metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­{μ2-2,7-bis­­[(2,6-diiso­propyl­phen­yl)imino­meth­yl]naphthalene-1,8-diolato}di-μ3-hydroxido-di-μ2-hydroxido-bis­­(tri­methyl­phosphine oxide)tetra­nickel(II)–tri­methyl­phosphine oxide–di­ethyl ether–water (1/2/2/2)

aDepartment of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA
*Correspondence e-mail: t-marks@northwestern.edu

(Received 22 January 2010; accepted 29 January 2010; online 6 February 2010)

The title complex, [Ni4(C36H40N2O2)2(OH)4(C3H9OP)2(H2O)4]·2C4H10O·2C3H9OP·2H2O, is centrosymmetric with a central core that can be described as a defect double cubane. The four metal ions in the cluster are held together by four bridging hydroxide groups. Each NiII atom adopts a distorted octa­hedral geometry.

Related literature

For neutral bimetallic nickel catalysts for ethyl­ene polymerizations and co-polymerizations with polar monomers, see: Rodriguez et al. (2008[Rodriguez, B. A., Delferro, M. & Marks, T. J. (2008). Organometallics, 27, 2166-2168.], 2009[Rodriguez, B. A., Delferro, M. & Marks, T. J. (2009). J. Am. Chem. Soc. 131, 5902-5919.]). For bond-valence-sum calculation, see: Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). For related structures, see: King et al. (2004[King, P., Clérac, R., Wernsdorfer, W., Anson, C. E. & Powell, A. K. (2004). Dalton Trans. pp. 2670-2676.]). For Ni⋯Ni inter­actions, see: Soldatov et al. (2001[Soldatov, D. V., Henegouwen, A. T., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2001). Inorg. Chem. 40, 1626-1636.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni4(C36H40N2O2)2(OH)4(C3H9OP)2(H2O)4]·2C4H10O·2C3H9OP·2H2O

  • Mr = 1992.90

  • Triclinic, [P \overline 1]

  • a = 11.9818 (2) Å

  • b = 13.7937 (2) Å

  • c = 16.2215 (3) Å

  • α = 78.109 (1)°

  • β = 72.759 (1)°

  • γ = 83.782 (1)°

  • V = 2502.37 (7) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 1.99 mm−1

  • T = 100 K

  • 0.28 × 0.16 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.787, Tmax = 0.898

  • 27203 measured reflections

  • 8609 independent reflections

  • 6279 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.162

  • S = 1.00

  • 8609 reflections

  • 575 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The X-ray structural determination of the title compound [FI2—Ni2-(O=PMe3)(H2O)22-OH)(µ3-OH)]2.2(O=PMe3).2(Et2O) .2(H2O), (I), FI2 = 2,7-di(2,6-diisopropylphenyl)imino-1,8-napthalenediolato] reveals a tetranuclear nickel complex (Figure 1). This hydrated complex is centrosymmetric with a central core that can be described as a defect double cubane with two missing vertices. The four nickel(II) ions in the cluster are held together by four bridging hydroxide groups. In the defect dicubane core, two types of distorted octahedrally coordinated nickel(II) ions can be observed. Atom Ni1 is coordinated by two µ3-OH (O4 and O4'), one µ2-OH (O5'), and the FI2 ligand in a bidentate chelating mode through the two phenolate oxygen atoms (O1, O2). The nickel coordination is completed by one trimethylphosphine oxide ligand (O8). Atom Ni2 is coordinated by one µ3-OH (O4'), one µ2-OH (O5), and the FI2 ligand in a bidentate chelating mode through the imine nitrogen atom and a phenolate oxygen atom (N2 and O2, respectively). Two water molecules complete the coordination geometry (O6 and O7). The presence of hydroxyl groups and water molecules are confirmed by Bond Valence Sum calculations (0.28 v.u. for H2O, 0.68 v.u. for µ2-OH and 1.02 v.u. for µ3-OH; Brese & O'Keeffe, 1991). Defect dicubane-like structures are common in literature [nickel(II), copper(II), cobalt(II), iron(II) and manganese(II); King et al., 2004 and references herein] and exhibit similar bond distances and angles with respect to the present product. In I the intramolecular Ni..Ni distances range from 3.052 (1) to 3.073 (4) Å. These values are shorter than the sum of Ni atomic van der Waals radii (3.3 Å) and may indicate chemically significant interactions (Soldatov et al., 2001 and references herein).

Related literature top

For neutral bimetallic nickel catalysts for ethylene polymerizations and co-polymerizations with polar monomers, see: Rodriguez et al. (2008, 2009). For bond-valence-sum calculation, see: Brese & O'Keeffe (1991). For related structures, see: King et al. (2004). For Ni···Ni interactions, see: Soldatov et al. (2001).

Experimental top

In attempts to grow crystals of {2,7-di-[(2,6-diisopropylphenyl)imino]-1,8-naphthalenediolato}(methyl) (trimethylphosphine)nickel(II) (Rodriguez et al., 2008, 2009) by slow diffusion of hexane into ethyl ether solutions under inert atmosphere, small quantities of yellow block-like crystals of the hydrated dimeric decomposition title product were isolated.

Refinement top

The hydrogen atoms were introduced into the geometrically calculated positions and refined using a riding model with distance C—H = 0.95 Å, Uiso = 1.2 Ueq (C) for aromatic atoms and imine groups, C—H = 0.98 Å, Uiso = 1.5 Ueq(C) for methyl groups, C—H = 0.99 Å, Uiso = 1.2 Ueq(C) for methylene groups and C—H =1.00 Å, Uiso = 1.2 Ueq(C) for methine groups. The hydrogen atoms on the hydroxyl groups (O4 and O5) and water molecules (O6, O7 and O11) could not be located in the difference Fourier map or placed geometrically, and therefore were omitted from the refinement. A bond valence sum (BVS; Brese & O'Keeffe, 1991) calculation was applied to determine the valences of these oxygen atoms. The thermal ellipsoids of C20, C37, C38, C39, C40, C41 and C42 atoms are relatively large. We are confident in their assignment based on the chemistry of the molecule.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The structure of the title complex molecule. Hydrogen atoms are omitted for clarity. Symmetry code: (') -x, 1-y, 1-z.
Tetraaquabis{µ2-2,7-bis[(2,6-diisopropylphenyl)iminomethyl]naphthalene-1,8- diolato}di-µ3-hydroxido-di-µ2-hydroxido-bis(trimethylphosphine oxide)tetranickel(II)–trimethylphosphine oxide–diethyl ether–water (1/2/2/2) top
Crystal data top
[Ni4(C36H40N2O2)2(OH)4(C3H9OP)2(H2O)4]·2C4H10O·2C3H9OP·2H2OZ = 1
Mr = 1992.90F(000) = 1052
Triclinic, P1Dx = 1.314 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 11.9818 (2) ÅCell parameters from 9944 reflections
b = 13.7937 (2) Åθ = 5.7–66.9°
c = 16.2215 (3) ŵ = 1.99 mm1
α = 78.109 (1)°T = 100 K
β = 72.759 (1)°Block, yellow
γ = 83.782 (1)°0.28 × 0.16 × 0.10 mm
V = 2502.37 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8609 independent reflections
Radiation source: fine-focus sealed tube6279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 67.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.787, Tmax = 0.898k = 516
27203 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1064P)2]
where P = (Fo2 + 2Fc2)/3
8609 reflections(Δ/σ)max = 0.001
575 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Ni4(C36H40N2O2)2(OH)4(C3H9OP)2(H2O)4]·2C4H10O·2C3H9OP·2H2Oγ = 83.782 (1)°
Mr = 1992.90V = 2502.37 (7) Å3
Triclinic, P1Z = 1
a = 11.9818 (2) ÅCu Kα radiation
b = 13.7937 (2) ŵ = 1.99 mm1
c = 16.2215 (3) ÅT = 100 K
α = 78.109 (1)°0.28 × 0.16 × 0.10 mm
β = 72.759 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8609 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6279 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.898Rint = 0.050
27203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.00Δρmax = 0.79 e Å3
8609 reflectionsΔρmin = 0.89 e Å3
575 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.01942 (5)0.61224 (4)0.49749 (3)0.02009 (16)
Ni20.06318 (5)0.47043 (4)0.67392 (3)0.02006 (16)
P10.52123 (8)0.45032 (7)0.68083 (7)0.0338 (2)
P20.21683 (10)0.80223 (7)0.53249 (7)0.0454 (3)
O10.0870 (2)0.72178 (16)0.44528 (14)0.0247 (5)
O20.0298 (2)0.59307 (16)0.60874 (14)0.0226 (5)
O40.10543 (19)0.51166 (15)0.44142 (13)0.0216 (5)
O50.0676 (2)0.37798 (16)0.61391 (14)0.0242 (5)
O60.1683 (2)0.34634 (17)0.71743 (15)0.0280 (5)
O70.2103 (2)0.56828 (17)0.71747 (14)0.0270 (5)
O80.1672 (2)0.70163 (17)0.55997 (15)0.0313 (6)
O90.6242 (2)0.4500 (2)0.7146 (2)0.0453 (7)
O100.4306 (3)0.8467 (2)0.7711 (2)0.0512 (8)
O110.2730 (3)0.4515 (2)0.5759 (2)0.0596 (9)
N10.2850 (3)0.9281 (2)0.27509 (19)0.0308 (7)
N20.0098 (2)0.47072 (19)0.78290 (17)0.0216 (6)
C10.1591 (3)0.7559 (2)0.4778 (2)0.0209 (7)
C20.2307 (3)0.8329 (2)0.4222 (2)0.0233 (7)
C30.3124 (3)0.8718 (2)0.4510 (2)0.0254 (7)
H30.36200.92090.41170.030*
C40.3228 (3)0.8410 (2)0.5340 (2)0.0262 (7)
H40.37790.86970.55230.031*
C50.2518 (3)0.7663 (2)0.5931 (2)0.0235 (7)
C60.2616 (3)0.7386 (2)0.6799 (2)0.0265 (7)
H60.31350.77160.69790.032*
C70.1974 (3)0.6654 (2)0.7375 (2)0.0260 (7)
H70.20500.64870.79540.031*
C80.1192 (3)0.6129 (2)0.7143 (2)0.0228 (7)
C90.1029 (3)0.6403 (2)0.6289 (2)0.0202 (7)
C100.1697 (3)0.7203 (2)0.5664 (2)0.0205 (7)
C110.2181 (3)0.8691 (2)0.3343 (2)0.0245 (7)
H110.15470.84660.32060.029*
C120.2579 (3)0.9552 (3)0.1927 (2)0.0303 (8)
C130.3096 (3)0.8997 (3)0.1264 (2)0.0322 (8)
C140.2836 (4)0.9286 (3)0.0472 (3)0.0429 (10)
H140.31760.89160.00170.051*
C150.2093 (4)1.0101 (3)0.0324 (3)0.0484 (11)
H150.19271.02860.02260.058*
C160.1596 (4)1.0640 (3)0.0974 (3)0.0448 (10)
H160.10871.12000.08680.054*
C170.1821 (4)1.0386 (3)0.1790 (3)0.0377 (9)
C180.3936 (4)0.8116 (3)0.1404 (3)0.0377 (9)
H180.37290.78400.20480.045*
C190.5170 (5)0.8457 (4)0.1131 (6)0.095 (2)
H19A0.53690.87960.05160.143*
H19B0.57150.78820.11950.143*
H19C0.52280.89150.15030.143*
C200.3867 (4)0.7282 (3)0.0936 (3)0.0449 (10)
H20A0.41680.75020.03000.067*
H20B0.30500.71080.10810.067*
H20C0.43370.67000.11270.067*
C210.1226 (4)1.0953 (3)0.2525 (3)0.0450 (10)
H210.16141.07290.30040.054*
C220.0050 (5)1.0727 (4)0.2899 (4)0.0651 (14)
H22A0.04541.09510.24430.098*
H22B0.04061.10730.33920.098*
H22C0.01201.00110.31040.098*
C230.1342 (5)1.2072 (3)0.2228 (4)0.0638 (14)
H23A0.21711.22150.19810.096*
H23B0.09991.24020.27330.096*
H23C0.09291.23160.17810.096*
C240.0601 (3)0.5359 (2)0.7833 (2)0.0217 (7)
H240.07500.53240.83820.026*
C250.0589 (3)0.4076 (2)0.8670 (2)0.0234 (7)
C260.1445 (3)0.4479 (3)0.9331 (2)0.0255 (7)
C270.1880 (3)0.3843 (3)1.0131 (2)0.0317 (8)
H270.24510.40981.05920.038*
C280.1509 (3)0.2859 (3)1.0272 (2)0.0349 (9)
H280.18260.24431.08210.042*
C290.0683 (4)0.2484 (3)0.9619 (2)0.0326 (8)
H290.04290.18050.97220.039*
C300.0204 (3)0.3071 (2)0.8809 (2)0.0270 (8)
C310.1904 (3)0.5547 (3)0.9231 (2)0.0282 (8)
H310.15550.58740.86080.034*
C320.1531 (4)0.6098 (3)0.9820 (2)0.0393 (9)
H32A0.18190.57661.04330.059*
H32B0.18580.67820.97540.059*
H32C0.06750.60990.96530.059*
C330.3232 (4)0.5627 (3)0.9411 (3)0.0436 (10)
H33A0.34560.52670.90280.065*
H33B0.34960.63260.92950.065*
H33C0.35970.53391.00260.065*
C340.0743 (3)0.2627 (3)0.8124 (2)0.0303 (8)
H340.09280.31440.75780.036*
C350.1864 (4)0.2367 (3)0.8401 (3)0.0431 (10)
H35A0.21050.29540.85440.065*
H35B0.24820.21450.79190.065*
H35C0.17240.18350.89180.065*
C360.0362 (4)0.1729 (3)0.7892 (3)0.0506 (11)
H36A0.01680.12070.84160.076*
H36B0.09990.14830.74350.076*
H36C0.03280.19160.76770.076*
C370.1105 (5)0.8943 (3)0.5018 (5)0.102 (3)
H37A0.07230.88870.54840.152*
H37B0.14920.96040.49310.152*
H37C0.05170.88430.44720.152*
C380.2867 (7)0.8036 (6)0.4477 (4)0.103 (3)
H38A0.22710.79420.39330.155*
H38B0.32980.86740.43780.155*
H38C0.34100.74990.46610.155*
C390.3351 (5)0.8392 (4)0.6211 (4)0.0737 (17)
H39A0.39540.79020.64070.111*
H39B0.36910.90430.60050.111*
H39C0.30490.84320.67020.111*
C400.5061 (4)0.5604 (3)0.6042 (3)0.0459 (10)
H40A0.50160.61850.63130.069*
H40B0.43450.55910.58700.069*
H40C0.57390.56410.55210.069*
C410.5279 (4)0.3478 (3)0.6277 (3)0.0512 (11)
H41A0.59750.35100.57700.077*
H41B0.45770.35040.60780.077*
H41C0.53200.28570.66900.077*
C420.3880 (4)0.4423 (3)0.7677 (3)0.0473 (10)
H42A0.39150.38150.81080.071*
H42B0.32220.44080.74370.071*
H42C0.37710.50000.79630.071*
C430.4650 (5)0.7806 (4)0.8388 (3)0.0617 (13)
H43A0.40740.78550.89610.074*
H43B0.54210.79780.84100.074*
C440.4726 (5)0.6766 (4)0.8215 (4)0.0640 (14)
H44A0.39930.66310.81180.096*
H44B0.48580.62930.87220.096*
H44C0.53770.66970.76930.096*
C450.4276 (5)0.9458 (4)0.7783 (4)0.0635 (14)
H45A0.50750.96480.77190.076*
H45B0.37760.95530.83700.076*
C460.3819 (5)1.0083 (4)0.7111 (4)0.0713 (15)
H46A0.42680.99400.65340.107*
H46B0.38831.07820.71250.107*
H46C0.29950.99520.72200.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0213 (3)0.0235 (3)0.0156 (3)0.0036 (2)0.0049 (2)0.0030 (2)
Ni20.0201 (3)0.0255 (3)0.0150 (3)0.0046 (2)0.0047 (2)0.0031 (2)
P10.0237 (5)0.0374 (5)0.0404 (6)0.0022 (4)0.0104 (4)0.0050 (4)
P20.0444 (7)0.0345 (5)0.0432 (6)0.0111 (5)0.0020 (5)0.0041 (4)
O10.0294 (13)0.0263 (12)0.0199 (11)0.0081 (10)0.0083 (10)0.0017 (9)
O20.0241 (13)0.0269 (11)0.0182 (11)0.0071 (9)0.0066 (9)0.0035 (9)
O40.0219 (12)0.0266 (11)0.0174 (11)0.0027 (9)0.0065 (9)0.0041 (9)
O50.0245 (13)0.0316 (12)0.0170 (11)0.0007 (10)0.0071 (10)0.0046 (9)
O60.0297 (14)0.0320 (12)0.0206 (12)0.0115 (10)0.0037 (10)0.0008 (9)
O70.0239 (13)0.0362 (13)0.0211 (12)0.0003 (10)0.0045 (10)0.0093 (10)
O80.0314 (14)0.0342 (13)0.0254 (13)0.0020 (11)0.0040 (11)0.0065 (10)
O90.0325 (16)0.0483 (16)0.0595 (19)0.0083 (12)0.0217 (14)0.0038 (13)
O100.0483 (19)0.0586 (19)0.0521 (19)0.0042 (14)0.0173 (15)0.0211 (15)
O110.0351 (18)0.065 (2)0.079 (2)0.0031 (15)0.0123 (16)0.0217 (17)
N10.0299 (17)0.0317 (15)0.0274 (16)0.0074 (13)0.0054 (13)0.0013 (12)
N20.0216 (15)0.0246 (14)0.0187 (13)0.0021 (11)0.0060 (11)0.0034 (11)
C10.0192 (17)0.0215 (15)0.0212 (16)0.0010 (13)0.0024 (13)0.0073 (12)
C20.0239 (18)0.0212 (16)0.0229 (17)0.0007 (13)0.0034 (14)0.0051 (13)
C30.0237 (19)0.0217 (16)0.0260 (18)0.0039 (13)0.0006 (14)0.0021 (13)
C40.0239 (19)0.0257 (17)0.0303 (19)0.0071 (14)0.0067 (15)0.0066 (14)
C50.0233 (18)0.0226 (16)0.0244 (17)0.0027 (13)0.0046 (14)0.0060 (13)
C60.0268 (19)0.0296 (18)0.0271 (18)0.0050 (14)0.0106 (15)0.0074 (14)
C70.0273 (19)0.0310 (18)0.0222 (17)0.0034 (14)0.0102 (15)0.0048 (14)
C80.0223 (18)0.0255 (16)0.0214 (17)0.0018 (13)0.0053 (14)0.0070 (13)
C90.0200 (17)0.0223 (16)0.0192 (16)0.0018 (13)0.0045 (13)0.0069 (12)
C100.0208 (17)0.0208 (15)0.0198 (16)0.0002 (13)0.0041 (13)0.0064 (12)
C110.0271 (19)0.0209 (16)0.0236 (17)0.0001 (14)0.0051 (15)0.0035 (13)
C120.032 (2)0.0290 (18)0.0259 (18)0.0061 (15)0.0063 (16)0.0043 (14)
C130.031 (2)0.0314 (19)0.031 (2)0.0058 (15)0.0076 (16)0.0001 (15)
C140.050 (3)0.045 (2)0.027 (2)0.0015 (19)0.0072 (19)0.0010 (17)
C150.066 (3)0.046 (2)0.028 (2)0.000 (2)0.017 (2)0.0069 (17)
C160.048 (3)0.036 (2)0.041 (2)0.0060 (18)0.012 (2)0.0090 (18)
C170.038 (2)0.0324 (19)0.035 (2)0.0009 (16)0.0042 (18)0.0027 (16)
C180.039 (2)0.033 (2)0.043 (2)0.0001 (16)0.0144 (19)0.0080 (16)
C190.043 (3)0.046 (3)0.204 (8)0.001 (2)0.051 (4)0.017 (4)
C200.054 (3)0.042 (2)0.039 (2)0.0082 (19)0.016 (2)0.0092 (18)
C210.048 (3)0.036 (2)0.048 (3)0.0050 (18)0.011 (2)0.0088 (18)
C220.061 (3)0.053 (3)0.062 (3)0.002 (2)0.009 (3)0.009 (2)
C230.068 (4)0.045 (3)0.072 (4)0.000 (2)0.008 (3)0.015 (2)
C240.0218 (18)0.0287 (17)0.0164 (16)0.0013 (14)0.0075 (13)0.0049 (13)
C250.0261 (19)0.0309 (18)0.0157 (16)0.0072 (14)0.0100 (14)0.0006 (13)
C260.0256 (19)0.0351 (18)0.0184 (16)0.0080 (14)0.0086 (14)0.0035 (14)
C270.030 (2)0.045 (2)0.0180 (17)0.0093 (16)0.0027 (15)0.0031 (15)
C280.040 (2)0.042 (2)0.0213 (18)0.0153 (18)0.0095 (16)0.0052 (15)
C290.044 (2)0.0287 (18)0.0283 (19)0.0076 (16)0.0181 (17)0.0015 (15)
C300.032 (2)0.0308 (18)0.0219 (17)0.0077 (15)0.0135 (15)0.0021 (14)
C310.028 (2)0.0372 (19)0.0188 (17)0.0027 (15)0.0047 (15)0.0062 (14)
C320.046 (3)0.044 (2)0.029 (2)0.0013 (18)0.0106 (18)0.0112 (17)
C330.040 (2)0.050 (2)0.037 (2)0.0043 (19)0.0080 (19)0.0081 (18)
C340.038 (2)0.0284 (18)0.0239 (18)0.0005 (15)0.0117 (16)0.0000 (14)
C350.036 (2)0.053 (2)0.042 (2)0.0021 (18)0.0119 (19)0.0112 (19)
C360.044 (3)0.054 (3)0.061 (3)0.002 (2)0.015 (2)0.027 (2)
C370.064 (4)0.030 (2)0.152 (6)0.002 (2)0.045 (4)0.000 (3)
C380.107 (6)0.125 (6)0.067 (4)0.060 (5)0.039 (4)0.004 (4)
C390.056 (3)0.049 (3)0.094 (4)0.000 (2)0.021 (3)0.027 (3)
C400.038 (2)0.049 (2)0.044 (2)0.0009 (19)0.006 (2)0.0015 (19)
C410.047 (3)0.051 (3)0.065 (3)0.011 (2)0.028 (2)0.020 (2)
C420.035 (2)0.050 (2)0.049 (3)0.0011 (19)0.006 (2)0.0002 (19)
C430.061 (3)0.078 (3)0.049 (3)0.006 (3)0.020 (3)0.010 (2)
C440.057 (3)0.070 (3)0.068 (3)0.003 (3)0.028 (3)0.003 (3)
C450.063 (3)0.066 (3)0.062 (3)0.010 (3)0.006 (3)0.028 (3)
C460.069 (4)0.055 (3)0.090 (4)0.010 (3)0.020 (3)0.025 (3)
Geometric parameters (Å, º) top
Ni1—O11.969 (2)C21—C221.510 (7)
Ni1—O4i2.011 (2)C21—C231.527 (6)
Ni1—O22.018 (2)C21—H211.0000
Ni1—O5i2.030 (2)C22—H22A0.9800
Ni1—O42.062 (2)C22—H22B0.9800
Ni1—O82.159 (2)C22—H22C0.9800
Ni2—O4i2.040 (2)C23—H23A0.9800
Ni2—O22.048 (2)C23—H23B0.9800
Ni2—O52.051 (2)C23—H23C0.9800
Ni2—N22.051 (3)C24—H240.9500
Ni2—O62.111 (2)C25—C301.407 (5)
Ni2—O72.137 (2)C25—C261.408 (5)
P1—O91.490 (3)C26—C271.398 (5)
P1—C401.783 (4)C26—C311.509 (5)
P1—C421.785 (4)C27—C281.376 (5)
P1—C411.785 (4)C27—H270.9500
P2—O81.484 (3)C28—C291.365 (6)
P2—C371.789 (6)C28—H280.9500
P2—C381.805 (7)C29—C301.388 (5)
P2—C391.809 (5)C29—H290.9500
O1—C11.306 (4)C30—C341.510 (5)
O2—C91.296 (4)C31—C321.522 (5)
O4—Ni1i2.011 (2)C31—C331.526 (5)
O4—Ni2i2.040 (2)C31—H311.0000
O5—Ni1i2.030 (2)C32—H32A0.9800
O10—C451.392 (6)C32—H32B0.9800
O10—C431.408 (6)C32—H32C0.9800
N1—C111.261 (4)C33—H33A0.9800
N1—C121.434 (5)C33—H33B0.9800
N2—C241.296 (4)C33—H33C0.9800
N2—C251.453 (4)C34—C361.518 (5)
C1—C21.421 (5)C34—C351.523 (5)
C1—C101.459 (5)C34—H341.0000
C2—C31.398 (5)C35—H35A0.9800
C2—C111.457 (5)C35—H35B0.9800
C3—C41.365 (5)C35—H35C0.9800
C3—H30.9500C36—H36A0.9800
C4—C51.415 (5)C36—H36B0.9800
C4—H40.9500C36—H36C0.9800
C5—C61.418 (5)C37—H37A0.9800
C5—C101.435 (5)C37—H37B0.9800
C6—C71.355 (5)C37—H37C0.9800
C6—H60.9500C38—H38A0.9800
C7—C81.418 (5)C38—H38B0.9800
C7—H70.9500C38—H38C0.9800
C8—C91.424 (5)C39—H39A0.9800
C8—C241.445 (4)C39—H39B0.9800
C9—C101.461 (4)C39—H39C0.9800
C11—H110.9500C40—H40A0.9800
C12—C131.403 (5)C40—H40B0.9800
C12—C171.408 (5)C40—H40C0.9800
C13—C141.381 (5)C41—H41A0.9800
C13—C181.517 (5)C41—H41B0.9800
C14—C151.383 (6)C41—H41C0.9800
C14—H140.9500C42—H42A0.9800
C15—C161.369 (6)C42—H42B0.9800
C15—H150.9500C42—H42C0.9800
C16—C171.395 (6)C43—C441.506 (7)
C16—H160.9500C43—H43A0.9900
C17—C211.517 (6)C43—H43B0.9900
C18—C191.511 (6)C44—H44A0.9800
C18—C201.524 (6)C44—H44B0.9800
C18—H181.0000C44—H44C0.9800
C19—H19A0.9800C45—C461.447 (8)
C19—H19B0.9800C45—H45A0.9900
C19—H19C0.9800C45—H45B0.9900
C20—H20A0.9800C46—H46A0.9800
C20—H20B0.9800C46—H46B0.9800
C20—H20C0.9800C46—H46C0.9800
O1—Ni1—O4i170.15 (10)C23—C21—H21107.9
O1—Ni1—O289.63 (9)C21—C22—H22A109.5
O4i—Ni1—O283.12 (8)C21—C22—H22B109.5
O1—Ni1—O5i92.90 (9)H22A—C22—H22B109.5
O4i—Ni1—O5i94.05 (9)C21—C22—H22C109.5
O2—Ni1—O5i176.36 (9)H22A—C22—H22C109.5
O1—Ni1—O491.77 (9)H22B—C22—H22C109.5
O4i—Ni1—O482.24 (9)C21—C23—H23A109.5
O2—Ni1—O494.82 (9)C21—C23—H23B109.5
O5i—Ni1—O482.50 (9)H23A—C23—H23B109.5
O1—Ni1—O896.00 (10)C21—C23—H23C109.5
O4i—Ni1—O890.31 (9)H23A—C23—H23C109.5
O2—Ni1—O887.07 (9)H23B—C23—H23C109.5
O5i—Ni1—O895.26 (9)N2—C24—C8130.8 (3)
O4—Ni1—O8172.02 (9)N2—C24—H24114.6
O4i—Ni2—O281.68 (8)C8—C24—H24114.6
O4i—Ni2—O582.54 (9)C30—C25—C26121.1 (3)
O2—Ni2—O591.68 (9)C30—C25—N2119.4 (3)
O4i—Ni2—N2172.09 (10)C26—C25—N2119.5 (3)
O2—Ni2—N290.47 (9)C27—C26—C25117.2 (3)
O5—Ni2—N298.75 (10)C27—C26—C31118.7 (3)
O4i—Ni2—O686.77 (9)C25—C26—C31124.2 (3)
O2—Ni2—O6168.45 (9)C28—C27—C26122.1 (3)
O5—Ni2—O686.64 (9)C28—C27—H27119.0
N2—Ni2—O6101.08 (10)C26—C27—H27119.0
O4i—Ni2—O787.77 (9)C29—C28—C27119.7 (3)
O2—Ni2—O788.02 (9)C29—C28—H28120.2
O5—Ni2—O7170.24 (9)C27—C28—H28120.2
N2—Ni2—O791.01 (10)C28—C29—C30121.6 (4)
O6—Ni2—O791.71 (9)C28—C29—H29119.2
O9—P1—C40112.60 (19)C30—C29—H29119.2
O9—P1—C42111.4 (2)C29—C30—C25118.3 (3)
C40—P1—C42106.6 (2)C29—C30—C34119.3 (3)
O9—P1—C41112.49 (19)C25—C30—C34122.3 (3)
C40—P1—C41107.1 (2)C26—C31—C32111.2 (3)
C42—P1—C41106.2 (2)C26—C31—C33111.4 (3)
O8—P2—C37112.0 (2)C32—C31—C33110.6 (3)
O8—P2—C38111.2 (3)C26—C31—H31107.8
C37—P2—C38112.4 (4)C32—C31—H31107.8
O8—P2—C39111.0 (2)C33—C31—H31107.8
C37—P2—C39106.5 (3)C31—C32—H32A109.5
C38—P2—C39103.3 (3)C31—C32—H32B109.5
C1—O1—Ni1129.6 (2)H32A—C32—H32B109.5
C9—O2—Ni1130.53 (19)C31—C32—H32C109.5
C9—O2—Ni2132.03 (19)H32A—C32—H32C109.5
Ni1—O2—Ni297.30 (9)H32B—C32—H32C109.5
Ni1i—O4—Ni2i97.80 (9)C31—C33—H33A109.5
Ni1i—O4—Ni197.76 (9)C31—C33—H33B109.5
Ni2i—O4—Ni197.01 (9)H33A—C33—H33B109.5
Ni1i—O5—Ni297.72 (10)C31—C33—H33C109.5
P2—O8—Ni1133.35 (14)H33A—C33—H33C109.5
C45—O10—C43113.4 (4)H33B—C33—H33C109.5
C11—N1—C12116.6 (3)C30—C34—C36112.8 (3)
C24—N2—C25115.6 (3)C30—C34—C35111.6 (3)
C24—N2—Ni2121.3 (2)C36—C34—C35110.2 (3)
C25—N2—Ni2122.6 (2)C30—C34—H34107.3
O1—C1—C2116.9 (3)C36—C34—H34107.3
O1—C1—C10124.2 (3)C35—C34—H34107.3
C2—C1—C10118.9 (3)C34—C35—H35A109.5
C3—C2—C1120.6 (3)C34—C35—H35B109.5
C3—C2—C11120.9 (3)H35A—C35—H35B109.5
C1—C2—C11118.5 (3)C34—C35—H35C109.5
C4—C3—C2121.6 (3)H35A—C35—H35C109.5
C4—C3—H3119.2H35B—C35—H35C109.5
C2—C3—H3119.2C34—C36—H36A109.5
C3—C4—C5120.3 (3)C34—C36—H36B109.5
C3—C4—H4119.8H36A—C36—H36B109.5
C5—C4—H4119.8C34—C36—H36C109.5
C4—C5—C6118.9 (3)H36A—C36—H36C109.5
C4—C5—C10120.8 (3)H36B—C36—H36C109.5
C6—C5—C10120.3 (3)P2—C37—H37A109.5
C7—C6—C5120.5 (3)P2—C37—H37B109.5
C7—C6—H6119.8H37A—C37—H37B109.5
C5—C6—H6119.8P2—C37—H37C109.5
C6—C7—C8122.4 (3)H37A—C37—H37C109.5
C6—C7—H7118.8H37B—C37—H37C109.5
C8—C7—H7118.8P2—C38—H38A109.5
C7—C8—C9119.4 (3)P2—C38—H38B109.5
C7—C8—C24114.8 (3)H38A—C38—H38B109.5
C9—C8—C24125.8 (3)P2—C38—H38C109.5
O2—C9—C8119.0 (3)H38A—C38—H38C109.5
O2—C9—C10122.0 (3)H38B—C38—H38C109.5
C8—C9—C10119.0 (3)P2—C39—H39A109.5
C5—C10—C1117.6 (3)P2—C39—H39B109.5
C5—C10—C9118.4 (3)H39A—C39—H39B109.5
C1—C10—C9124.0 (3)P2—C39—H39C109.5
N1—C11—C2124.9 (3)H39A—C39—H39C109.5
N1—C11—H11117.5H39B—C39—H39C109.5
C2—C11—H11117.5P1—C40—H40A109.5
C13—C12—C17121.2 (3)P1—C40—H40B109.5
C13—C12—N1119.4 (3)H40A—C40—H40B109.5
C17—C12—N1119.4 (3)P1—C40—H40C109.5
C14—C13—C12118.2 (4)H40A—C40—H40C109.5
C14—C13—C18120.7 (4)H40B—C40—H40C109.5
C12—C13—C18121.1 (3)P1—C41—H41A109.5
C13—C14—C15121.6 (4)P1—C41—H41B109.5
C13—C14—H14119.2H41A—C41—H41B109.5
C15—C14—H14119.2P1—C41—H41C109.5
C16—C15—C14119.8 (4)H41A—C41—H41C109.5
C16—C15—H15120.1H41B—C41—H41C109.5
C14—C15—H15120.1P1—C42—H42A109.5
C15—C16—C17121.4 (4)P1—C42—H42B109.5
C15—C16—H16119.3H42A—C42—H42B109.5
C17—C16—H16119.3P1—C42—H42C109.5
C16—C17—C12117.9 (4)H42A—C42—H42C109.5
C16—C17—C21121.4 (4)H42B—C42—H42C109.5
C12—C17—C21120.7 (4)O10—C43—C44108.9 (4)
C19—C18—C13109.7 (3)O10—C43—H43A109.9
C19—C18—C20110.5 (4)C44—C43—H43A109.9
C13—C18—C20113.8 (3)O10—C43—H43B109.9
C19—C18—H18107.5C44—C43—H43B109.9
C13—C18—H18107.5H43A—C43—H43B108.3
C20—C18—H18107.5C43—C44—H44A109.5
C18—C19—H19A109.5C43—C44—H44B109.5
C18—C19—H19B109.5H44A—C44—H44B109.5
H19A—C19—H19B109.5C43—C44—H44C109.5
C18—C19—H19C109.5H44A—C44—H44C109.5
H19A—C19—H19C109.5H44B—C44—H44C109.5
H19B—C19—H19C109.5O10—C45—C46110.1 (4)
C18—C20—H20A109.5O10—C45—H45A109.6
C18—C20—H20B109.5C46—C45—H45A109.6
H20A—C20—H20B109.5O10—C45—H45B109.6
C18—C20—H20C109.5C46—C45—H45B109.6
H20A—C20—H20C109.5H45A—C45—H45B108.1
H20B—C20—H20C109.5C45—C46—H46A109.5
C22—C21—C17110.9 (4)C45—C46—H46B109.5
C22—C21—C23109.7 (4)H46A—C46—H46B109.5
C17—C21—C23112.4 (4)C45—C46—H46C109.5
C22—C21—H21107.9H46A—C46—H46C109.5
C17—C21—H21107.9H46B—C46—H46C109.5
O2—Ni1—O1—C12.6 (3)C24—C8—C9—C10179.9 (3)
O5i—Ni1—O1—C1174.8 (3)C4—C5—C10—C12.3 (5)
O4—Ni1—O1—C192.2 (3)C6—C5—C10—C1176.6 (3)
O8—Ni1—O1—C189.6 (3)C4—C5—C10—C9177.0 (3)
O1—Ni1—O2—C90.4 (3)C6—C5—C10—C94.0 (5)
O4i—Ni1—O2—C9173.7 (3)O1—C1—C10—C5179.1 (3)
O4—Ni1—O2—C992.1 (3)C2—C1—C10—C50.7 (4)
O8—Ni1—O2—C995.6 (3)O1—C1—C10—C91.6 (5)
O1—Ni1—O2—Ni2175.67 (10)C2—C1—C10—C9178.6 (3)
O4i—Ni1—O2—Ni22.36 (9)O2—C9—C10—C5177.9 (3)
O4—Ni1—O2—Ni283.93 (10)C8—C9—C10—C51.8 (5)
O8—Ni1—O2—Ni288.30 (10)O2—C9—C10—C11.4 (5)
O4i—Ni2—O2—C9173.6 (3)C8—C9—C10—C1178.9 (3)
O5—Ni2—O2—C991.4 (3)C12—N1—C11—C2179.9 (3)
N2—Ni2—O2—C97.3 (3)C3—C2—C11—N18.0 (5)
O6—Ni2—O2—C9172.8 (4)C1—C2—C11—N1171.1 (3)
O7—Ni2—O2—C998.3 (3)C11—N1—C12—C1391.9 (4)
O4i—Ni2—O2—Ni12.34 (9)C11—N1—C12—C1789.6 (4)
O5—Ni2—O2—Ni184.54 (10)C17—C12—C13—C140.4 (5)
N2—Ni2—O2—Ni1176.69 (11)N1—C12—C13—C14178.8 (3)
O6—Ni2—O2—Ni13.1 (5)C17—C12—C13—C18178.4 (3)
O7—Ni2—O2—Ni185.70 (10)N1—C12—C13—C180.1 (5)
O1—Ni1—O4—Ni1i172.15 (9)C12—C13—C14—C150.3 (6)
O4i—Ni1—O4—Ni1i0.0C18—C13—C14—C15178.5 (4)
O2—Ni1—O4—Ni1i82.37 (9)C13—C14—C15—C160.0 (7)
O5i—Ni1—O4—Ni1i95.15 (10)C14—C15—C16—C170.1 (7)
O1—Ni1—O4—Ni2i88.95 (9)C15—C16—C17—C120.0 (6)
O4i—Ni1—O4—Ni2i98.90 (10)C15—C16—C17—C21177.0 (4)
O2—Ni1—O4—Ni2i178.73 (8)C13—C12—C17—C160.3 (6)
O5i—Ni1—O4—Ni2i3.75 (8)N1—C12—C17—C16178.7 (3)
O4i—Ni2—O5—Ni1i3.78 (8)C13—C12—C17—C21177.3 (3)
O2—Ni2—O5—Ni1i85.16 (9)N1—C12—C17—C214.2 (5)
N2—Ni2—O5—Ni1i175.89 (9)C14—C13—C18—C1989.3 (5)
O6—Ni2—O5—Ni1i83.40 (9)C12—C13—C18—C1989.5 (5)
C37—P2—O8—Ni155.4 (3)C14—C13—C18—C2035.1 (5)
C38—P2—O8—Ni171.3 (3)C12—C13—C18—C20146.2 (4)
C39—P2—O8—Ni1174.3 (3)C16—C17—C21—C2271.9 (5)
O1—Ni1—O8—P240.0 (2)C12—C17—C21—C22105.0 (5)
O4i—Ni1—O8—P2147.6 (2)C16—C17—C21—C2351.3 (6)
O2—Ni1—O8—P2129.3 (2)C12—C17—C21—C23131.7 (4)
O5i—Ni1—O8—P253.5 (2)C25—N2—C24—C8176.5 (3)
O2—Ni2—N2—C241.4 (3)Ni2—N2—C24—C84.2 (5)
O5—Ni2—N2—C2490.3 (3)C7—C8—C24—N2175.0 (3)
O6—Ni2—N2—C24178.6 (2)C9—C8—C24—N26.6 (6)
O7—Ni2—N2—C2489.5 (3)C24—N2—C25—C30108.6 (3)
O2—Ni2—N2—C25170.3 (2)Ni2—N2—C25—C3079.3 (3)
O5—Ni2—N2—C2597.9 (2)C24—N2—C25—C2671.7 (4)
O6—Ni2—N2—C259.7 (3)Ni2—N2—C25—C26100.4 (3)
O7—Ni2—N2—C2582.3 (2)C30—C25—C26—C270.9 (5)
Ni1—O1—C1—C2176.4 (2)N2—C25—C26—C27179.4 (3)
Ni1—O1—C1—C103.8 (5)C30—C25—C26—C31179.8 (3)
O1—C1—C2—C3178.3 (3)N2—C25—C26—C310.1 (5)
C10—C1—C2—C31.9 (5)C25—C26—C27—C280.9 (5)
O1—C1—C2—C110.8 (4)C31—C26—C27—C28179.7 (3)
C10—C1—C2—C11179.0 (3)C26—C27—C28—C290.6 (5)
C1—C2—C3—C43.1 (5)C27—C28—C29—C300.2 (6)
C11—C2—C3—C4177.9 (3)C28—C29—C30—C250.2 (5)
C2—C3—C4—C51.4 (5)C28—C29—C30—C34177.4 (3)
C3—C4—C5—C6177.7 (3)C26—C25—C30—C290.6 (5)
C3—C4—C5—C101.3 (5)N2—C25—C30—C29179.7 (3)
C4—C5—C6—C7178.1 (3)C26—C25—C30—C34177.7 (3)
C10—C5—C6—C72.9 (5)N2—C25—C30—C342.6 (5)
C5—C6—C7—C80.6 (5)C27—C26—C31—C3267.1 (4)
C6—C7—C8—C92.8 (5)C25—C26—C31—C32112.2 (4)
C6—C7—C8—C24178.7 (3)C27—C26—C31—C3356.9 (4)
Ni1—O2—C9—C8178.2 (2)C25—C26—C31—C33123.8 (4)
Ni2—O2—C9—C87.0 (4)C29—C30—C34—C3657.8 (4)
Ni1—O2—C9—C102.1 (4)C25—C30—C34—C36125.0 (4)
Ni2—O2—C9—C10172.6 (2)C29—C30—C34—C3566.9 (4)
C7—C8—C9—O2178.8 (3)C25—C30—C34—C35110.2 (4)
C24—C8—C9—O20.4 (5)C45—O10—C43—C44176.5 (4)
C7—C8—C9—C101.5 (5)C43—O10—C45—C46175.0 (4)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni4(C36H40N2O2)2(OH)4(C3H9OP)2(H2O)4]·2C4H10O·2C3H9OP·2H2O
Mr1992.90
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.9818 (2), 13.7937 (2), 16.2215 (3)
α, β, γ (°)78.109 (1), 72.759 (1), 83.782 (1)
V3)2502.37 (7)
Z1
Radiation typeCu Kα
µ (mm1)1.99
Crystal size (mm)0.28 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.787, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
27203, 8609, 6279
Rint0.050
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.162, 1.00
No. of reflections8609
No. of parameters575
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.89

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors are grateful for financial support from the NSF (grant CHE-04157407) and DOE (86ER13511). We thank Ms Charlotte Stern for assistance with the X-ray data collection.

References

First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKing, P., Clérac, R., Wernsdorfer, W., Anson, C. E. & Powell, A. K. (2004). Dalton Trans. pp. 2670–2676.  Web of Science CSD CrossRef Google Scholar
First citationRodriguez, B. A., Delferro, M. & Marks, T. J. (2008). Organometallics, 27, 2166–2168.  Web of Science CrossRef CAS Google Scholar
First citationRodriguez, B. A., Delferro, M. & Marks, T. J. (2009). J. Am. Chem. Soc. 131, 5902–5919.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoldatov, D. V., Henegouwen, A. T., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2001). Inorg. Chem. 40, 1626–1636.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds