organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-bromo­pyridine–benzoic acid (1/1)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 9 February 2010; accepted 14 February 2010; online 20 February 2010)

In the title adduct, C5H5BrN2·C7H6O2, the carboxyl group of the benzoic acid mol­ecule is twisted away from the attached ring by 12.97 (11)°. The 2-amino-5-bromo­pyridine mol­ecules inter­act with the carboxylic group of neighbouring benzoic acid mol­ecules through N—H⋯O and O—H⋯N hydrogen bonds, forming cyclic R22(8) hydrogen-bonded motifs and linking the mol­ecules into a two-dimensional network lying parallel to (100). The crystal structure is further stabilized by weak C—H⋯O hydrogen bonds.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Goubitz et al. (2001[Goubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176-181.]); Vaday & Foxman (1999[Vaday, S. & Foxman, M. B. (1999). Cryst. Eng. 2, 145-151.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H5BrN2·C7H6O2

  • Mr = 295.14

  • Monoclinic, P 21 /c

  • a = 18.5614 (16) Å

  • b = 5.1769 (5) Å

  • c = 12.3613 (11) Å

  • β = 97.016 (2)°

  • V = 1178.91 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.48 mm−1

  • T = 100 K

  • 0.61 × 0.21 × 0.07 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.228, Tmax = 0.788

  • 19825 measured reflections

  • 5495 independent reflections

  • 3709 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.01

  • 5495 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.83 2.626 (2) 162
N2—H2A⋯O2ii 0.86 2.02 2.866 (3) 167
N2—H2B⋯O1iii 0.86 2.25 3.105 (2) 171
C7—H7⋯O2iv 0.93 2.51 3.064 (2) 118
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-bromopyridine (Goubitz et al., 2001) and 2-amino-5-bromopyridinium propynoate (Vaday & Foxman, 1999) have been reported in the literature. In the present study, the hydrogen-bonding patterns in the 2-amino-5-bromopyridine benzoic acid (1/1) cocrystal are investigated.

The asymmetric unit (Fig 1), contains one 2-amino-5-bromopyridine molecule and one benzoic acid molecule. The 2-amino-5-bromopyridine molecule is planar, with a maximum deviation of 0.024 (2)Å for atom N2. The carboxyl group of the benzoic acid molecule is twisted away from the attached ring by 12.97 (11)° . The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the 2-amino-5-bromopyridine molecules interact with the carboxylic group of the respective benzoic acid molecules through N2—H2A···O2 and O1—H1···N1 hydrogen bonds, forming a cyclic hydrogen-bonded motif R22(8) (Bernstein et al., 1995), and linking the molecules into 2-dimensional networks parallel to the (100) plane. The crystal structure is further stabilized by strong N2—H2B···O1 and weak C7—H7···O2 (Table 1) hydrogen bonds.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Goubitz et al. (2001); Vaday & Foxman (1999). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995); For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (87 mg, Aldrich) and benzoic acid (61 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93 Å, N–H = 0.86 Å and O–H = 0.82 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.
2-Amino-5-bromopyridine–benzoic acid (1/1) top
Crystal data top
C5H5BrN2·C7H6O2F(000) = 592
Mr = 295.14Dx = 1.663 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3648 reflections
a = 18.5614 (16) Åθ = 3.8–32.0°
b = 5.1769 (5) ŵ = 3.48 mm1
c = 12.3613 (11) ÅT = 100 K
β = 97.016 (2)°Plate, colourless
V = 1178.91 (19) Å30.61 × 0.21 × 0.07 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5495 independent reflections
Radiation source: fine-focus sealed tube3709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 35.9°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3030
Tmin = 0.228, Tmax = 0.788k = 88
19825 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.064P)2]
where P = (Fo2 + 2Fc2)/3
5495 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 1.25 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C5H5BrN2·C7H6O2V = 1178.91 (19) Å3
Mr = 295.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.5614 (16) ŵ = 3.48 mm1
b = 5.1769 (5) ÅT = 100 K
c = 12.3613 (11) Å0.61 × 0.21 × 0.07 mm
β = 97.016 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5495 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3709 reflections with I > 2σ(I)
Tmin = 0.228, Tmax = 0.788Rint = 0.057
19825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.01Δρmax = 1.25 e Å3
5495 reflectionsΔρmin = 0.50 e Å3
155 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.470134 (11)0.30630 (5)0.886018 (18)0.02683 (8)
N10.31375 (10)0.1799 (3)0.73265 (14)0.0191 (3)
N20.25884 (11)0.2217 (4)0.55605 (15)0.0252 (4)
H2A0.23640.35580.57580.030*
H2B0.25190.17040.48940.030*
C10.30452 (10)0.0928 (4)0.62906 (16)0.0188 (3)
C20.34283 (11)0.1260 (4)0.59759 (17)0.0214 (4)
H20.33510.18610.52620.026*
C30.39160 (12)0.2490 (4)0.67336 (19)0.0231 (4)
H30.41720.39300.65430.028*
C40.40175 (11)0.1516 (4)0.78013 (17)0.0210 (4)
C50.36211 (11)0.0591 (4)0.80675 (16)0.0206 (4)
H50.36880.12040.87800.025*
O10.23842 (7)0.4732 (3)0.82571 (10)0.0188 (3)
H10.26680.55500.79290.028*
O20.19345 (9)0.3546 (3)0.65709 (11)0.0217 (3)
C70.13808 (11)0.1436 (4)0.91317 (15)0.0186 (4)
H70.16160.26600.96000.022*
C80.09178 (11)0.0370 (4)0.95201 (16)0.0215 (4)
H80.08420.03411.02500.026*
C90.05710 (11)0.2199 (4)0.88304 (18)0.0215 (4)
H90.02650.34010.90970.026*
C100.06795 (12)0.2244 (4)0.77347 (18)0.0217 (4)
H100.04460.34770.72690.026*
C110.11352 (10)0.0450 (4)0.73404 (15)0.0191 (3)
H110.12050.04730.66080.023*
C120.14884 (10)0.1389 (4)0.80347 (15)0.0163 (3)
C130.19580 (10)0.3321 (4)0.75609 (15)0.0163 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02372 (11)0.02522 (13)0.03212 (12)0.00568 (8)0.00565 (8)0.00818 (9)
N10.0222 (7)0.0160 (8)0.0196 (7)0.0029 (6)0.0045 (6)0.0009 (6)
N20.0331 (9)0.0235 (9)0.0182 (7)0.0074 (8)0.0000 (7)0.0037 (7)
C10.0201 (8)0.0154 (8)0.0212 (8)0.0012 (7)0.0041 (7)0.0016 (7)
C20.0221 (8)0.0194 (9)0.0239 (8)0.0008 (7)0.0076 (7)0.0056 (8)
C30.0208 (8)0.0181 (9)0.0320 (10)0.0006 (7)0.0097 (8)0.0032 (8)
C40.0191 (8)0.0176 (9)0.0268 (9)0.0005 (7)0.0053 (7)0.0045 (7)
C50.0220 (8)0.0194 (9)0.0208 (8)0.0005 (8)0.0043 (7)0.0011 (7)
O10.0209 (6)0.0193 (7)0.0159 (6)0.0052 (6)0.0013 (5)0.0003 (5)
O20.0310 (7)0.0199 (7)0.0145 (5)0.0032 (6)0.0043 (5)0.0000 (5)
C70.0219 (8)0.0183 (9)0.0153 (7)0.0007 (7)0.0010 (6)0.0010 (7)
C80.0225 (8)0.0226 (10)0.0199 (8)0.0018 (8)0.0041 (7)0.0052 (8)
C90.0207 (8)0.0165 (9)0.0277 (9)0.0007 (7)0.0043 (7)0.0054 (8)
C100.0218 (8)0.0168 (9)0.0266 (9)0.0009 (7)0.0027 (7)0.0033 (8)
C110.0214 (8)0.0171 (9)0.0190 (8)0.0013 (7)0.0033 (6)0.0029 (7)
C120.0176 (7)0.0141 (8)0.0173 (7)0.0018 (6)0.0031 (6)0.0008 (6)
C130.0191 (8)0.0143 (8)0.0158 (7)0.0022 (7)0.0028 (6)0.0002 (6)
Geometric parameters (Å, º) top
Br1—C41.887 (2)O1—H10.8200
N1—C11.349 (3)O2—C131.225 (2)
N1—C51.355 (3)C7—C81.394 (3)
N2—C11.339 (3)C7—C121.395 (2)
N2—H2A0.8600C7—H70.9300
N2—H2B0.8600C8—C91.380 (3)
C1—C21.417 (3)C8—H80.9300
C2—C31.377 (3)C9—C101.394 (3)
C2—H20.9300C9—H90.9300
C3—C41.404 (3)C10—C111.384 (3)
C3—H30.9300C10—H100.9300
C4—C51.378 (3)C11—C121.391 (3)
C5—H50.9300C11—H110.9300
O1—C131.317 (2)C12—C131.493 (3)
C1—N1—C5118.98 (18)C8—C7—H7120.3
C1—N2—H2A120.0C12—C7—H7120.3
C1—N2—H2B120.0C9—C8—C7120.53 (18)
H2A—N2—H2B120.0C9—C8—H8119.7
N2—C1—N1118.04 (19)C7—C8—H8119.7
N2—C1—C2120.74 (19)C8—C9—C10120.01 (19)
N1—C1—C2121.21 (19)C8—C9—H9120.0
C3—C2—C1119.56 (19)C10—C9—H9120.0
C3—C2—H2120.2C11—C10—C9119.9 (2)
C1—C2—H2120.2C11—C10—H10120.1
C2—C3—C4118.38 (19)C9—C10—H10120.1
C2—C3—H3120.8C10—C11—C12120.26 (18)
C4—C3—H3120.8C10—C11—H11119.9
C5—C4—C3119.6 (2)C12—C11—H11119.9
C5—C4—Br1120.26 (16)C11—C12—C7119.95 (18)
C3—C4—Br1120.10 (16)C11—C12—C13118.04 (16)
N1—C5—C4122.22 (19)C7—C12—C13121.98 (18)
N1—C5—H5118.9O2—C13—O1123.04 (18)
C4—C5—H5118.9O2—C13—C12120.31 (18)
C13—O1—H1109.5O1—C13—C12116.65 (16)
C8—C7—C12119.37 (19)
C5—N1—C1—N2177.14 (19)C7—C8—C9—C100.3 (3)
C5—N1—C1—C21.8 (3)C8—C9—C10—C110.1 (3)
N2—C1—C2—C3177.5 (2)C9—C10—C11—C120.4 (3)
N1—C1—C2—C31.4 (3)C10—C11—C12—C70.3 (3)
C1—C2—C3—C40.1 (3)C10—C11—C12—C13178.42 (19)
C2—C3—C4—C51.2 (3)C8—C7—C12—C110.0 (3)
C2—C3—C4—Br1178.02 (16)C8—C7—C12—C13177.99 (19)
C1—N1—C5—C40.6 (3)C11—C12—C13—O212.0 (3)
C3—C4—C5—N10.9 (3)C7—C12—C13—O2166.00 (19)
Br1—C4—C5—N1178.36 (15)C11—C12—C13—O1168.26 (18)
C12—C7—C8—C90.3 (3)C7—C12—C13—O113.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.832.626 (2)162
N2—H2A···O2ii0.862.022.866 (3)167
N2—H2B···O1iii0.862.253.105 (2)171
C7—H7···O2iv0.932.513.064 (2)118
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H5BrN2·C7H6O2
Mr295.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.5614 (16), 5.1769 (5), 12.3613 (11)
β (°) 97.016 (2)
V3)1178.91 (19)
Z4
Radiation typeMo Kα
µ (mm1)3.48
Crystal size (mm)0.61 × 0.21 × 0.07
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.228, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
19825, 5495, 3709
Rint0.057
(sin θ/λ)max1)0.825
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.01
No. of reflections5495
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.25, 0.50

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.82001.83002.626 (2)162.00
N2—H2A···O2ii0.86002.02002.866 (3)167.00
N2—H2B···O1iii0.86002.25003.105 (2)171.00
C7—H7···O2iv0.93002.51003.064 (2)118.00
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176–181.  Web of Science CSD CrossRef CAS Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaday, S. & Foxman, M. B. (1999). Cryst. Eng. 2, 145–151.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds