organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,3-Tri­methyl-5-nitro-1-phenyl­indane

aCollege of Material and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China, and bDepartment of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: menjian@scu.edu.cn

(Received 30 January 2010; accepted 10 February 2010; online 17 February 2010)

In the title compound, C18H19NO2, the five-membered ring of the indane fragment adopts an envelope conformation with the unsubstituted carbon atom at the flap displaced by 0.412 (3) Å from the plane formed by the other four atoms. The nitro group forms a dihedral angle of 5.3 (2)° with the indane benzene ring while the dihedral angle between the phenyl ring and the indane benzene ring is 76.74 (9)°.

Related literature

For general background to the synthesis, properties and applications of indane and its derivatives, see: Clark et al. (1998[Clark, W. M., Tickner-Eldridge, A. M., Huang, G. K.,Pridgen, L. N., Olsen, M. A., Mills, R. J., Lantos, I. & Baine, N. H. (1998). J. Am. Chem. Soc. 120, 4550-4551.]); Numata et al. (1976[Numata, S., Tsutomu, T. & Toshio, T. (1976). US Patent 3985818.]); Aliakbar et al. (2007[Aliakbar, T., Abdelkhalek, R. & Jacques, M. (2007). Catal. Commun. 8, 1153-1155.]). For a related structure, see: Men et al. (2008[Men, J., Yang, M.-J., Jiang, Y., Chen, H. & Gao, G.-W. (2008). Acta Cryst. E64, o847.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NO2

  • Mr = 281.34

  • Monoclinic, P 21 /c

  • a = 8.306 (3) Å

  • b = 17.600 (3) Å

  • c = 12.090 (4) Å

  • β = 120.50 (3)°

  • V = 1522.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.58 × 0.48 × 0.42 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3123 measured reflections

  • 2750 independent reflections

  • 1600 reflections with I > 2σ(I)

  • Rint = 0.009

  • 3 standard reflections every 200 reflections intensity decay: 2.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.195

  • S = 1.12

  • 3524 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indane has found wide industrial applications in rubber industry and as aviation fuel, lubricant, stabilizer and plasticizer (Clark et al., 1998; Numata et al., 1976). Indane derivatives are important intermediates for biomedical and organic synthesis. The title compound can efficiently be synthesized from 1,1,3-trimethyl-3-phenylindane by nitration (Men et al., 2008; Aliakbar et al., 2007), but no report on the crystal structure has been found. We report therefore herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths and angles of the phenylindane moiety are comparable with those observed in 1,1,3-trimethyl-3-phenyl-2,3-dihydro-1H-indane (Men et al., 2008). The C4, C5, C8, C7, C9 atoms in the indane fragment are not coplanar, atom C8 deviating by 0.412 (3) Å from the plane formed by the other four atoms. The indane benzene ring (C1—C6) and the phenyl ring (C13—18) form a dihedral angle of 76.74 (9)°. The nitro group is twisted by 5.3 (2)° with respect to the indane benzene ring. The O2—N1—C1—C2 and O1—N1—C1—C2 torsion angles are -175.0 (2)° and 4.8 (4)°, respectively.

Related literature top

For general background to the synthesis, properties and applications of indane and its derivatives, see: Clark et al. (1998); Numata et al. (1976); Aliakbar et al. (2007). For a related structure, see: Men et al. (2008).

Experimental top

1,1,3-Trimethyl-3-phenylindane (23.6 g, 0.10 mol) was dissolved in a solution of acetic anhydride (120 ml) and chloroform (30 ml) in a three-necked flask. After stirring, the mixture was cooled down to 278 K, and concentrated nitric acid (8.2 ml, 0.12 mol) was added dropwise in 30 min. Then, the mixture was stirred for 1 h at 283-289 K and poured into water (200 ml). The organic layer was washed with 10% NaOH (20 ml) and water (150 ml), then dried over anhydrous magnesium sulfate. After the solvent was removed under reduced pressure, the shallow yellow residue was recrystallized from a methanol/ethyl solution (2:1 v/v) to give a colourless solid (16.8 g, yield 59.7%, m.p. 402-404 K). Single crystals suitable for X-ray diffraction were obtained at room temperature by slow evaporation of a methanol solution over a period of several days.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
1,3,3-trimethyl-5-nitro-1-phenylindane top
Crystal data top
C18H19NO2F(000) = 600
Mr = 281.34Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20 reflections
a = 8.306 (3) Åθ = 5.4–6.2°
b = 17.600 (3) ŵ = 0.08 mm1
c = 12.090 (4) ÅT = 292 K
β = 120.50 (3)°Block, colourless
V = 1522.8 (9) Å30.58 × 0.48 × 0.42 mm
Z = 4
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.009
Radiation source: fine-focus sealed tubeθmax = 25.4°, θmin = 1.7°
Graphite monochromatorh = 910
ω/2–θ scansk = 210
3123 measured reflectionsl = 814
2750 independent reflections3 standard reflections every 200 reflections
1600 reflections with I > 2σ(I) intensity decay: 2.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1033P)2]
where P = (Fo2 + 2Fc2)/3
3524 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C18H19NO2V = 1522.8 (9) Å3
Mr = 281.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.306 (3) ŵ = 0.08 mm1
b = 17.600 (3) ÅT = 292 K
c = 12.090 (4) Å0.58 × 0.48 × 0.42 mm
β = 120.50 (3)°
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.009
3123 measured reflections3 standard reflections every 200 reflections
2750 independent reflections intensity decay: 2.1%
1600 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.12Δρmax = 0.52 e Å3
3524 reflectionsΔρmin = 0.40 e Å3
275 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3148 (4)0.65100 (12)0.0098 (2)0.0834 (8)
O20.0977 (4)0.56794 (15)0.0607 (2)0.0874 (8)
N10.2608 (4)0.58823 (15)0.0018 (2)0.0591 (7)
C10.3981 (4)0.53506 (15)0.0954 (2)0.0462 (7)
C20.5784 (4)0.55976 (15)0.1727 (3)0.0547 (8)
H20.61230.60890.16470.066*
C30.7087 (4)0.51059 (14)0.2623 (3)0.0510 (7)
H30.83130.52640.31620.061*
C40.6543 (3)0.43718 (14)0.2711 (2)0.0414 (7)
C50.4721 (4)0.41334 (14)0.1900 (2)0.0412 (6)
C60.3404 (4)0.46264 (15)0.1011 (2)0.0470 (7)
H60.21740.44740.04720.056*
C70.7734 (4)0.37453 (13)0.3611 (2)0.0433 (7)
C80.6503 (4)0.30424 (14)0.2923 (3)0.0498 (7)
H8A0.68880.28150.23630.060*
H8B0.66360.26660.35500.060*
C90.4461 (4)0.33044 (14)0.2134 (3)0.0475 (7)
C100.9639 (4)0.36996 (17)0.3688 (3)0.0556 (8)
H10A0.94490.36810.28360.083*
H10B1.02860.32500.41490.083*
H10C1.03690.41390.41260.083*
C110.3445 (4)0.32497 (16)0.2899 (3)0.0629 (8)
H11A0.22240.34710.24090.094*
H11B0.41470.35180.36960.094*
H11C0.33300.27260.30700.094*
C120.3375 (5)0.28566 (17)0.0888 (3)0.0691 (9)
H12A0.39570.29200.03820.104*
H12B0.21130.30400.04160.104*
H12C0.33700.23280.10820.104*
C130.8050 (3)0.38424 (14)0.4966 (2)0.0424 (7)
C140.7377 (4)0.44583 (15)0.5326 (3)0.0525 (7)
H140.66840.48320.47270.063*
C150.7731 (5)0.45205 (18)0.6572 (3)0.0657 (9)
H150.72720.49360.68010.079*
C160.8742 (5)0.39802 (18)0.7466 (3)0.0649 (9)
H160.89930.40300.83050.078*
C170.9385 (4)0.33629 (17)0.7115 (3)0.0619 (8)
H171.00520.29860.77140.074*
C180.9053 (4)0.32970 (15)0.5890 (3)0.0536 (8)
H180.95120.28760.56720.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.105 (2)0.0546 (14)0.0831 (18)0.0145 (13)0.0427 (16)0.0192 (12)
O20.0538 (15)0.114 (2)0.0807 (18)0.0204 (14)0.0243 (14)0.0379 (15)
N10.0687 (19)0.0662 (17)0.0489 (15)0.0182 (15)0.0348 (15)0.0129 (13)
C10.0531 (18)0.0503 (16)0.0419 (15)0.0122 (13)0.0290 (14)0.0097 (12)
C20.066 (2)0.0441 (15)0.0586 (18)0.0014 (14)0.0355 (17)0.0093 (14)
C30.0448 (17)0.0513 (16)0.0500 (17)0.0111 (13)0.0189 (15)0.0031 (13)
C40.0422 (16)0.0455 (14)0.0407 (15)0.0016 (12)0.0240 (14)0.0024 (11)
C50.0432 (15)0.0465 (14)0.0385 (14)0.0023 (12)0.0241 (13)0.0024 (12)
C60.0435 (16)0.0579 (17)0.0416 (15)0.0000 (13)0.0232 (13)0.0009 (13)
C70.0430 (16)0.0428 (14)0.0445 (16)0.0007 (11)0.0225 (14)0.0013 (12)
C80.0589 (19)0.0421 (14)0.0493 (17)0.0005 (13)0.0281 (16)0.0057 (13)
C90.0499 (17)0.0459 (15)0.0461 (16)0.0061 (12)0.0240 (14)0.0021 (12)
C100.0440 (17)0.0702 (19)0.0536 (18)0.0084 (14)0.0255 (15)0.0057 (14)
C110.063 (2)0.0612 (18)0.073 (2)0.0036 (15)0.0405 (18)0.0111 (16)
C120.070 (2)0.0606 (19)0.0594 (19)0.0165 (16)0.0203 (18)0.0095 (16)
C130.0376 (15)0.0455 (14)0.0427 (15)0.0034 (11)0.0194 (13)0.0001 (12)
C140.0540 (18)0.0528 (16)0.0495 (16)0.0063 (13)0.0254 (15)0.0006 (13)
C150.071 (2)0.074 (2)0.0593 (19)0.0067 (18)0.0385 (18)0.0074 (17)
C160.070 (2)0.086 (2)0.0445 (17)0.0004 (18)0.0338 (17)0.0021 (17)
C170.064 (2)0.070 (2)0.0500 (18)0.0018 (16)0.0277 (17)0.0146 (15)
C180.0608 (19)0.0491 (16)0.0548 (18)0.0069 (14)0.0323 (16)0.0074 (14)
Geometric parameters (Å, º) top
O1—N11.227 (3)C9—C111.539 (4)
O2—N11.223 (3)C10—H10A0.9600
N1—C11.465 (3)C10—H10B0.9600
C1—C21.373 (4)C10—H10C0.9600
C1—C61.376 (4)C11—H11A0.9600
C2—C31.380 (4)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C41.390 (3)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C51.386 (4)C12—H12C0.9600
C4—C71.512 (3)C13—C181.385 (4)
C5—C61.382 (4)C13—C141.387 (3)
C5—C91.522 (3)C14—C151.385 (4)
C6—H60.9300C14—H140.9300
C7—C131.531 (3)C15—C161.363 (4)
C7—C101.540 (4)C15—H150.9300
C7—C81.551 (4)C16—C171.370 (4)
C8—C91.535 (4)C16—H160.9300
C8—H8A0.9700C17—C181.366 (4)
C8—H8B0.9700C17—H170.9300
C9—C121.524 (4)C18—H180.9300
O2—N1—O1123.2 (3)C8—C9—C11112.2 (2)
O2—N1—C1118.3 (3)C7—C10—H10A109.5
O1—N1—C1118.5 (3)C7—C10—H10B109.5
C2—C1—C6123.1 (2)H10A—C10—H10B109.5
C2—C1—N1118.4 (2)C7—C10—H10C109.5
C6—C1—N1118.5 (3)H10A—C10—H10C109.5
C1—C2—C3119.1 (2)H10B—C10—H10C109.5
C1—C2—H2120.5C9—C11—H11A109.5
C3—C2—H2120.5C9—C11—H11B109.5
C2—C3—C4119.1 (3)H11A—C11—H11B109.5
C2—C3—H3120.4C9—C11—H11C109.5
C4—C3—H3120.4H11A—C11—H11C109.5
C5—C4—C3120.5 (2)H11B—C11—H11C109.5
C5—C4—C7111.6 (2)C9—C12—H12A109.5
C3—C4—C7127.9 (2)C9—C12—H12B109.5
C6—C5—C4120.6 (2)H12A—C12—H12B109.5
C6—C5—C9128.0 (2)C9—C12—H12C109.5
C4—C5—C9111.5 (2)H12A—C12—H12C109.5
C1—C6—C5117.6 (3)H12B—C12—H12C109.5
C1—C6—H6121.2C18—C13—C14117.5 (2)
C5—C6—H6121.2C18—C13—C7119.5 (2)
C4—C7—C13112.52 (19)C14—C13—C7123.0 (2)
C4—C7—C10111.0 (2)C15—C14—C13120.4 (3)
C13—C7—C10109.2 (2)C15—C14—H14119.8
C4—C7—C8100.6 (2)C13—C14—H14119.8
C13—C7—C8111.82 (19)C16—C15—C14120.9 (3)
C10—C7—C8111.6 (2)C16—C15—H15119.6
C9—C8—C7108.3 (2)C14—C15—H15119.6
C9—C8—H8A110.0C15—C16—C17119.2 (3)
C7—C8—H8A110.0C15—C16—H16120.4
C9—C8—H8B110.0C17—C16—H16120.4
C7—C8—H8B110.0C18—C17—C16120.5 (3)
H8A—C8—H8B108.4C18—C17—H17119.8
C5—C9—C12112.4 (2)C16—C17—H17119.8
C5—C9—C8100.8 (2)C17—C18—C13121.5 (2)
C12—C9—C8111.8 (2)C17—C18—H18119.2
C5—C9—C11110.2 (2)C13—C18—H18119.2
C12—C9—C11109.4 (2)
O2—N1—C1—C2175.0 (2)C10—C7—C8—C9144.1 (2)
O1—N1—C1—C24.8 (3)C6—C5—C9—C1245.0 (3)
O2—N1—C1—C65.4 (3)C4—C5—C9—C12134.4 (2)
O1—N1—C1—C6174.9 (2)C6—C5—C9—C8164.2 (2)
C6—C1—C2—C31.1 (4)C4—C5—C9—C815.2 (2)
N1—C1—C2—C3179.2 (2)C6—C5—C9—C1177.2 (3)
C1—C2—C3—C40.6 (4)C4—C5—C9—C11103.4 (3)
C2—C3—C4—C50.7 (4)C7—C8—C9—C525.7 (2)
C2—C3—C4—C7179.7 (2)C7—C8—C9—C12145.3 (2)
C3—C4—C5—C61.5 (3)C7—C8—C9—C1191.4 (3)
C7—C4—C5—C6179.3 (2)C4—C7—C13—C18177.5 (2)
C3—C4—C5—C9178.0 (2)C10—C7—C13—C1858.8 (3)
C7—C4—C5—C91.2 (3)C8—C7—C13—C1865.2 (3)
C2—C1—C6—C50.3 (4)C4—C7—C13—C142.6 (3)
N1—C1—C6—C5180.0 (2)C10—C7—C13—C14121.0 (3)
C4—C5—C6—C11.0 (3)C8—C7—C13—C14115.0 (3)
C9—C5—C6—C1178.4 (2)C18—C13—C14—C150.8 (4)
C5—C4—C7—C13102.2 (2)C7—C13—C14—C15179.1 (3)
C3—C4—C7—C1378.7 (3)C13—C14—C15—C160.0 (5)
C5—C4—C7—C10135.1 (2)C14—C15—C16—C171.1 (5)
C3—C4—C7—C1044.0 (3)C15—C16—C17—C181.5 (5)
C5—C4—C7—C816.9 (2)C16—C17—C18—C130.6 (4)
C3—C4—C7—C8162.2 (2)C14—C13—C18—C170.5 (4)
C4—C7—C8—C926.4 (2)C7—C13—C18—C17179.4 (3)
C13—C7—C8—C993.2 (2)

Experimental details

Crystal data
Chemical formulaC18H19NO2
Mr281.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)8.306 (3), 17.600 (3), 12.090 (4)
β (°) 120.50 (3)
V3)1522.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.58 × 0.48 × 0.42
Data collection
DiffractometerEnraf–Nonius CAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3123, 2750, 1600
Rint0.009
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.195, 1.12
No. of reflections3524
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.40

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The authors gratefully thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationAliakbar, T., Abdelkhalek, R. & Jacques, M. (2007). Catal. Commun. 8, 1153–1155.  Google Scholar
First citationClark, W. M., Tickner-Eldridge, A. M., Huang, G. K.,Pridgen, L. N., Olsen, M. A., Mills, R. J., Lantos, I. & Baine, N. H. (1998). J. Am. Chem. Soc. 120, 4550–4551.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationMen, J., Yang, M.-J., Jiang, Y., Chen, H. & Gao, G.-W. (2008). Acta Cryst. E64, o847.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNumata, S., Tsutomu, T. & Toshio, T. (1976). US Patent 3985818.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds