organic compounds
2-Amino-5-bromopyridine–benzoic acid (1/1)
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title adduct, C5H5BrN2·C7H6O2, the carboxyl group of the benzoic acid molecule is twisted away from the attached ring by 12.97 (11)°. The 2-amino-5-bromopyridine molecules interact with the carboxylic group of neighbouring benzoic acid molecules through N—H⋯O and O—H⋯N hydrogen bonds, forming cyclic R22(8) hydrogen-bonded motifs and linking the molecules into a two-dimensional network lying parallel to (100). The is further stabilized by weak C—H⋯O hydrogen bonds.
Related literature
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Goubitz et al. (2001); Vaday & Foxman (1999). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995); For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810005969/rz2420sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810005969/rz2420Isup2.hkl
A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (87 mg, Aldrich) and benzoic acid (61 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.
All hydrogen atoms were positioned geometrically [C–H = 0.93 Å, N–H = 0.86 Å and O–H = 0.82 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C5H5BrN2·C7H6O2 | F(000) = 592 |
Mr = 295.14 | Dx = 1.663 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3648 reflections |
a = 18.5614 (16) Å | θ = 3.8–32.0° |
b = 5.1769 (5) Å | µ = 3.48 mm−1 |
c = 12.3613 (11) Å | T = 100 K |
β = 97.016 (2)° | Plate, colourless |
V = 1178.91 (19) Å3 | 0.61 × 0.21 × 0.07 mm |
Z = 4 |
Bruker APEX DUO CCD area-detector diffractometer | 5495 independent reflections |
Radiation source: fine-focus sealed tube | 3709 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
ϕ and ω scans | θmax = 35.9°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −30→30 |
Tmin = 0.228, Tmax = 0.788 | k = −8→8 |
19825 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.064P)2] where P = (Fo2 + 2Fc2)/3 |
5495 reflections | (Δ/σ)max = 0.001 |
155 parameters | Δρmax = 1.25 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
C5H5BrN2·C7H6O2 | V = 1178.91 (19) Å3 |
Mr = 295.14 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 18.5614 (16) Å | µ = 3.48 mm−1 |
b = 5.1769 (5) Å | T = 100 K |
c = 12.3613 (11) Å | 0.61 × 0.21 × 0.07 mm |
β = 97.016 (2)° |
Bruker APEX DUO CCD area-detector diffractometer | 5495 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3709 reflections with I > 2σ(I) |
Tmin = 0.228, Tmax = 0.788 | Rint = 0.057 |
19825 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.01 | Δρmax = 1.25 e Å−3 |
5495 reflections | Δρmin = −0.50 e Å−3 |
155 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.470134 (11) | 0.30630 (5) | 0.886018 (18) | 0.02683 (8) | |
N1 | 0.31375 (10) | −0.1799 (3) | 0.73265 (14) | 0.0191 (3) | |
N2 | 0.25884 (11) | −0.2217 (4) | 0.55605 (15) | 0.0252 (4) | |
H2A | 0.2364 | −0.3558 | 0.5758 | 0.030* | |
H2B | 0.2519 | −0.1704 | 0.4894 | 0.030* | |
C1 | 0.30452 (10) | −0.0928 (4) | 0.62906 (16) | 0.0188 (3) | |
C2 | 0.34283 (11) | 0.1260 (4) | 0.59759 (17) | 0.0214 (4) | |
H2 | 0.3351 | 0.1861 | 0.5262 | 0.026* | |
C3 | 0.39160 (12) | 0.2490 (4) | 0.67336 (19) | 0.0231 (4) | |
H3 | 0.4172 | 0.3930 | 0.6543 | 0.028* | |
C4 | 0.40175 (11) | 0.1516 (4) | 0.78013 (17) | 0.0210 (4) | |
C5 | 0.36211 (11) | −0.0591 (4) | 0.80675 (16) | 0.0206 (4) | |
H5 | 0.3688 | −0.1204 | 0.8780 | 0.025* | |
O1 | 0.23842 (7) | 0.4732 (3) | 0.82571 (10) | 0.0188 (3) | |
H1 | 0.2668 | 0.5550 | 0.7929 | 0.028* | |
O2 | 0.19345 (9) | 0.3546 (3) | 0.65709 (11) | 0.0217 (3) | |
C7 | 0.13808 (11) | 0.1436 (4) | 0.91317 (15) | 0.0186 (4) | |
H7 | 0.1616 | 0.2660 | 0.9600 | 0.022* | |
C8 | 0.09178 (11) | −0.0370 (4) | 0.95201 (16) | 0.0215 (4) | |
H8 | 0.0842 | −0.0341 | 1.0250 | 0.026* | |
C9 | 0.05710 (11) | −0.2199 (4) | 0.88304 (18) | 0.0215 (4) | |
H9 | 0.0265 | −0.3401 | 0.9097 | 0.026* | |
C10 | 0.06795 (12) | −0.2244 (4) | 0.77347 (18) | 0.0217 (4) | |
H10 | 0.0446 | −0.3477 | 0.7269 | 0.026* | |
C11 | 0.11352 (10) | −0.0450 (4) | 0.73404 (15) | 0.0191 (3) | |
H11 | 0.1205 | −0.0473 | 0.6608 | 0.023* | |
C12 | 0.14884 (10) | 0.1389 (4) | 0.80347 (15) | 0.0163 (3) | |
C13 | 0.19580 (10) | 0.3321 (4) | 0.75609 (15) | 0.0163 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02372 (11) | 0.02522 (13) | 0.03212 (12) | −0.00568 (8) | 0.00565 (8) | −0.00818 (9) |
N1 | 0.0222 (7) | 0.0160 (8) | 0.0196 (7) | −0.0029 (6) | 0.0045 (6) | −0.0009 (6) |
N2 | 0.0331 (9) | 0.0235 (9) | 0.0182 (7) | −0.0074 (8) | 0.0000 (7) | 0.0037 (7) |
C1 | 0.0201 (8) | 0.0154 (8) | 0.0212 (8) | 0.0012 (7) | 0.0041 (7) | 0.0016 (7) |
C2 | 0.0221 (8) | 0.0194 (9) | 0.0239 (8) | 0.0008 (7) | 0.0076 (7) | 0.0056 (8) |
C3 | 0.0208 (8) | 0.0181 (9) | 0.0320 (10) | −0.0006 (7) | 0.0097 (8) | 0.0032 (8) |
C4 | 0.0191 (8) | 0.0176 (9) | 0.0268 (9) | −0.0005 (7) | 0.0053 (7) | −0.0045 (7) |
C5 | 0.0220 (8) | 0.0194 (9) | 0.0208 (8) | −0.0005 (8) | 0.0043 (7) | 0.0011 (7) |
O1 | 0.0209 (6) | 0.0193 (7) | 0.0159 (6) | −0.0052 (6) | 0.0013 (5) | 0.0003 (5) |
O2 | 0.0310 (7) | 0.0199 (7) | 0.0145 (5) | −0.0032 (6) | 0.0043 (5) | 0.0000 (5) |
C7 | 0.0219 (8) | 0.0183 (9) | 0.0153 (7) | −0.0007 (7) | 0.0010 (6) | 0.0010 (7) |
C8 | 0.0225 (8) | 0.0226 (10) | 0.0199 (8) | −0.0018 (8) | 0.0041 (7) | 0.0052 (8) |
C9 | 0.0207 (8) | 0.0165 (9) | 0.0277 (9) | −0.0007 (7) | 0.0043 (7) | 0.0054 (8) |
C10 | 0.0218 (8) | 0.0168 (9) | 0.0266 (9) | −0.0009 (7) | 0.0027 (7) | −0.0033 (8) |
C11 | 0.0214 (8) | 0.0171 (9) | 0.0190 (8) | 0.0013 (7) | 0.0033 (6) | −0.0029 (7) |
C12 | 0.0176 (7) | 0.0141 (8) | 0.0173 (7) | 0.0018 (6) | 0.0031 (6) | 0.0008 (6) |
C13 | 0.0191 (8) | 0.0143 (8) | 0.0158 (7) | 0.0022 (7) | 0.0028 (6) | 0.0002 (6) |
Br1—C4 | 1.887 (2) | O1—H1 | 0.8200 |
N1—C1 | 1.349 (3) | O2—C13 | 1.225 (2) |
N1—C5 | 1.355 (3) | C7—C8 | 1.394 (3) |
N2—C1 | 1.339 (3) | C7—C12 | 1.395 (2) |
N2—H2A | 0.8600 | C7—H7 | 0.9300 |
N2—H2B | 0.8600 | C8—C9 | 1.380 (3) |
C1—C2 | 1.417 (3) | C8—H8 | 0.9300 |
C2—C3 | 1.377 (3) | C9—C10 | 1.394 (3) |
C2—H2 | 0.9300 | C9—H9 | 0.9300 |
C3—C4 | 1.404 (3) | C10—C11 | 1.384 (3) |
C3—H3 | 0.9300 | C10—H10 | 0.9300 |
C4—C5 | 1.378 (3) | C11—C12 | 1.391 (3) |
C5—H5 | 0.9300 | C11—H11 | 0.9300 |
O1—C13 | 1.317 (2) | C12—C13 | 1.493 (3) |
C1—N1—C5 | 118.98 (18) | C8—C7—H7 | 120.3 |
C1—N2—H2A | 120.0 | C12—C7—H7 | 120.3 |
C1—N2—H2B | 120.0 | C9—C8—C7 | 120.53 (18) |
H2A—N2—H2B | 120.0 | C9—C8—H8 | 119.7 |
N2—C1—N1 | 118.04 (19) | C7—C8—H8 | 119.7 |
N2—C1—C2 | 120.74 (19) | C8—C9—C10 | 120.01 (19) |
N1—C1—C2 | 121.21 (19) | C8—C9—H9 | 120.0 |
C3—C2—C1 | 119.56 (19) | C10—C9—H9 | 120.0 |
C3—C2—H2 | 120.2 | C11—C10—C9 | 119.9 (2) |
C1—C2—H2 | 120.2 | C11—C10—H10 | 120.1 |
C2—C3—C4 | 118.38 (19) | C9—C10—H10 | 120.1 |
C2—C3—H3 | 120.8 | C10—C11—C12 | 120.26 (18) |
C4—C3—H3 | 120.8 | C10—C11—H11 | 119.9 |
C5—C4—C3 | 119.6 (2) | C12—C11—H11 | 119.9 |
C5—C4—Br1 | 120.26 (16) | C11—C12—C7 | 119.95 (18) |
C3—C4—Br1 | 120.10 (16) | C11—C12—C13 | 118.04 (16) |
N1—C5—C4 | 122.22 (19) | C7—C12—C13 | 121.98 (18) |
N1—C5—H5 | 118.9 | O2—C13—O1 | 123.04 (18) |
C4—C5—H5 | 118.9 | O2—C13—C12 | 120.31 (18) |
C13—O1—H1 | 109.5 | O1—C13—C12 | 116.65 (16) |
C8—C7—C12 | 119.37 (19) | ||
C5—N1—C1—N2 | 177.14 (19) | C7—C8—C9—C10 | −0.3 (3) |
C5—N1—C1—C2 | −1.8 (3) | C8—C9—C10—C11 | −0.1 (3) |
N2—C1—C2—C3 | −177.5 (2) | C9—C10—C11—C12 | 0.4 (3) |
N1—C1—C2—C3 | 1.4 (3) | C10—C11—C12—C7 | −0.3 (3) |
C1—C2—C3—C4 | 0.1 (3) | C10—C11—C12—C13 | −178.42 (19) |
C2—C3—C4—C5 | −1.2 (3) | C8—C7—C12—C11 | 0.0 (3) |
C2—C3—C4—Br1 | 178.02 (16) | C8—C7—C12—C13 | 177.99 (19) |
C1—N1—C5—C4 | 0.6 (3) | C11—C12—C13—O2 | 12.0 (3) |
C3—C4—C5—N1 | 0.9 (3) | C7—C12—C13—O2 | −166.00 (19) |
Br1—C4—C5—N1 | −178.36 (15) | C11—C12—C13—O1 | −168.26 (18) |
C12—C7—C8—C9 | 0.3 (3) | C7—C12—C13—O1 | 13.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.82 | 1.83 | 2.626 (2) | 162 |
N2—H2A···O2ii | 0.86 | 2.02 | 2.866 (3) | 167 |
N2—H2B···O1iii | 0.86 | 2.25 | 3.105 (2) | 171 |
C7—H7···O2iv | 0.93 | 2.51 | 3.064 (2) | 118 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) x, −y+1/2, z−1/2; (iv) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H5BrN2·C7H6O2 |
Mr | 295.14 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 18.5614 (16), 5.1769 (5), 12.3613 (11) |
β (°) | 97.016 (2) |
V (Å3) | 1178.91 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.48 |
Crystal size (mm) | 0.61 × 0.21 × 0.07 |
Data collection | |
Diffractometer | Bruker APEX DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.228, 0.788 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19825, 5495, 3709 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.825 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.123, 1.01 |
No. of reflections | 5495 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.25, −0.50 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.8200 | 1.8300 | 2.626 (2) | 162.00 |
N2—H2A···O2ii | 0.8600 | 2.0200 | 2.866 (3) | 167.00 |
N2—H2B···O1iii | 0.8600 | 2.2500 | 3.105 (2) | 171.00 |
C7—H7···O2iv | 0.9300 | 2.5100 | 3.064 (2) | 118.00 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) x, −y+1/2, z−1/2; (iv) x, −y+1/2, z+1/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Goubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176–181. Web of Science CSD CrossRef CAS Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley. Google Scholar
Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vaday, S. & Foxman, M. B. (1999). Cryst. Eng. 2, 145–151. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-bromopyridine (Goubitz et al., 2001) and 2-amino-5-bromopyridinium propynoate (Vaday & Foxman, 1999) have been reported in the literature. In the present study, the hydrogen-bonding patterns in the 2-amino-5-bromopyridine benzoic acid (1/1) cocrystal are investigated.
The asymmetric unit (Fig 1), contains one 2-amino-5-bromopyridine molecule and one benzoic acid molecule. The 2-amino-5-bromopyridine molecule is planar, with a maximum deviation of 0.024 (2)Å for atom N2. The carboxyl group of the benzoic acid molecule is twisted away from the attached ring by 12.97 (11)° . The bond lengths (Allen et al., 1987) and angles are normal.
In the crystal packing (Fig. 2), the 2-amino-5-bromopyridine molecules interact with the carboxylic group of the respective benzoic acid molecules through N2—H2A···O2 and O1—H1···N1 hydrogen bonds, forming a cyclic hydrogen-bonded motif R22(8) (Bernstein et al., 1995), and linking the molecules into 2-dimensional networks parallel to the (100) plane. The crystal structure is further stabilized by strong N2—H2B···O1 and weak C7—H7···O2 (Table 1) hydrogen bonds.