organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8H-Chromeno[2′,3′:4,5]imidazo[2,1-a]iso­quinoline

aV. I. Nikitin Institute of Chemistry, Ayni St. 299/2, Dushanbe 734063, Tajikistan, bOrganic Chemistry Department, Russian Peoples Friendship University, Miklukho-Maklai St 6, Moscow 117198, Russian Federation, and cA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St 28, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: vkh@xray.ineos.ac.ru

(Received 19 February 2010; accepted 22 February 2010; online 27 February 2010)

The title compound, C18H12N2O, comprises two aromatic fragments, viz., imidazo[2,1-a]isoquinoline and benzene, linked by oxygen and methyl­ene bridges. Despite the absence of a common conjugative system within the mol­ecule, it adopts an essentially planar conformation with an r.m.s. deviation of 0. 036 Å. In the crystal, due to this structure, mol­ecules form stacks along the b axis by ππ stacking inter­actions, with shortest C⋯C distances in the range 3.340 (4)–3.510 (4) Å. The mol­ecules are bound by inter­molecular C—H⋯O inter­actions within the stacks and C—H⋯π inter­actions between the stacks.

Related literature

For background to cascade reactions, see: Bunce (1995[Bunce, R. A. (1995). Tetrahedron, 51, 13103-13159.]); Tietze (1996[Tietze, L. F. (1996). Chem. Rev. 96, 115-136.]); Parsons et al. (1996[Parsons, P. J., Penkett, C. S. & Shell, A. J. (1996). Chem. Rev. 96, 195-206.]); Nicolaou et al. (2003[Nicolaou, K. C., Montagnon, T. & Snyder, S. A. (2003). Chem. Commun. pp. 551-564.], 2006[Nicolaou, K. C., Edmonds, D. J. & Bulger, P. G. (2006). Angew. Chem. Int. Ed. 45, 7134-7186.]); Wasilke et al. (2005[Wasilke, J.-C., Obrey, S. J., Baker, R. T. & Bazan, G. C. (2005). Chem. Rev. 105, 1001-1020.]); Pellissier (2006a[Pellissier, H. (2006a). Tetrahedron, 62, 1619-1665.],b[Pellissier, H. (2006b). Tetrahedron, 62, 2143-2173.]); Parenty & Cronin (2008[Parenty, A. D. C. & Cronin, L. (2008). Synthesis, pp. 1479-1485.]). For related compounds, see: Yadav et al. (2007[Yadav, J. S., Subba Reddy, B. V., Gupta, M. K., Prathap, I. & Pandey, S. K. (2007). Catal. Commun. 8, 2208-2211.]); Kianmehr et al. (2009[Kianmehr, E., Faramarzi, R. & Estiri, H. (2009). Heterocycles, 78, 415-423.]); Surpur et al. (2009[Surpur, M. P., Kshirsagar, S. & Samant, S. D. (2009). Tetrahedron Lett. 50, 719-722.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N2O

  • Mr = 272.30

  • Monoclinic, P 21 /n

  • a = 11.9717 (15) Å

  • b = 6.0580 (8) Å

  • c = 17.948 (2) Å

  • β = 102.682 (3)°

  • V = 1269.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.12 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.998

  • 12413 measured reflections

  • 2734 independent reflections

  • 1821 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.182

  • S = 1.00

  • 2734 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the O13,C12A,C8A,C8,C7A,C13A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O13i 0.99 2.71 3.637 (4) 157
C8—H8BCgii 0.99 2.63 3.547 (3) 154
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cascade reactions have emerged as powerful tools to allow rapidly increasing molecular complexity (Tietze, 1996; Parsons et al., 1996; Wasilke et al., 2005). These processes avoid the excessive handling and isolation of synthetic intermediates generating less waste and thus contribute towards "Green Chemistry". Cascade reactions, in which multiple reactions are combined into one synthetic operation, have been reported extensively in the literature and have already become "state–of–the–art" in synthetic organic chemistry (Bunce, 1995; Nicolaou et al., 2003, 2006; Pellissier, 2006a, 2006b; Parenty & Cronin, 2008).

The title compound I, C18H12N2O, is the product of a novel cascade reaction (Fig. 1) (Yadav et al., 2007; Kianmehr et al., 2009; Surpur et al., 2009) starting with the Kroehnke condensation of salicylic aldehyde and isoquinolinium salt to afford the styryl derivative A, which forms zwitterion B upon thermally–induced cleavage of acetyl chloride. Then zwitterion B undergoes two consecutive nucleophilic cyclizations followed by [1,4]–proton shift to give the pentacycle I (Fig. 2). The single crystals of I suitable for X–ray diffraction analysis were obtained by slow crystallization from ethyl acetate solution.

Compound I comprises two aromatic fragments - imidazo[2,1–a]isoquinoline and benzene linked by the oxygen and methylene bridges (Fig. 3). Despite the absence of common conjugative system within the molecule, it adopts practically planar conformation, with the r.m.s. deviation of 0.036Å. In the crystal, due to this structure, molecules form stacks along the b axis by the stacking interactions [C1···C7Ai = 3.340 (4)Å, C2···C8i = 3.510Å, C2···C8Ai = 3.451 (4)Å, C3···C12Ai = 3.394 (4)Å, C13A···C14Bi = 3.496 (4)Å and C14A···C14Ai = 3.426 (4)Å] (Fig. 4). The molecules are also bound by the C8—H8A···O13ii [H···O = 2.71Å, C—H···O 157°] interactions within the stacks and the C8—H8B···π (C12Aiii—O13iii—C13Aiii) [H···C12A = 2.94Å, H···O13 = 2.80Å and H···C13A 2.81Å, C—H···O 175°] interactions between the stacks. Symmetry codes: (i) 1-x, 1-y, z; (ii) x, 1+y, z; (iii) 1.5-x, 0.5+y, 0.5-z.

Related literature top

For background to cascade reactions, see: Bunce (1995); Tietze (1996); Parsons et al. (1996); Nicolaou et al. (2003, 2006); Wasilke et al. (2005); Pellissier (2006a,b); Parenty & Cronin (2008). For related compounds, see: Yadav et al. (2007); Kianmehr et al. (2009); Surpur et al. (2009).

Experimental top

A water solution of K2CO3 (0.4 g in 1 ml of H2O) was added to a solution of freshly distilled salicylic aldehyde (0.18 g, 1.47 mmol) and 2–(cyanomethyl)isoquinolinium chloride (0.30 g, 1.47 mmol) in H2O (5 ml). The resulting mixture was stirred for 3 hours at 293 K. The precipitate formed was filtered–off and recrystallized from ethyl acetate / hexane mixture to give product I as colourless needles. Yield is 32%. M.p. = 444 K. Found (%): C 79.13, H4.58, N 10.53. Calcd. for C18H12N2O (%): C79.39, H 4.44, N 10.29. 1H NMR (400 MHz, CDCl3): δ = 4.25 (s, 2H, CH2), 6.98 (dd, 1H, H12, J11,12 = 8.1, J10,12 = 1.2), 7.01 (d, 1H, H5, J5,6 = 7.5), 7.07–7.12 (m, 2H, H9+H10), 7.16 (dd, 1H, H11, J11,12 = 8.1, J9,11 = 1.2), 7.40–7.45 (m, 1H, H3), 7.48–7.53 (m, 1H, H2), 7.55 (d, 1H, H4, J3,4 = 7.5), 7.58 (d, 1H, H6, J5,6 = 7.5), 8.47(d, 1H, H1, J1,2 = 8.1). 13C NMR (100 MHz, CDCl3): δ = 23.2 (CH2), 112.9 (CH), 117.8 (Cq), 118.1 (Cq), 118.3 (CH), 120.3 (CH), 123.1 (CH), 123.2 (Cq), 123.5 (CH), 127.1 (CH), 127.8 (CH), 128.2 (2xCH), 129.1 (Cq), 130.3 (CH), 138.0 (Cq), 152.0 (Cq), 161.1 (Cq). Mass spectrum (EI MS), m/z (Ir, %): 272 (70) [M+.], 136 (11), 128 (10).

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthesis of compound I.
[Figure 2] Fig. 2. The plausible formation mechanism of I.
[Figure 3] Fig. 3. Molecular structure of Iwith the atom numbering scheme. Displacement ellipsoids are shown atthe 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 4] Fig. 4. Crystal packing of I viewed down the b axis. Dashed lines indicate the C—H···O and C—H···π interactions.
8H-Chromeno[2',3':4,5]imidazo[2,1-a]isoquinoline top
Crystal data top
C18H12N2OF(000) = 568
Mr = 272.30Dx = 1.424 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1700 reflections
a = 11.9717 (15) Åθ = 2.3–26.3°
b = 6.0580 (8) ŵ = 0.09 mm1
c = 17.948 (2) ÅT = 100 K
β = 102.682 (3)°Needle, colourless
V = 1269.9 (3) Å30.40 × 0.12 × 0.02 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2734 independent reflections
Radiation source: fine–focus sealed tube1821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1515
Tmin = 0.965, Tmax = 0.998k = 77
12413 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.077P)2 + 1.7P]
where P = (Fo2 + 2Fc2)/3
2734 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H12N2OV = 1269.9 (3) Å3
Mr = 272.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9717 (15) ŵ = 0.09 mm1
b = 6.0580 (8) ÅT = 100 K
c = 17.948 (2) Å0.40 × 0.12 × 0.02 mm
β = 102.682 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2734 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1821 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.998Rint = 0.056
12413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.00Δρmax = 0.45 e Å3
2734 reflectionsΔρmin = 0.23 e Å3
190 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6165 (2)0.1766 (5)0.07577 (16)0.0290 (6)
H10.57190.06650.05830.035*
C20.6436 (2)0.1563 (5)0.14599 (17)0.0349 (7)
H20.61850.03020.17660.042*
C30.7068 (2)0.3167 (6)0.17271 (17)0.0372 (7)
H30.72370.30080.22170.045*
C40.7447 (2)0.4957 (5)0.12988 (17)0.0349 (7)
H40.78850.60330.14940.042*
C4A0.7213 (2)0.5276 (5)0.05755 (16)0.0309 (6)
C50.7591 (2)0.7182 (5)0.01180 (16)0.0332 (7)
H50.80520.82530.02950.040*
C60.7306 (2)0.7478 (5)0.05559 (16)0.0310 (6)
H60.75380.87770.08450.037*
N70.66701 (19)0.5884 (4)0.08314 (13)0.0269 (5)
C7A0.6332 (2)0.5823 (4)0.15238 (15)0.0251 (6)
C80.6498 (2)0.7432 (5)0.21381 (16)0.0326 (7)
H8A0.61410.88580.19500.039*
H8B0.73250.76760.23490.039*
C8A0.5921 (2)0.6458 (5)0.27520 (16)0.0301 (6)
C90.5902 (2)0.7644 (5)0.34032 (18)0.0347 (7)
H90.62610.90500.34660.042*
C100.5385 (3)0.6886 (5)0.39654 (18)0.0382 (7)
H100.53900.77520.44070.046*
C110.4851 (2)0.4809 (6)0.38774 (18)0.0387 (8)
H110.44830.42610.42580.046*
C120.4864 (2)0.3558 (5)0.32275 (16)0.0304 (6)
H120.45160.21410.31630.037*
C12A0.5393 (2)0.4417 (5)0.26757 (15)0.0264 (6)
O130.53167 (16)0.2981 (3)0.20489 (11)0.0319 (5)
C13A0.5786 (2)0.3795 (5)0.14856 (15)0.0297 (6)
N140.57698 (19)0.2676 (4)0.08385 (13)0.0297 (5)
C14A0.6311 (2)0.3960 (5)0.04379 (16)0.0291 (6)
C14B0.6554 (2)0.3618 (5)0.02983 (14)0.0278 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0230 (13)0.0287 (15)0.0340 (15)0.0002 (11)0.0032 (11)0.0065 (12)
C20.0304 (15)0.0366 (16)0.0339 (16)0.0086 (13)0.0012 (12)0.0084 (13)
C30.0285 (15)0.056 (2)0.0270 (15)0.0063 (14)0.0051 (12)0.0020 (14)
C40.0300 (15)0.0386 (17)0.0360 (17)0.0009 (13)0.0072 (12)0.0117 (13)
C4A0.0256 (13)0.0281 (15)0.0354 (16)0.0053 (11)0.0012 (12)0.0019 (12)
C50.0312 (15)0.0325 (15)0.0360 (16)0.0054 (12)0.0080 (12)0.0073 (13)
C60.0333 (15)0.0264 (14)0.0335 (15)0.0002 (12)0.0078 (12)0.0053 (12)
N70.0261 (11)0.0246 (12)0.0282 (12)0.0025 (9)0.0021 (9)0.0000 (10)
C7A0.0187 (12)0.0265 (14)0.0297 (14)0.0019 (10)0.0045 (10)0.0056 (11)
C80.0258 (14)0.0372 (16)0.0350 (16)0.0040 (12)0.0072 (12)0.0058 (13)
C8A0.0209 (13)0.0325 (15)0.0350 (15)0.0021 (11)0.0020 (11)0.0023 (13)
C90.0278 (14)0.0313 (15)0.0440 (17)0.0019 (12)0.0055 (12)0.0008 (13)
C100.0365 (16)0.0407 (18)0.0362 (16)0.0091 (14)0.0054 (13)0.0132 (14)
C110.0304 (15)0.051 (2)0.0388 (17)0.0089 (14)0.0175 (13)0.0082 (15)
C120.0239 (13)0.0275 (14)0.0397 (16)0.0001 (11)0.0067 (12)0.0026 (13)
C12A0.0214 (12)0.0294 (14)0.0283 (14)0.0068 (11)0.0055 (11)0.0016 (11)
O130.0344 (11)0.0285 (10)0.0352 (11)0.0058 (8)0.0130 (9)0.0022 (9)
C13A0.0256 (14)0.0345 (15)0.0290 (14)0.0048 (12)0.0059 (11)0.0012 (12)
N140.0254 (11)0.0327 (13)0.0314 (13)0.0016 (10)0.0070 (9)0.0015 (10)
C14A0.0252 (13)0.0257 (14)0.0347 (15)0.0004 (11)0.0029 (11)0.0018 (12)
C14B0.0227 (13)0.0376 (16)0.0214 (13)0.0105 (11)0.0014 (10)0.0021 (12)
Geometric parameters (Å, º) top
C1—C21.374 (4)C8—C8A1.540 (4)
C1—C14B1.410 (4)C8—H8A0.9900
C1—H10.9500C8—H8B0.9900
C2—C31.380 (5)C8A—C91.377 (4)
C2—H20.9500C8A—C12A1.382 (4)
C3—C41.349 (5)C9—C101.373 (4)
C3—H30.9500C9—H90.9500
C4—C4A1.400 (4)C10—C111.405 (5)
C4—H40.9500C10—H100.9500
C4A—C51.432 (4)C11—C121.394 (4)
C4A—C14B1.432 (4)C11—H110.9500
C5—C61.339 (4)C12—C12A1.389 (4)
C5—H50.9500C12—H120.9500
C6—N71.386 (4)C12A—O131.409 (3)
C6—H60.9500O13—C13A1.353 (3)
N7—C14A1.382 (4)C13A—N141.341 (4)
N7—C7A1.390 (4)N14—C14A1.321 (4)
C7A—C13A1.386 (4)C14A—C14B1.429 (4)
C7A—C81.452 (4)
C2—C1—C14B119.6 (3)C8A—C8—H8B110.5
C2—C1—H1120.2H8A—C8—H8B108.7
C14B—C1—H1120.2C9—C8A—C12A117.3 (3)
C1—C2—C3120.9 (3)C9—C8A—C8120.1 (3)
C1—C2—H2119.6C12A—C8A—C8122.6 (3)
C3—C2—H2119.6C10—C9—C8A122.9 (3)
C4—C3—C2120.6 (3)C10—C9—H9118.5
C4—C3—H3119.7C8A—C9—H9118.5
C2—C3—H3119.7C9—C10—C11119.0 (3)
C3—C4—C4A121.9 (3)C9—C10—H10120.5
C3—C4—H4119.0C11—C10—H10120.5
C4A—C4—H4119.0C12—C11—C10119.5 (3)
C4—C4A—C5122.7 (3)C12—C11—H11120.2
C4—C4A—C14B117.6 (3)C10—C11—H11120.2
C5—C4A—C14B119.7 (3)C12A—C12—C11118.9 (3)
C6—C5—C4A121.0 (3)C12A—C12—H12120.5
C6—C5—H5119.5C11—C12—H12120.5
C4A—C5—H5119.5C8A—C12A—C12122.4 (3)
C5—C6—N7119.9 (3)C8A—C12A—O13125.4 (2)
C5—C6—H6120.1C12—C12A—O13112.2 (2)
N7—C6—H6120.1C13A—O13—C12A114.0 (2)
C14A—N7—C6122.6 (2)N14—C13A—O13122.2 (3)
C14A—N7—C7A108.4 (2)N14—C13A—C7A114.1 (2)
C6—N7—C7A129.0 (2)O13—C13A—C7A123.7 (2)
C13A—C7A—N7101.9 (2)C14A—N14—C13A104.9 (2)
C13A—C7A—C8128.1 (2)N14—C14A—N7110.7 (2)
N7—C7A—C8130.0 (2)N14—C14A—C14B129.9 (3)
C7A—C8—C8A106.1 (2)N7—C14A—C14B119.4 (3)
C7A—C8—H8A110.5C1—C14B—C14A123.3 (3)
C8A—C8—H8A110.5C1—C14B—C4A119.4 (2)
C7A—C8—H8B110.5C14A—C14B—C4A117.3 (3)
C14B—C1—C2—C31.1 (4)C11—C12—C12A—O13178.9 (2)
C1—C2—C3—C40.9 (4)C8A—C12A—O13—C13A2.1 (4)
C2—C3—C4—C4A0.5 (4)C12—C12A—O13—C13A177.7 (2)
C3—C4—C4A—C5178.9 (3)C12A—O13—C13A—N14178.5 (2)
C3—C4—C4A—C14B0.2 (4)C12A—O13—C13A—C7A2.1 (4)
C4—C4A—C5—C6176.9 (3)N7—C7A—C13A—N140.3 (3)
C14B—C4A—C5—C62.3 (4)C8—C7A—C13A—N14180.0 (3)
C4A—C5—C6—N72.4 (4)N7—C7A—C13A—O13179.1 (2)
C5—C6—N7—C14A0.2 (4)C8—C7A—C13A—O130.6 (4)
C5—C6—N7—C7A176.8 (3)O13—C13A—N14—C14A179.3 (2)
C14A—N7—C7A—C13A0.3 (3)C7A—C13A—N14—C14A0.1 (3)
C6—N7—C7A—C13A176.7 (3)C13A—N14—C14A—N70.1 (3)
C14A—N7—C7A—C8179.9 (3)C13A—N14—C14A—C14B179.9 (3)
C6—N7—C7A—C83.1 (5)C6—N7—C14A—N14177.0 (2)
C13A—C7A—C8—C8A1.0 (4)C7A—N7—C14A—N140.3 (3)
N7—C7A—C8—C8A179.3 (2)C6—N7—C14A—C14B2.8 (4)
C7A—C8—C8A—C9177.9 (2)C7A—N7—C14A—C14B179.9 (2)
C7A—C8—C8A—C12A1.0 (4)C2—C1—C14B—C14A179.9 (3)
C12A—C8A—C9—C100.1 (4)C2—C1—C14B—C4A0.8 (4)
C8—C8A—C9—C10178.9 (3)N14—C14A—C14B—C13.9 (4)
C8A—C9—C10—C110.0 (4)N7—C14A—C14B—C1176.3 (2)
C9—C10—C11—C120.6 (4)N14—C14A—C14B—C4A176.9 (3)
C10—C11—C12—C12A1.0 (4)N7—C14A—C14B—C4A2.8 (4)
C9—C8A—C12A—C120.4 (4)C4—C4A—C14B—C10.4 (4)
C8—C8A—C12A—C12179.3 (2)C5—C4A—C14B—C1178.8 (2)
C9—C8A—C12A—O13179.4 (2)C4—C4A—C14B—C14A179.5 (2)
C8—C8A—C12A—O130.5 (4)C5—C4A—C14B—C14A0.4 (4)
C11—C12—C12A—C8A0.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the O13,C12A,C8A,C8,C7A,C13A ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O13i0.992.713.637 (4)157
C8—H8B···Cgii0.992.633.547 (3)154
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H12N2O
Mr272.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.9717 (15), 6.0580 (8), 17.948 (2)
β (°) 102.682 (3)
V3)1269.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.12 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.965, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
12413, 2734, 1821
Rint0.056
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.182, 1.00
No. of reflections2734
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the O13,C12A,C8A,C8,C7A,C13A ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O13i0.992.713.637 (4)157
C8—H8B···Cgii0.992.633.547 (3)154
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2.
 

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunce, R. A. (1995). Tetrahedron, 51, 13103–13159.  CrossRef CAS Web of Science Google Scholar
First citationKianmehr, E., Faramarzi, R. & Estiri, H. (2009). Heterocycles, 78, 415–423.  Web of Science CrossRef CAS Google Scholar
First citationNicolaou, K. C., Edmonds, D. J. & Bulger, P. G. (2006). Angew. Chem. Int. Ed. 45, 7134–7186.  Web of Science CrossRef CAS Google Scholar
First citationNicolaou, K. C., Montagnon, T. & Snyder, S. A. (2003). Chem. Commun. pp. 551–564.  Web of Science CrossRef Google Scholar
First citationParenty, A. D. C. & Cronin, L. (2008). Synthesis, pp. 1479–1485.  Web of Science CrossRef Google Scholar
First citationParsons, P. J., Penkett, C. S. & Shell, A. J. (1996). Chem. Rev. 96, 195–206.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPellissier, H. (2006a). Tetrahedron, 62, 1619–1665.  Web of Science CrossRef CAS Google Scholar
First citationPellissier, H. (2006b). Tetrahedron, 62, 2143–2173.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSurpur, M. P., Kshirsagar, S. & Samant, S. D. (2009). Tetrahedron Lett. 50, 719–722.  Web of Science CrossRef CAS Google Scholar
First citationTietze, L. F. (1996). Chem. Rev. 96, 115–136.  CrossRef PubMed CAS Web of Science Google Scholar
First citationWasilke, J.–C., Obrey, S. J., Baker, R. T. & Bazan, G. C. (2005). Chem. Rev. 105, 1001–1020.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYadav, J. S., Subba Reddy, B. V., Gupta, M. K., Prathap, I. & Pandey, S. K. (2007). Catal. Commun. 8, 2208–2211.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds