organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl isonicotinate 1-oxide

aCollege of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 28 January 2010; accepted 5 February 2010; online 10 February 2010)

In the title compound, C7H7NO3, the benzene ring and the methyl ester group are nearly coplanar, forming a dihedral of 3.09 (9)°. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds, forming layers parallel to (101).

Related literature

For the application of carboxyl­ate derivatives in microelectronics and as memory storage devices, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H., Huang, S.-P. & -, D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO3

  • Mr = 153.14

  • Monoclinic, P 21 /c

  • a = 7.2429 (14) Å

  • b = 10.347 (2) Å

  • c = 9.898 (2) Å

  • β = 105.09 (3)°

  • V = 716.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.96, Tmax = 1.00

  • 7070 measured reflections

  • 1640 independent reflections

  • 972 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.180

  • S = 1.02

  • 1640 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.93 2.44 3.204 (3) 139
C4—H4A⋯O3ii 0.93 2.42 3.263 (3) 150
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carboxylate derivatives attracted more attention as pharmaceutical and phase transition dielectric materials for their application in micro-electronics and as memory storage devices (Fu et al., 2007; Fu & Xiong 2008; Fu et al., 2008). With the purpose of obtaining phase transition crystals of carboxylate compounds, the interaction of methyl isonicotinate with hydrogen peroxide has been studied and we have elaborated a series of new materials including these organic molecules. In this paper, we describe the crystal structure of the title compound, Methyl isonicotinate 1-oxide.

In the title compound (Fig. 1), the benzene ring and the methyl ester group are nearly coplanar, the dihedral angle they form being 3.09 (9)°). The N1—O3 bond length of the nitrile group (1.292 (2)Å) is within the normal range. The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds (Table 1) linking the molecules to form layers parallel to the (101) plane.

Related literature top

For the application of carboxylate derivatives in micro-electronics and as memory storage devices, see: Fu et al. (2007, 2008); Fu & Xiong (2008).

Experimental top

Methyl isonicotinate 1-oxide (3 mmol, 0.46 g) was dissolved in methanol. The solvent was slowly evaporated in air affording colourless block-shaped crystals of the title compound suitable for X-ray analysis. Permittivity measurements show that there is no phase transition within the temperature range (from 100 K to 400 K), and the permittivity is 6.5 at 1 MHz at room temperature.

Refinement top

All H atoms attached to C atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for methyl H atoms. A rotating-group model was used for the methyl.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
methyl isonicotinate 1-oxide top
Crystal data top
C7H7NO3F(000) = 320
Mr = 153.14Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1640 reflections
a = 7.2429 (14) Åθ = 3.5–27.5°
b = 10.347 (2) ŵ = 0.11 mm1
c = 9.898 (2) ÅT = 298 K
β = 105.09 (3)°Block, colourless
V = 716.2 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1640 independent reflections
Radiation source: fine-focus sealed tube972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.5°
CCD profile fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.96, Tmax = 1.00l = 1212
7070 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0868P)2 + 0.0635P]
where P = (Fo2 + 2Fc2)/3
1640 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C7H7NO3V = 716.2 (3) Å3
Mr = 153.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2429 (14) ŵ = 0.11 mm1
b = 10.347 (2) ÅT = 298 K
c = 9.898 (2) Å0.30 × 0.25 × 0.20 mm
β = 105.09 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1640 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
972 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 1.00Rint = 0.053
7070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
1640 reflectionsΔρmin = 0.16 e Å3
100 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3267 (3)0.76927 (18)0.0785 (2)0.0666 (5)
C50.2388 (3)1.02039 (19)0.0124 (2)0.0542 (5)
C60.1852 (3)1.1517 (2)0.0654 (2)0.0642 (6)
C40.3492 (3)0.99507 (19)0.1224 (2)0.0582 (6)
H4A0.39441.06280.18380.070*
O30.3658 (3)0.65171 (15)0.1201 (2)0.0955 (6)
O10.2579 (2)1.24307 (15)0.02709 (18)0.0782 (6)
O20.0834 (3)1.17357 (17)0.18032 (17)0.0934 (7)
C30.3912 (3)0.8701 (2)0.1644 (2)0.0650 (6)
H3A0.46620.85420.25450.078*
C20.2201 (3)0.7926 (2)0.0537 (2)0.0686 (6)
H2A0.17720.72370.11400.082*
C10.1753 (3)0.9152 (2)0.0993 (2)0.0642 (6)
H1A0.10100.92900.19000.077*
C70.2062 (4)1.3747 (3)0.0153 (4)0.1006 (9)
H7A0.26651.43250.05900.151*
H7B0.06991.38430.03560.151*
H7C0.24791.39460.09740.151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0654 (11)0.0577 (11)0.0714 (12)0.0002 (9)0.0082 (9)0.0014 (9)
C50.0466 (11)0.0622 (13)0.0524 (11)0.0009 (9)0.0105 (8)0.0025 (9)
C60.0579 (13)0.0722 (15)0.0616 (13)0.0056 (11)0.0138 (10)0.0080 (11)
C40.0558 (12)0.0581 (12)0.0557 (12)0.0056 (9)0.0057 (9)0.0022 (9)
O30.1118 (15)0.0544 (10)0.1071 (14)0.0042 (9)0.0045 (11)0.0097 (9)
O10.0841 (11)0.0557 (10)0.0839 (12)0.0033 (8)0.0022 (9)0.0055 (8)
O20.1046 (14)0.0930 (14)0.0680 (11)0.0193 (10)0.0035 (10)0.0157 (9)
C30.0644 (13)0.0637 (13)0.0577 (12)0.0054 (10)0.0003 (9)0.0027 (10)
C20.0688 (14)0.0720 (15)0.0601 (14)0.0032 (11)0.0081 (11)0.0125 (11)
C10.0621 (12)0.0753 (15)0.0498 (11)0.0024 (11)0.0047 (9)0.0021 (10)
C70.108 (2)0.0577 (15)0.126 (2)0.0122 (14)0.0125 (18)0.0178 (15)
Geometric parameters (Å, º) top
N1—O31.292 (2)C4—H4A0.9300
N1—C31.350 (3)O1—C71.445 (3)
N1—C21.357 (3)C3—H3A0.9300
C5—C11.389 (3)C2—C11.357 (3)
C5—C41.390 (3)C2—H2A0.9300
C5—C61.472 (3)C1—H1A0.9300
C6—O21.205 (3)C7—H7A0.9600
C6—O11.326 (3)C7—H7B0.9600
C4—C31.368 (3)C7—H7C0.9600
O3—N1—C3121.0 (2)N1—C3—H3A119.1
O3—N1—C2119.8 (2)C4—C3—H3A119.1
C3—N1—C2119.1 (2)N1—C2—C1120.9 (2)
C1—C5—C4117.49 (19)N1—C2—H2A119.5
C1—C5—C6119.2 (2)C1—C2—H2A119.5
C4—C5—C6123.3 (2)C2—C1—C5121.0 (2)
O2—C6—O1123.6 (2)C2—C1—H1A119.5
O2—C6—C5123.3 (2)C5—C1—H1A119.5
O1—C6—C5113.05 (19)O1—C7—H7A109.5
C3—C4—C5119.77 (19)O1—C7—H7B109.5
C3—C4—H4A120.1H7A—C7—H7B109.5
C5—C4—H4A120.1O1—C7—H7C109.5
C6—O1—C7116.4 (2)H7A—C7—H7C109.5
N1—C3—C4121.7 (2)H7B—C7—H7C109.5
C1—C5—C6—O22.1 (3)O3—N1—C3—C4179.25 (19)
C4—C5—C6—O2177.0 (2)C2—N1—C3—C41.1 (3)
C1—C5—C6—O1178.87 (17)C5—C4—C3—N10.6 (3)
C4—C5—C6—O12.0 (3)O3—N1—C2—C1179.22 (18)
C1—C5—C4—C30.1 (3)C3—N1—C2—C11.2 (3)
C6—C5—C4—C3179.26 (17)N1—C2—C1—C50.7 (3)
O2—C6—O1—C71.1 (3)C4—C5—C1—C20.1 (3)
C5—C6—O1—C7177.87 (18)C6—C5—C1—C2179.32 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.443.204 (3)139
C4—H4A···O3ii0.932.423.263 (3)150
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H7NO3
Mr153.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.2429 (14), 10.347 (2), 9.898 (2)
β (°) 105.09 (3)
V3)716.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.96, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
7070, 1640, 972
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.180, 1.02
No. of reflections1640
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.443.204 (3)139
C4—H4A···O3ii0.932.423.263 (3)150
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Innovative Dissertation Fund of Southeast University.

References

First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H., Huang, S.-P. & -, D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds