical formula(C12H18N3O4)2[ZnCl4]·CH4O
Mr775.82
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.471 (3), 13.389 (4), 14.986 (5)
α, β, γ (°)110.90 (4), 94.91 (4), 103.94 (5)
V3)1691.9 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.33 × 0.21 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7056, 6632, 5226
Rint0.017
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.128, 1.05
No. of reflections6632
No. of parameters440
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.58

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (cheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4A—H4A···N1A0.84 (5)1.82 (5)2.592 (4)153 (5)
O5A—H5A···Cl2i0.83 (5)2.29 (5)3.094 (4)167 (3)
O6A—H6A···O5A0.82 (7)2.30 (6)2.693 (4)110 (5)
O6A—H6A···Cl4i0.82 (7)2.64 (6)3.317 (3)141 (5)
O4B—H4B···N1B0.80 (4)1.86 (4)2.599 (4)155 (4)
O5B—H5B···O4B0.77 (6)2.28 (6)2.721 (4)118 (5)
O5B—H5B···Cl1ii0.77 (6)2.60 (5)3.217 (3)139 (5)
O6B—H6B···O5B0.85 (5)2.32 (5)2.728 (4)110 (4)
O6B—H6B···Cl4iii0.85 (5)2.59 (5)3.193 (3)129 (4)
C10A—H10A···O1A0.962.342.992 (5)124
C10B—H10F···O1B0.962.332.978 (4)124
C10B—H10E···O4A0.962.503.404 (5)157
C10B—H10F···O1B0.962.332.978 (4)124
C12A—H12A···O6Ai0.962.603.307 (6)131
C12A—H12B···O1A0.962.413.043 (7)123
C12B—H12E···O1B0.962.403.028 (5)123
C12A—H12C···Cl1ii0.962.833.715 (5)154
O7—H7O···Cl3iv0.822.443.251 (4)169
N2A—H2NA···Cl10.77 (4)2.59 (4)3.287 (3)154 (4)
N2B—H2NB···O70.78 (4)2.05 (4)2.826 (5)175 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+2, y+2, z+1; (iv) x+1, y1, z.
 

Footnotes

Transition metal complexes with Girard reagent-based ligands. Part VI.

Acknowledgements

This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia (Project No 142028) and Provincial Secretariat for Science and Technological Development of Vojvodina.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLeovac, V. M., Bogdanović, G. A., Češljević, V. I., Jovanović, Lj. S., Novaković, S. B. & Vojinović-Ješić, Lj. S. (2007). Struct. Chem. 18, 113–119.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeovac, V. M., Mészáros Szécsényi, K., Vojinović-Ješić, Lj. S., Češljević, V. I., Markov, S. & Wadsten, T. (2006). J. Therm. Anal. Cal. 86, 379–384.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRevenko, M. D., Bourosh, P. N., Palamarchuk, O. V., Lipkowski, J., Gdaniec, J. M. & Simonov, Yu. A. (2009). Russ. J. Inorg. Chem. 54, 1581–1589.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValkonen, A., Ahonen, K. & Kolehmainen, E. (2006). Acta Cryst. C62, m290–m292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVojinović, Lj. S., Leovac, V. M., Novaković, S. B., Bogdanović, G. A., Csanadi, J. J. & Češljević, V. I. (2004). Inorg. Chem. Commun. 7, 1264–1268.  Google Scholar
First citationVojinović-Ješić, Lj. S., Bogdanović, G. A., Leovac, V. M., Češljević, V. I. & Jovanović, Lj. S. (2008). Struct. Chem. 19, 807–815.  Google Scholar
First citationVojinović-Ješić, Lj. S., Češljević, V. I., Bogdanović, G. A., Leovac, V. M., Mészáros Szécsényi, K., Divjaković, V. & Joksović, M. D. (2010). Inorg. Chem. Commun. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m328-m329
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds