organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­carboxyanilinium nitrate dihydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: lwx927lh@163.com

(Received 28 January 2010; accepted 9 February 2010; online 20 February 2010)

In the crystal of the title compound, C8H8NO4+·NO3·2H2O, the 5-ammonio­isophthalic acid cations, the nitrate anions and the water mol­ecules are linked by N—H⋯O, O—H⋯O and C—H ⋯O hydrogen bonds into a three-dimensional network. The structure is further stabilized by aromatic ππ stacking inter­actions, with centroid–centroid separations of 3.827 (2) Å.

Related literature

For the crystal structure of 5-amino­isophthalic acid hemihydrate, see: Dobson et al. (1998[Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1503-1505.]). For the use of 5-amino­isophthalic acid as a ligand, see: Liao et al. (2004[Liao, Q.-X., Li, Z.-J., Zhang, J., Kang, Y., Dai, Y.-M. & Yao, Y.-G. (2004). Acta Cryst. C60, m509-m511.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8NO4+·NO3·2H2O

  • Mr = 280.20

  • Monoclinic, P 21 /c

  • a = 8.3436 (17) Å

  • b = 8.6234 (17) Å

  • c = 16.862 (3) Å

  • β = 97.31 (3)°

  • V = 1203.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.10 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.960, Tmax = 0.986

  • 12169 measured reflections

  • 2753 independent reflections

  • 1905 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.129

  • S = 1.07

  • 2753 reflections

  • 190 parameters

  • ?

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O6i 0.93 2.58 3.324 (3) 138
O9—H9A⋯O7ii 0.88 (4) 2.39 (4) 3.048 (3) 133 (3)
O9—H9A⋯O5ii 0.88 (4) 1.94 (4) 2.801 (3) 168 (4)
O8—H8B⋯O3iii 0.85 (5) 2.29 (5) 3.057 (3) 149 (4)
O8—H8A⋯O2iv 0.97 (4) 2.00 (4) 2.882 (3) 151 (3)
O4—H4⋯O3v 0.82 1.84 2.652 (2) 169
N1—H1C⋯O9vi 0.89 1.98 2.839 (3) 163
N1—H1B⋯O6vii 0.89 2.00 2.859 (3) 161
N1—H1B⋯O5vii 0.89 2.55 3.134 (3) 124
O9—H9B⋯O8 0.84 (5) 1.96 (5) 2.796 (3) 171 (5)
N1—H1A⋯O7i 0.89 2.46 2.933 (3) 114
N1—H1A⋯O6i 0.89 2.09 2.963 (3) 165
O1—H1⋯O9viii 0.82 1.80 2.611 (3) 169
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y, -z+1; (vi) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) x, y+1, z; (viii) x-1, y, z.

Data collection: CrystalClear (Rigaku 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

5-Aminobenzene-1,3-dioic acid (5-aminoisophthalic acid) is an important molecule due to its amphoteric property. The report on 5-aminobenzene-1,3-dioic acid hemihydrate (Dobson et al. 1998) is one of a series on hydrogen bonding in aminosubstituted carboxylic acids, and follows reports on a novel tetragonal phase of aminobutyric acid, on 8-aminocaprylic acid and on 3-aminoisobutyric acid monohydrate. In addition, 5-aminobenzene-1,3-dioic acid is an attractive ligand for use in the generation of polar coordination polymers (Liao et al., 2004).

The asymmetric unit of the title compound comprises two water molecules, a 5-ammonioisophthalic acid cation and one nitrate anion (Fig. 1). The crystal packing is stabilized by hydrogen bonds of N—H···O, O—H···O, C—H···O (Table 1) connecting neighbouring water molecules, cations and anions into a three-dimensional network (Fig. 2). The structure is further stabiized by aromatic π···π stacking interactions, with centroid-to-centroid separations of 3.827 (2) Å.

Related literature top

For the crystal structure of 5-aminoisophthalic acid hemihydrate, see: Dobson et al. (1998). For the use of 5-aminoisophthalic acid as a ligand, see: Liao et al. (2004).

Experimental top

5-Aminoisophthalic acid (1.81 g, 10 mmol) was dissolved in water (5 ml), ethanol (20 ml) and nitric acid (0.57 g, 10 mmol) and the solution was filtered. After slowly evaporating over a period of 3 d, colourless prismatic crystals of the title compound suitable for X-ray diffraction analysis were isolated.

Refinement top

All the H atoms were calculated geometrically and were allowed to ride on their parent atomsd, with C—H = 0.93–0.97 Å, N—H = 0.89 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear (Rigaku 2005); data reduction: CrystalClear (Rigaku 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. Intermolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
3,5-Dicarboxyanilinium nitrate dihydrate top
Crystal data top
C8H8NO4+·NO3·2H2OF(000) = 584
Mr = 280.20Dx = 1.547 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1753 reflections
a = 8.3436 (17) Åθ = 3.1–27.5°
b = 8.6234 (17) ŵ = 0.14 mm1
c = 16.862 (3) ÅT = 293 K
β = 97.31 (3)°Prism, colourless
V = 1203.4 (4) Å30.35 × 0.25 × 0.10 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2753 independent reflections
Radiation source: fine-focus sealed tube1905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD profile fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.960, Tmax = 0.986l = 2121
12169 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.7735P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.28 e Å3
2753 reflectionsΔρmin = 0.24 e Å3
190 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0014 (1)
Primary atom site location: structure-invariant direct methods
Crystal data top
C8H8NO4+·NO3·2H2OV = 1203.4 (4) Å3
Mr = 280.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3436 (17) ŵ = 0.14 mm1
b = 8.6234 (17) ÅT = 293 K
c = 16.862 (3) Å0.35 × 0.25 × 0.10 mm
β = 97.31 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2753 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1905 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.986Rint = 0.055
12169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054190 parameters
wR(F2) = 0.1290 restraints
S = 1.07Δρmax = 0.28 e Å3
2753 reflectionsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.4952 (2)0.14675 (19)0.42859 (10)0.0442 (5)
H40.52750.06030.44320.066*
N10.3108 (2)0.6452 (2)0.29415 (11)0.0328 (5)
H1A0.36510.58130.26580.049*
H1B0.36320.73500.30100.049*
H1C0.21260.66140.26820.049*
C20.3575 (3)0.4279 (2)0.38793 (13)0.0280 (5)
H20.40700.37440.34980.034*
O10.1136 (3)0.6025 (2)0.62566 (11)0.0545 (6)
H10.06690.65590.65580.082*
O30.3885 (3)0.1368 (2)0.54276 (11)0.0513 (5)
C40.2667 (3)0.4405 (2)0.51780 (13)0.0296 (5)
H4A0.25560.39460.56670.036*
C10.2969 (3)0.5756 (2)0.37216 (13)0.0264 (5)
C50.2069 (3)0.5891 (3)0.50071 (14)0.0299 (5)
C60.2225 (3)0.6570 (2)0.42699 (13)0.0300 (5)
H60.18300.75630.41520.036*
O20.0772 (3)0.8101 (2)0.54705 (12)0.0605 (6)
C30.3432 (3)0.3610 (2)0.46132 (13)0.0275 (5)
C70.1260 (3)0.6799 (3)0.55994 (14)0.0356 (6)
O50.2218 (2)0.0029 (2)0.30373 (12)0.0461 (5)
O60.4607 (2)0.06093 (19)0.27628 (11)0.0441 (5)
O70.3495 (2)0.15470 (19)0.23390 (12)0.0460 (5)
N20.3433 (2)0.0312 (2)0.27105 (12)0.0333 (5)
C80.4106 (3)0.2034 (3)0.47971 (13)0.0304 (5)
O90.9920 (2)0.7569 (2)0.73715 (12)0.0422 (5)
O80.8512 (3)0.5594 (3)0.84014 (16)0.0667 (7)
H9A0.916 (5)0.828 (5)0.729 (2)0.091 (13)*
H8A0.904 (4)0.500 (5)0.885 (2)0.089 (13)*
H8B0.781 (6)0.612 (5)0.861 (3)0.111 (16)*
H9B0.949 (6)0.706 (6)0.771 (3)0.14 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0653 (12)0.0295 (9)0.0394 (10)0.0196 (9)0.0133 (9)0.0042 (7)
N10.0348 (11)0.0289 (10)0.0359 (11)0.0043 (8)0.0092 (9)0.0069 (8)
C20.0321 (12)0.0225 (11)0.0299 (12)0.0021 (9)0.0057 (10)0.0010 (9)
O10.0824 (15)0.0496 (11)0.0354 (10)0.0243 (10)0.0225 (10)0.0014 (9)
O30.0760 (14)0.0357 (10)0.0470 (11)0.0214 (10)0.0261 (10)0.0177 (8)
C40.0365 (13)0.0251 (11)0.0269 (12)0.0028 (9)0.0025 (10)0.0010 (9)
C10.0283 (11)0.0236 (11)0.0275 (11)0.0002 (9)0.0038 (9)0.0026 (9)
C50.0323 (12)0.0258 (11)0.0313 (12)0.0017 (9)0.0029 (10)0.0025 (9)
C60.0345 (12)0.0204 (10)0.0348 (12)0.0054 (9)0.0027 (10)0.0003 (9)
O20.0920 (16)0.0371 (11)0.0573 (13)0.0270 (11)0.0282 (12)0.0011 (9)
C30.0317 (12)0.0209 (10)0.0293 (12)0.0016 (9)0.0021 (9)0.0008 (9)
C70.0421 (14)0.0308 (13)0.0343 (13)0.0059 (11)0.0063 (11)0.0055 (10)
O50.0385 (10)0.0427 (10)0.0604 (12)0.0026 (8)0.0199 (9)0.0066 (9)
O60.0436 (10)0.0346 (9)0.0562 (12)0.0130 (8)0.0149 (9)0.0030 (8)
O70.0483 (11)0.0269 (9)0.0643 (12)0.0019 (8)0.0128 (9)0.0126 (8)
N20.0363 (11)0.0263 (10)0.0377 (11)0.0009 (9)0.0063 (9)0.0016 (8)
C80.0379 (13)0.0246 (11)0.0290 (12)0.0042 (10)0.0049 (10)0.0001 (9)
O90.0356 (10)0.0465 (11)0.0460 (11)0.0073 (9)0.0106 (9)0.0011 (9)
O80.0748 (16)0.0582 (14)0.0742 (17)0.0179 (12)0.0371 (14)0.0138 (12)
Geometric parameters (Å, º) top
O4—C81.279 (3)C4—H4A0.9300
O4—H40.8200C1—C61.371 (3)
N1—C11.464 (3)C5—C61.395 (3)
N1—H1A0.8900C5—C71.496 (3)
N1—H1B0.8900C6—H60.9300
N1—H1C0.8900O2—C71.205 (3)
C2—C11.383 (3)C3—C81.488 (3)
C2—C31.384 (3)O5—N21.249 (2)
C2—H20.9300O6—N21.256 (2)
O1—C71.309 (3)O7—N21.240 (2)
O1—H10.8200O9—H9A0.88 (4)
O3—C81.243 (3)O9—H9B0.84 (5)
C4—C51.392 (3)O8—H8A0.97 (4)
C4—C31.393 (3)O8—H8B0.85 (5)
C8—O4—H4109.5C6—C5—C7118.5 (2)
C1—N1—H1A109.5C1—C6—C5119.2 (2)
C1—N1—H1B109.5C1—C6—H6120.4
H1A—N1—H1B109.5C5—C6—H6120.4
C1—N1—H1C109.5C2—C3—C4120.3 (2)
H1A—N1—H1C109.5C2—C3—C8119.59 (19)
H1B—N1—H1C109.5C4—C3—C8120.1 (2)
C1—C2—C3119.0 (2)O2—C7—O1124.5 (2)
C1—C2—H2120.5O2—C7—C5122.6 (2)
C3—C2—H2120.5O1—C7—C5112.9 (2)
C7—O1—H1109.5O7—N2—O5120.9 (2)
C5—C4—C3119.7 (2)O7—N2—O6119.8 (2)
C5—C4—H4A120.2O5—N2—O6119.32 (19)
C3—C4—H4A120.2O3—C8—O4123.7 (2)
C6—C1—C2121.8 (2)O3—C8—C3120.5 (2)
C6—C1—N1119.39 (19)O4—C8—C3115.8 (2)
C2—C1—N1118.78 (19)H9A—O9—H9B96 (4)
C4—C5—C6119.9 (2)H8A—O8—H8B103 (4)
C4—C5—C7121.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.932.583.324 (3)138
O9—H9A···O7ii0.88 (4)2.39 (4)3.048 (3)133 (3)
O9—H9A···O5ii0.88 (4)1.94 (4)2.801 (3)168 (4)
O8—H8B···O3iii0.85 (5)2.29 (5)3.057 (3)149 (4)
O8—H8A···O2iv0.97 (4)2.00 (4)2.882 (3)151 (3)
O4—H4···O3v0.821.842.652 (2)169
N1—H1C···O9vi0.891.982.839 (3)163
N1—H1B···O6vii0.892.002.859 (3)161
N1—H1B···O5vii0.892.553.134 (3)124
O9—H9B···O80.84 (5)1.96 (5)2.796 (3)171 (5)
N1—H1A···O7i0.892.462.933 (3)114
N1—H1A···O6i0.892.092.963 (3)165
O1—H1···O9viii0.821.802.611 (3)169
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y, z+1; (vi) x1, y+3/2, z1/2; (vii) x, y+1, z; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC8H8NO4+·NO3·2H2O
Mr280.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3436 (17), 8.6234 (17), 16.862 (3)
β (°) 97.31 (3)
V3)1203.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.35 × 0.25 × 0.10
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.960, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
12169, 2753, 1905
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.129, 1.07
No. of reflections2753
No. of parameters190
Δρmax, Δρmin (e Å3)0.28, 0.24

Computer programs: CrystalClear (Rigaku 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.932.583.324 (3)137.5
O9—H9A···O7ii0.88 (4)2.39 (4)3.048 (3)133 (3)
O9—H9A···O5ii0.88 (4)1.94 (4)2.801 (3)168 (4)
O8—H8B···O3iii0.85 (5)2.29 (5)3.057 (3)149 (4)
O8—H8A···O2iv0.97 (4)2.00 (4)2.882 (3)151 (3)
O4—H4···O3v0.821.842.652 (2)169.3
N1—H1C···O9vi0.891.982.839 (3)162.6
N1—H1B···O6vii0.892.002.859 (3)160.5
N1—H1B···O5vii0.892.553.134 (3)123.6
O9—H9B···O80.84 (5)1.96 (5)2.796 (3)171 (5)
N1—H1A···O7i0.892.462.933 (3)113.5
N1—H1A···O6i0.892.092.963 (3)165.3
O1—H1···O9viii0.821.802.611 (3)168.8
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y, z+1; (vi) x1, y+3/2, z1/2; (vii) x, y+1, z; (viii) x1, y, z.
 

Acknowledgements

This work was supported by the Technical Fund Financing Projects (grant Nos. 9207042464 and 9207041482) from Southeast University to Zhi-Rong Qu.

References

First citationDobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1503–1505.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationLiao, Q.-X., Li, Z.-J., Zhang, J., Kang, Y., Dai, Y.-M. & Yao, Y.-G. (2004). Acta Cryst. C60, m509–m511.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds