metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{5-Meth­­oxy-2-[(2-morpholino­ethyl)­iminometh­yl]phenolato}(thio­cyanato-κN)­nickel(II)

aCollege of Chemistry and Biology Engineering, Yichun University, Yichun 336000, People's Republic of China
*Correspondence e-mail: liulin_ycu@126.com

(Received 28 January 2010; accepted 5 February 2010; online 13 February 2010)

In the mononuclear title complex, [Ni(C14H19N2O3)(NCS)], the nickel(II) atom is four-coordinated in a square-planar geometry by the O and N atoms of the tridentate Schiff base ligand and by the N atom of a thio­cyanate ligand. The crystal structure is stabilized by inter­molecular C—H⋯S and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For general background to nickel(II) complexes with Schiff bases, see: Campbell & Urbach (1973[Campbell, T. B. & Urbach, F. L. (1973). Inorg. Chem. 12, 1840-1846.]); Wallis & Cummings (1974[Wallis, W. N. & Cummings, S. C. (1974). Inorg. Chem. 13, 991-994.]); Polt et al. (2003[Polt, R., Kelly, B. D., Dangel, B. D., Tadikonda, U. B., Ross, R. E., Raitsimring, A. M. & Astashkin, A. V. (2003). Inorg. Chem. 42, 566-574.]); Mukhopadhyay et al. (2003[Mukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439-8445.]). For related structures, see: Liu (2010[Liu, L. (2010). Acta Cryst. E66, m195.]); Montazerozohori et al. (2009[Montazerozohori, M., Habibi, M. H., Mokhtari, R., Yamane, Y. & Suzuki, T. (2009). Acta Cryst. E65, m703.]); Zhu et al. (2004[Zhu, B., Ruang, W. & Zhu, Z. (2004). Acta Cryst. E60, m634-m636.], 2006[Zhu, C.-G., Wang, F.-W. & Wei, Y.-J. (2006). Acta Cryst. E62, m1816-m1817.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H19N2O3)(NCS)]

  • Mr = 380.10

  • Monoclinic, P 21 /c

  • a = 12.3983 (18) Å

  • b = 11.8202 (17) Å

  • c = 12.2913 (18) Å

  • β = 114.756 (2)°

  • V = 1635.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.777, Tmax = 0.796

  • 9279 measured reflections

  • 3554 independent reflections

  • 2729 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.03

  • 3554 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.40 3.313 (4) 165
C7—H7⋯O2ii 0.93 2.44 3.329 (4) 160
C10—H10B⋯S1iii 0.97 2.87 3.797 (2) 161
C13—H13A⋯O1iv 0.97 2.49 3.432 (3) 165
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nickel(II) complexes with Schiff bases have been extensively studied (Campbell & Urbach, 1973; Wallis & Cummings, 1974; Polt et al., 2003; Mukhopadhyay et al., 2003). Recently, the author reported a nickel(II) complex with the Schiff base 2-[2-(ethylamino)ethyliminomethyl]-5-methoxyphenol (Liu, 2010). In this paper, the crystal structure of the title new nickel(II) complex, with the Schiff base 5-methoxy-2-[(2-morpholin-4-ylethylimino)methyl]phenol, is reported.

The Ni atom in the title complex is four-coordinate by the phenolate O atom, imine N atom, and amine N atom of the Schiff base ligand, and by the N atom of a thiocyanate ligand, forming a square-planar geometry (Fig. 1). The bond lengths and angles involving the metal atom are comparable with those observed in similar complexes (Montazerozohori et al., 2009; Zhu et al., 2004; Zhu et al., 2006). In the crystal structure, the complex molecules are linked into a three-dimensional network by intermolecular C—H···S and C—H···O hydrogen bonds (Table 1).

Related literature top

For general background to nickel(II) complexes with Schiff bases, see: Campbell & Urbach (1973); Wallis & Cummings (1974); Polt et al. (2003); Mukhopadhyay et al. (2003). For related structures, see: Liu (2010); Montazerozohori et al. (2009); Zhu et al. (2004, 2006).

Experimental top

Equimolar quantities (0.1 mmol) of 4-methoxysalicylaldehyde, N-(2-aminoethyl)morpholine, ammonium thiocyanate, and Ni(CH3COO)2.4H2O were mixed and stirred in a methanol solution for 30 min at reflux. After keeping the filtrate in air for a few days, red block crystals suitable for X-ray analysis were formed.

Refinement top

H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at the 30% probability level.
{5-Methoxy-2-[(2-morpholinoethyl)iminomethyl]phenolato}(thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(C14H19N2O3)(NCS)]F(000) = 792
Mr = 380.10Dx = 1.543 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2524 reflections
a = 12.3983 (18) Åθ = 2.5–25.6°
b = 11.8202 (17) ŵ = 1.33 mm1
c = 12.2913 (18) ÅT = 298 K
β = 114.756 (2)°Block, red
V = 1635.8 (4) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3554 independent reflections
Radiation source: fine-focus sealed tube2729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scanθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.777, Tmax = 0.796k = 715
9279 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.1781P]
where P = (Fo2 + 2Fc2)/3
3554 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ni(C14H19N2O3)(NCS)]V = 1635.8 (4) Å3
Mr = 380.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3983 (18) ŵ = 1.33 mm1
b = 11.8202 (17) ÅT = 298 K
c = 12.2913 (18) Å0.20 × 0.20 × 0.18 mm
β = 114.756 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3554 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2729 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.796Rint = 0.033
9279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
3554 reflectionsΔρmin = 0.38 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.08568 (2)0.38142 (2)0.14197 (3)0.03183 (11)
O10.19256 (14)0.46933 (15)0.26251 (14)0.0392 (4)
O20.53990 (16)0.69070 (18)0.46786 (17)0.0579 (5)
O30.24289 (16)0.14271 (16)0.05535 (17)0.0499 (5)
S10.23786 (6)0.53989 (8)0.18241 (7)0.0594 (2)
N10.19869 (17)0.32497 (18)0.09614 (18)0.0377 (5)
N20.02732 (16)0.27875 (16)0.02024 (16)0.0334 (4)
N30.03493 (18)0.44345 (18)0.17904 (19)0.0426 (5)
C10.3595 (2)0.4495 (2)0.2126 (2)0.0393 (6)
C20.3021 (2)0.4969 (2)0.2800 (2)0.0345 (5)
C30.3625 (2)0.5777 (2)0.3677 (2)0.0385 (6)
H30.32640.60890.41350.046*
C40.4760 (2)0.6113 (2)0.3864 (2)0.0435 (6)
C50.5327 (2)0.5647 (3)0.3200 (3)0.0542 (8)
H50.60900.58780.33350.065*
C60.4760 (2)0.4856 (3)0.2358 (3)0.0529 (7)
H60.51430.45430.19210.064*
C70.3061 (2)0.3638 (2)0.1276 (2)0.0428 (6)
H70.35100.33210.09090.051*
C80.1593 (2)0.2292 (2)0.0126 (3)0.0496 (7)
H8A0.17240.15830.05600.060*
H8B0.20230.22740.03760.060*
C90.0292 (2)0.2477 (2)0.0620 (2)0.0472 (7)
H9A0.01770.30790.11940.057*
H9B0.00670.17920.10570.057*
C100.0414 (2)0.1787 (2)0.0893 (2)0.0375 (6)
H10A0.06680.20550.14950.045*
H10B0.03510.14220.13060.045*
C110.1300 (2)0.0925 (2)0.0110 (2)0.0457 (6)
H11A0.10100.05940.04390.055*
H11B0.13810.03230.06080.055*
C120.2340 (2)0.2320 (2)0.1291 (2)0.0500 (7)
H12A0.31200.26440.17440.060*
H12B0.20520.20210.18550.060*
C130.1501 (2)0.3231 (2)0.0532 (2)0.0450 (7)
H13A0.14560.38300.10510.054*
H13B0.18170.35550.00010.054*
C140.1188 (2)0.4842 (2)0.1815 (2)0.0378 (6)
C150.4866 (3)0.7462 (3)0.5363 (3)0.0716 (10)
H15A0.41690.78620.48330.107*
H15B0.54210.79880.59070.107*
H15C0.46480.69110.58080.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02692 (17)0.03345 (18)0.03502 (18)0.00070 (13)0.01288 (13)0.00172 (14)
O10.0278 (8)0.0510 (11)0.0406 (9)0.0070 (8)0.0160 (7)0.0087 (8)
O20.0449 (11)0.0704 (14)0.0562 (12)0.0265 (10)0.0191 (10)0.0103 (11)
O30.0369 (10)0.0518 (11)0.0553 (11)0.0091 (9)0.0137 (9)0.0012 (9)
S10.0378 (4)0.0820 (6)0.0614 (5)0.0141 (4)0.0236 (4)0.0038 (4)
N10.0352 (11)0.0367 (11)0.0437 (12)0.0009 (10)0.0191 (10)0.0043 (10)
N20.0334 (10)0.0337 (11)0.0327 (10)0.0013 (9)0.0134 (9)0.0018 (9)
N30.0310 (11)0.0456 (13)0.0508 (13)0.0024 (10)0.0167 (10)0.0102 (11)
C10.0289 (12)0.0427 (15)0.0472 (15)0.0005 (11)0.0167 (11)0.0002 (12)
C20.0273 (12)0.0379 (13)0.0379 (13)0.0005 (11)0.0134 (10)0.0079 (11)
C30.0337 (13)0.0445 (14)0.0371 (13)0.0046 (12)0.0146 (11)0.0019 (12)
C40.0334 (13)0.0514 (16)0.0389 (14)0.0097 (13)0.0083 (11)0.0047 (13)
C50.0308 (13)0.066 (2)0.0664 (19)0.0087 (14)0.0213 (14)0.0015 (16)
C60.0359 (14)0.0619 (18)0.0669 (18)0.0026 (14)0.0274 (14)0.0084 (16)
C70.0354 (13)0.0467 (16)0.0521 (16)0.0054 (12)0.0240 (13)0.0019 (13)
C80.0513 (16)0.0465 (16)0.0613 (17)0.0045 (14)0.0337 (14)0.0153 (14)
C90.0575 (17)0.0485 (16)0.0409 (14)0.0134 (14)0.0260 (13)0.0090 (13)
C100.0371 (13)0.0365 (13)0.0369 (13)0.0031 (11)0.0134 (11)0.0073 (11)
C110.0504 (16)0.0358 (14)0.0523 (16)0.0048 (13)0.0229 (14)0.0030 (12)
C120.0429 (15)0.0519 (17)0.0408 (15)0.0032 (14)0.0034 (12)0.0020 (13)
C130.0412 (14)0.0381 (14)0.0402 (14)0.0031 (12)0.0018 (12)0.0064 (12)
C140.0351 (13)0.0406 (14)0.0373 (13)0.0026 (12)0.0148 (11)0.0042 (11)
C150.066 (2)0.086 (2)0.065 (2)0.037 (2)0.0303 (18)0.0246 (19)
Geometric parameters (Å, º) top
Ni1—N11.840 (2)C5—C61.353 (4)
Ni1—O11.8402 (16)C5—H50.9300
Ni1—N31.885 (2)C6—H60.9300
Ni1—N21.9796 (19)C7—H70.9300
O1—C21.323 (3)C8—C91.500 (4)
O2—C41.359 (3)C8—H8A0.9700
O2—C151.429 (4)C8—H8B0.9700
O3—C111.421 (3)C9—H9A0.9700
O3—C121.425 (3)C9—H9B0.9700
S1—C141.621 (3)C10—C111.512 (3)
N1—C71.304 (3)C10—H10A0.9700
N1—C81.468 (3)C10—H10B0.9700
N2—C91.497 (3)C11—H11A0.9700
N2—C131.502 (3)C11—H11B0.9700
N2—C101.508 (3)C12—C131.517 (3)
N3—C141.158 (3)C12—H12A0.9700
C1—C71.406 (3)C12—H12B0.9700
C1—C21.414 (3)C13—H13A0.9700
C1—C61.415 (3)C13—H13B0.9700
C2—C31.400 (3)C15—H15A0.9600
C3—C41.385 (3)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.394 (4)
N1—Ni1—O193.86 (8)C9—C8—H8A110.6
N1—Ni1—N3176.31 (9)N1—C8—H8B110.6
O1—Ni1—N387.85 (8)C9—C8—H8B110.6
N1—Ni1—N286.27 (8)H8A—C8—H8B108.7
O1—Ni1—N2176.19 (8)N2—C9—C8108.1 (2)
N3—Ni1—N292.24 (8)N2—C9—H9A110.1
C2—O1—Ni1127.84 (15)C8—C9—H9A110.1
C4—O2—C15118.7 (2)N2—C9—H9B110.1
C11—O3—C12110.8 (2)C8—C9—H9B110.1
C7—N1—C8118.6 (2)H9A—C9—H9B108.4
C7—N1—Ni1126.50 (18)N2—C10—C11113.25 (19)
C8—N1—Ni1114.88 (15)N2—C10—H10A108.9
C9—N2—C13108.85 (19)C11—C10—H10A108.9
C9—N2—C10112.65 (19)N2—C10—H10B108.9
C13—N2—C10106.55 (18)C11—C10—H10B108.9
C9—N2—Ni1106.12 (14)H10A—C10—H10B107.7
C13—N2—Ni1117.30 (15)O3—C11—C10111.2 (2)
C10—N2—Ni1105.51 (13)O3—C11—H11A109.4
C14—N3—Ni1168.7 (2)C10—C11—H11A109.4
C7—C1—C2121.6 (2)O3—C11—H11B109.4
C7—C1—C6119.4 (2)C10—C11—H11B109.4
C2—C1—C6119.0 (2)H11A—C11—H11B108.0
O1—C2—C3118.4 (2)O3—C12—C13110.5 (2)
O1—C2—C1122.8 (2)O3—C12—H12A109.5
C3—C2—C1118.8 (2)C13—C12—H12A109.5
C4—C3—C2120.2 (2)O3—C12—H12B109.5
C4—C3—H3119.9C13—C12—H12B109.5
C2—C3—H3119.9H12A—C12—H12B108.1
O2—C4—C3123.9 (3)N2—C13—C12112.5 (2)
O2—C4—C5115.0 (2)N2—C13—H13A109.1
C3—C4—C5121.0 (3)C12—C13—H13A109.1
C6—C5—C4119.5 (2)N2—C13—H13B109.1
C6—C5—H5120.2C12—C13—H13B109.1
C4—C5—H5120.2H13A—C13—H13B107.8
C5—C6—C1121.4 (3)N3—C14—S1178.8 (2)
C5—C6—H6119.3O2—C15—H15A109.5
C1—C6—H6119.3O2—C15—H15B109.5
N1—C7—C1125.4 (2)H15A—C15—H15B109.5
N1—C7—H7117.3O2—C15—H15C109.5
C1—C7—H7117.3H15A—C15—H15C109.5
N1—C8—C9105.9 (2)H15B—C15—H15C109.5
N1—C8—H8A110.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.403.313 (4)165
C7—H7···O2ii0.932.443.329 (4)160
C10—H10B···S1iii0.972.873.797 (2)161
C13—H13A···O1iv0.972.493.432 (3)165
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C14H19N2O3)(NCS)]
Mr380.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.3983 (18), 11.8202 (17), 12.2913 (18)
β (°) 114.756 (2)
V3)1635.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.777, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
9279, 3554, 2729
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.03
No. of reflections3554
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.38

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.403.313 (4)165
C7—H7···O2ii0.932.443.329 (4)160
C10—H10B···S1iii0.972.873.797 (2)161
C13—H13A···O1iv0.972.493.432 (3)165
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1, z.
 

Acknowledgements

This work was supported by Yichun University.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, T. B. & Urbach, F. L. (1973). Inorg. Chem. 12, 1840–1846.  CrossRef CAS Web of Science Google Scholar
First citationLiu, L. (2010). Acta Cryst. E66, m195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMontazerozohori, M., Habibi, M. H., Mokhtari, R., Yamane, Y. & Suzuki, T. (2009). Acta Cryst. E65, m703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439–8445.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPolt, R., Kelly, B. D., Dangel, B. D., Tadikonda, U. B., Ross, R. E., Raitsimring, A. M. & Astashkin, A. V. (2003). Inorg. Chem. 42, 566–574.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWallis, W. N. & Cummings, S. C. (1974). Inorg. Chem. 13, 991–994.  CrossRef CAS Web of Science Google Scholar
First citationZhu, B., Ruang, W. & Zhu, Z. (2004). Acta Cryst. E60, m634–m636.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, C.-G., Wang, F.-W. & Wei, Y.-J. (2006). Acta Cryst. E62, m1816–m1817.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds